Techno Press
Tp_Editing System.E (TES.E)
Login Search
Found 1272 results:

Abstract
The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Key Words
oblique-reverse fault; strain demand; hybrid finite element model; parametric analysis; regression equation

Address
Xiaoben Liu, Hong Zhang, Yanfei Chen, Mengying Xia and Kai Wu: College of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, China Xiaoting Gu: College of Petroleum Engineering, Yangtze University, Wuhan Hubei, China

Abstract
Masonry infill walls are unavoidable parts of any building to create a separation between internal space and external environment. In general, there are some prevalent openings in the infill wall due to functional needs, architectural considerations or aesthetic concerns. In current design practice, the strength and stiffness contribution of infill walls is not considered. However, the presence of infill walls may decisively influence the seismic response of structures subjected to earthquake loads and cause a different behavior from that predicted for a bare frame. Furthermore, partial openings in the masonry infill wall are significant parameter affecting the seismic behavior of infilled frames thereby decreasing the lateral stiffness and strength. The possible effects of openings in the infill wall on seismic behavior of RC frames is analytically studied by means of pushover analysis of several bare, partially and fully infilled frames having different bay and story numbers. The stiffness loss due to partial opening is introduced by the stiffness reduction factors which are developed from finite element analysis of frames considering frame-infill interaction. Pushover curves of frames are plotted and the maximum base shear forces, the yield displacement, the yield base shear force coefficient, the displacement demand, interstory drift ratios and the distribution of story shear forces are determined. The comparison of parameters both in terms of seismic demand and capacity indicates that partial openings decisively influences the nonlinear behavior of RC frames and cause a different behavior from that predicted for a bare frame or fully infilled frame.

Key Words
partially infilled RC frames; stiffness reduction factor; nonlinear behavior; pushover analysis; capacity; seismic demand

Address
Onur Ozturkoglu, Yusuf Yesilce: Deparment of Civil Engineering, Dokuz Eylul University, 35160, Buca, Izmir, Turkey Taner Ucar: Department of Architecture, Dokuz Eylul University, 35160, Buca, Izmir, Turkey

Abstract
The design of reinforced concrete structures strongly depends on the value of the compression concrete strength used for the structural components. Given the uncertainties involved on the materials quality provided by concrete manufacturers, in the construction stage, these components may be either over or under-reinforced respect to the nominal condition. If the structure is under reinforced, and the deficit on safety level is not as large to require the structure demolition, someone should assume the consequences, and pay for the under standard condition by means of a penalty. If the structure is over reinforced, and other failure modes are not induced, the builder may receive a bonus, as a consequence of the higher, although unrequested, building resistance. The change on the building safety level is even more critical when the structure is under a seismic environment. In this research, a reliability-based criteria, including the consideration of expected losses, is proposed for bonification/penalization, when there are moderated differences between the supplied and specified reinforced concrete strength for the buildings. The formulation is applied to two hypothetical, with regular structural type, 3 and 10 levels reinforced concrete buildings, located on the soft soil zone of Mexico City. They were designed under the current Mexican code regulations, and their responses for typical spectral pseudoaccelerations, combined with their respective occurrence probabilities, are used to calculate the building failure probability. The results are aimed at providing objective basis to start a negotiation towards a satisfactory agreement between the involved parts. The main contribution resides on the explicit consideration of potential losses, including the building and contents losses and the business interruption due to the reconstruction period.

Key Words
nominal and actual concrete strength; expected failure costs; R/C buildings; seismic loading; compensation factors

Address
Engineering, Autonomous University of Mexico State, Campus UAEM, Toluca, Mexico State, Mexico

Abstract
This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with in-plan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

Key Words
pushover analysis; multimodal procedure; adaptive procedure; displacement based design; inelastic response of structures

Address
Pietro Lenza, Marcello Pellecchia: Department of Structural Engineering, University of Naples \"Federico II\", P. V. Tecchio, 80125, Naples Aurelio Ghersi, Edoardo M. Marino: Department of Civil Engineering and Architecture, University of Catania, V. Santa Sofia, 64, 95123, Catania

Abstract
Prior to modern seismic provisions, several bridges were not designed for seismic actions in moderate seismic areas. Precast multi-girder and slab bridges are typical highway overpass structures; they have a significant contribution to national bridge stocks. Since the seismic behavior is questionable, a preliminary parametric study is conducted to determine critical configurations and components. The results indicate that the behavior of the abutments, backfill soil, superstructure and foundation is normally satisfactory; however, the superstructure-abutment joints are critical for both single- and multi-span bridges, while the piers are also critical for longer multi-span configurations. The parametric results provide a solid basis both for detailed seismic assessment and development of design concepts of newly built structures in moderate seismic zones.

Key Words
seismic analysis; parametric analysis; multi modal response spectrum analysis; seismic performance; bridge engineering; moderate seismicity

Address
Department of Structural Engineering, Budapest University of Technology and Economics, Budapest, Műegyetem rkp. 3., 1111, Hungary

Abstract
The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

Key Words
seismic fragility; RC precast structures; beam-column connection collapse; nonlinear modelling

Address
Dumitru Beilic, Roberto Nascimbene, Daniele Cicola and Daniela Rodrigues: EUCENTRE, Pavia, Italy Chiara Casotto: ROSE Programme, UME School, IUSS Pavia, Italy

Abstract
In this paper a simple approach is presented for spectral matching of ground motions utilizing the wavelet transform and a recently developed metaheuristic optimization technique. For this purpose, wavelet transform is used to decompose the original ground motions to several levels, where each level covers a special range of frequency, and then each level is multiplied by a variable. Subsequently, the vibrating particles system (VPS) algorithm is employed to calculate the variables such that the error between the response and target spectra is minimized. The application of the proposed method is illustrated through modifying 12 sets of ground motions. The results achieved by this method demonstrate its capability in solving the problem. The outcomes of the VPS algorithm are compared to those of the standard colliding bodies optimization (CBO) to illustrate the importance of the enhancement of the algorithm.

Key Words
spectrum-compatible ground motions; wavelet transform; response spectrum; vibrating particles system algorithm

Address
Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, Narmak, Tehran, P.O. Box 16846-13114, Iran

Abstract
To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors (C_µ) and (C_R) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both C_µ and C_R effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio (C_n) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (n), post-to-preyield stiffness ratio (α), natural period (T), peak ductility factor (µ), and the yield strength reduction factor (R_y). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (n), post-to-preyield stiffness ratio (α), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and n ranges, they remain take close when n>1, whereas they are equal to 1 for periods T>1s.

Key Words
deformation ratio; yield strength; reduction factors; ductility; inelastic spectra; Pushover; normalized yield strength coefficient; seismic design

Address
Benazouz Chikh, Nacer Laouami, Youcef Mehani, Abderrahmane Kibboua: National Earthquake Engineering Research Center, CGS, Rue Kaddour Rahim, BP 252 Hussein-Dey, Algiers, Algeria Ahmed Mebarki: University Paris-Est, Laboratoire Modelisation et Simulation Multi Echelle (MSME), UMR 8208 CNRS, 5 Bd Descartes, 77454 Marne-La-Vallee, France Moussa Leblouba: Department of Civil & Environmental Engineering, College of Engineering, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates Mohamed Hadid: National School of Built and Ground Works Engineering (ENSTP), 01 Rue SidiGaridi, Vieux Kouba 16003, Algiers, Algeria Djilali Benouar: University of Sciences& Technology Houari Boumediene (USTHB), Faculty of Civil Engineering, BP 32, 16111 El-Alia / Bab Ezzouar, Algiers, Algeria

Abstract
This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.

Key Words
vault; macro-element; equivalent stiffness; truss; churches

Address
Linda Giresini, Mauro Sassu: Department of Energy, Systems, Territory and Constructions Engineering Largo Lucio Lazzarino, 1, Pisa, University of Pisa, Italy Christoph Butenweg: Lehrstuhl für Baustatik und Baudynamik, Mies-van-der-Rohe-Stra

Abstract
Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

Key Words
semi-active control; variable stiffness; mass damper; discrete-time optimal linear-quadratic regulator (LQR) control; direct output-feedback, time-delay compensation, leverage theorem; position control; servo motor

Address
Department of Civil Engineering, National Cheng Kung University, No.1, University Road, Tainan, Taiwan

[prev] [51] [52] [53] [54] [55] [56] [57] [58] 59 [60] [next]

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: info@techno-press.com