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1. Introduction 
 

For Nonlinear Time History Analysis (NL-THA) of 

structures, several simplified methods have been proposed. 

They estimate the seismic response by considering the 

structural capacity as well as the seismic intensity. Due to 

nonlinear materials behavior, the dynamic structural 

characteristics change with time during major earthquakes.  
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Therefore, ductility plays an important role in structural 

response and earthquake engineering design. To study the 

nonlinear response, one may use real time history analysis, 

by analytical or numerical procedure considering elastic and 

inelastic response, or a simplified approach such as 

Pushover analysis. The structural capacity can actually be 

studied by running inelastic static analysis such as Pushover 

analysis. Thus, it has been extensively investigated and 

discussed for seismic performance evaluation. 

Among such methods, the most widely used are the 

Capacity Spectrum Method (CSM) developed by Freeman 

et al. (1975) and adopted by the Applied Technology 

Council ATC-40 (1996), the N2 method developed by 

Fajfar (1996, 1999) and the Displacement Coefficient 
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Abstract.  To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the 

Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is 

based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept 

consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a 

corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation 

ratio which is usually developed for systems with known ductility factors (𝐶𝜇) and (𝐶𝑅) for known yield-strength reduction 

factor.  

The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems 

by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both 𝐶𝜇 and 𝐶𝑅 

effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are 

investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and 

inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak 

ground acceleration. 

This new inelastic deformation ratio (𝐶𝜂) is describes the response spectra and is related to the capacity curve (pushover 

curve): normalized yield strength coefficient (𝜂), post-to-preyield stiffness ratio (α), natural period (𝑇), peak ductility factor 

(𝜇), and the yield strength reduction factor (𝑅𝑦). For illustrative purposes, instantaneous ductility demand and yield strength 

reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The 

method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the 

normalized yield strength coefficient (𝜂), post-to-preyield stiffness ratio (𝛼), and natural period (𝑇). Though the ductility 

demand and yield strength reduction factor differ greatly for some given 𝑇 and 𝜂 ranges, they remain take close when 𝜂 > 1, 

whereas they are equal to 1 for periods 𝑇 ≥ 1𝑠. 
 

Keywords:  deformation ratio; yield strength; reduction factors; ductility; inelastic spectra; Pushover; normalized yield 

strength coefficient; seismic design 
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Method (DCM) adopted also by the Federal Emergency 

Management Agency FEMA-273 (1997) and FEMA-356 

(2000). More recently, the FEMA-440 (2005) was 

developed as improvement of nonlinear static seismic 

analysis procedures of FEMA-356 (2000) and the ATC-

40(1996) for seismic rehabilitation of buildings. 

The CSM method (ATC-401996) gives an overview of 

the inelastic behavior of structures and requires structural 

capacity curves derived from the nonlinear dynamic 

behavior analyses. It compares the capacity of a structure to 

resist lateral forces to the demands of earthquake response 

spectra. Many response spectra have been proposed to 

replace the conventional elastic spectra in order to achieve 

accurate evaluation of the inelastic response of structures 

(Sheng and Biggs 1980, Iwan 1980, Newmark and Hall 

1982, Kowalsky 1994, Benazouz et al. 2012, Sang et al. 

2014, Yazdani and Salimi 2015, Guohuan et al. 2016). 

For instance, FEMA-273 (1997) and FEMA-356 (2000) 

adopt the DCM method. They derive the maximum 

structural inelastic deformation from the maximum linear 

elastic deformation by using a modifying factor. In fact, the 

DCM method requires various correction factors in order to 

adjust the linear displacement by an equivalent nonlinear 

displacement. The most influent correction factor is 

represented by the modifying factor C1which concerns the 

inelastic deformation ratio. 

More recently, FEMA-440 (2005), several researchers 

have investigated the accuracy of the inelastic displacement 

demands obtained from DCM. Furthermore, drawbacks of 

the method rise from the fact that it does not take into 

account accurately neither the P-delta effect nor the soils 

effect (FEMA-440 2005). For better accuracy, Miranda 

(2001) developed two methods able to estimate the 

maximum inelastic displacements through the use of 

parameters that relate SDOF systems elastic response to 

their inelastic response. Miranda and Ruiz-Garcia (2002) 

have also proposed a simplified displacement modification 

factor which shows that neither earthquake magnitude nor 

distance to the fault have strong influence on the idealized 

peak inelastic displacement demands. Same results have 

also been observed by Chopra and Chintanapakdee (2004). 

Further studies on DCM method sensitivity analysis have 

been performed recently (Miranda and Akkar 2003, 

Matamoros et al. 2003, Lin et al. 2004, Pankaj and Lin 

2005, Bardakis and Dritsos 2007, Akkar and Metin 2007, 

Goel 2008, Benavent and Escolano 2012, Massumi and 

Monavari 2013). 

The inelastic deformation estimated by the CSM method 

is based on an equivalent linear method, whereas the DCM 

method provides displacement correction by the use of 

modification factors. In FEMA-440 (2005), it is stated that 

the coefficients used in DCM, FEMA-356 (2000), may lead 

to excessive under- or over-estimates. Therefore, improved 

series of coefficients for DCM have been presented in 

FEMA-440 (2005). Miranda (2001) studied the similarities 

and differences between the use of inelastic demand spectra 

in order to estimate inelastic peak deformations as 

implemented by (Reinhorn 1997, Fajfar 1999, 2000, Chopra 

and Goel 1999, Chikh et al. 2014, Zerbin and Aprile 2015, 

Kazaz 2016, Chikh et al. 2016) and the use of inelastic 

displacement ratios in order to estimate maximum inelastic 

deformations as suggested by Miranda (1991, 2000) as well 

as Seneviratna and Krawinkler (1997). 

To evaluate the inelastic deformation ratio, the present 

work develops a new theoretical expression for SDOF 

bilinear systems derived from the bilinear capacity curve 

(Pushover curve). 
 

 

2. Inelastic deformation ratio for SDOF bilinear 
systems 

 

Structural nonlinear time history analysis (NL-THA) is 

time consuming and not easy to implement as it requires 

sophisticated nonlinear models for the whole structural 

components. The results are very sensitive to the model 

accuracy. 

Thus, for engineering purposes, it is still challenging to 

develop simplified and enough accurate methods. For 

instance, for an inelastic SDOF system (see Fig. 1), its 

deformation 𝑥(𝑡)  under a ground motion effect is 

expressed as 

𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑓(𝑥, 𝑥̇) = −𝑚𝑥̈𝑔(𝑡) (1) 

Where: 𝑚, 𝑐 and 𝑓 represent the mass, damping and 

resisting force of the inelastic system, respectively; 

𝑥̈𝑔(𝑡) denotes the ground acceleration; 𝑥̈, 𝑥̇, 𝑥  represent 

respectively the acceleration, velocity and displacement 

(deformation) of the SDOF. 

For inelastic bilinear system, the resisting force 𝑓(𝑡) is 

defined as the sum of the linear part and the hysteretic part, 

and depends on the history of deformations (see Fig. 1) 

𝑓(𝑡) = 𝑘𝑝𝑥(𝑡) + 𝑄𝑧(𝑡) (2) 

Where: 𝑘𝑝 is the post-yield stiffness; 𝑄 is the yield 

strength (ordinate at origin of the creeping part) whereas 𝑓𝑦 

represents the yielding force; and the adimensional variable 

𝑧(𝑡) which characterizes the Bouc-Wen hysteresis model 

(Bouc1967, Wen1976, Baber and Noori 1985, Kunnath et 

al. 1992) is the solution of the differential Eq. (1) given by 

𝑧̇(𝑡) =
𝑥̇(𝑡)

𝑥𝑦
[𝐴 − |𝑧|𝜆(𝐵. 𝑠𝑖𝑔𝑛(𝑥̇𝑧) + 𝛽)] (3) 

Where: 𝑧(𝑡) depends on the yield displacement 𝑥𝑦, as 

well as 𝐴, 𝐵, 𝜆, and 𝛽 that are the parameters that control 

the shape of the hysteresis loop. The adopted values are: 

𝐴 = 1, 𝐵 = 0.1, 𝜆 = 0.9 and 𝛽 = 6 for bilinear system  

 

 

 

Fig. 1 Behavior of an (SDOF) bilinear system 
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(Wen 1976); sign(. ) is the sign function. 

Eqs. (1)-(2) lead to 

𝑥̈(𝑡) + 2𝜉𝜔𝑥̇(𝑡) + 𝛼𝜔2𝑥(𝑡) + 𝑞𝑔𝑧(𝑡) = −𝑥̈𝑔(𝑡) (4) 

Where: 𝜉 =
𝑐

2.𝜔.𝑚
=damping ratio; 𝜔 =circular 

frequency; α =post-to-preyield stiffness ratio; 𝑄 =yield 

strength; 𝑚 = mass; 𝑔 =gravity acceleration; 𝑞 =
𝑄

𝑚𝑔
=yield strength ratio. 

For illustration purposes, Eq. (4) is solved for El Centro 

1940 ground motion (N/S) component ( 𝑃𝐺𝐴 = 0.32 g,
𝑃𝐺𝑉 = 36.14 cm/sec , and 𝑃𝐺𝐷 = 21.34 cm ) (see Fig. 

2(a)). The results for nonlinear analysis are shown in Fig. 2: 

- the displacement history 𝑥(𝑡) in Fig. 2(b) 

- the yielding history through 𝑧(𝑡)in Fig. 2(c), and 

- the variation of the system force coefficient 𝑓/𝑤 with 

respect to displacement in Fig. 2(d). 

 

 

 
(a) Strong component of El Centro 1940 (N/S) 

ground motion 

 
(b) System deformation 

 
(c) Yield function 𝑧(𝑡) 

 
(d) Force-deformation relation 

Fig. 2 Results for nonlinear analysis System parameters are: 

𝑞 = 0.09 , 𝑇 = 1.0 sec, 𝑘𝑒 = 17.5 kN/cm and 𝛼 = 10% 

In case of elastic linear SDOF system, Eqs. (1), (2) and 

(4) provide 

𝑓(𝑡) = 𝑘𝑒𝑥(𝑡) (5) 

𝑥̈(𝑡) + 2𝜉𝜔𝑥̇(𝑡) + 𝜔2𝑥(𝑡) = −𝑥̈𝑔(𝑡) (6) 

Where: 𝑘𝑒 =the elastic stiffness; 𝑓=the resisting force. 

Thus, linear dynamic analysis procedures concern the 

response spectrum and time history analyses. They provide 

approximate nonlinear responses and require coupled, 

second-order, linear differential equations of motion under 

forced vibration. Therefore, it is unlikely that the 

displacements are accurately estimated. For instance, the 

elastic analysis with El Centro 1940 ground motion (N/S) 

provides the results shown in Fig. 3. 

For the same ground motion, one can notice that (see 

Figs. 2 and 3): 

- the linear analysis predicts peak displacements (10.5 

cm) slightly larger than nonlinear case (9.15 cm) 

- whereas the spectral acceleration coefficient (𝑓/𝑚𝑔) 

for linear analysis (0.45) is almost four times larger 

than the nonlinear response (0.12). 

 

2.1 Ductility factor 𝜇 , and yield strength reduction 

factor 𝑅𝑦 

 

An adequate design is based on yield and peak 

(maximal) displacements targets according to the ductility 

demand expected during an earthquake. This ductility 

demand (or ductility factor) initially introduced through the 

response spectrum for elastic-perfectly plastic systems 

(Veletsos and Newmark 1960) for the bilinear system is 

expressed as (Chopra and Chintanapakdee 2004) 

𝜇 =
𝑥𝑚
𝑥𝑦

 (7) 

Where: 𝑥𝑚 is the maximum (or peak) displacement. 

 

 

 

(a) System deformation 

 
(b) Force-deformation 

Fig. 3 System deformation and force-deformation results 

of linear dynamic analysis. System period 𝑇 = 1.0 sec 
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An additional key factor is expressed by the yield 

strength reduction factor 𝑅𝑦  defined as (Chopra and 

Chintanapakdee 2004) 

𝑅𝑦 =
𝑓0
𝑓𝑦
=
𝑥0
𝑥𝑦

 (8) 

Where: 𝑓0  and 𝑥0  are respectively peak force and 

deformation of the elastic system. 

Despite numerous researches on experimental and 

theoretical evaluation of this reduction factor 𝑅𝑦, it is still 

challenging to find explicit or simplified relationships 

between this reduction factor and the structural (or material) 

parameters such as the structural natural period and the post 

to pre-yield stiffness ratio (Lai and Biggs 1980, Riddell and 

Newmark 1979, Elghadamsi and Moraz 1987, Riddell et al. 

1989, Nassar and Krawinkler 1991, Miranda 1993, Vidic et 

al. 1994, Ordaz and Pérez-Rocha 1998, Borzi and Elnashai 

2000, Tiwari and Gupta 2000, Riddell et al. 2002, Chopra 

and Chintanapakdee 2004, Farrow and Kurama 2004). 

 

2.2 Equation of motion in terms of ductility factor 𝜇, 
and yield strength reduction factor 𝑅𝑦 

 

By analogy with the yield strength reduction factor 𝑅𝑦, 

(see Eq. (8)), it seems worth to associate, for each 

instantaneous elastic displacement 𝑥𝑒(𝑡), an instantaneous 

yield strength reduction factor ℜ𝑦(𝑡) defined as 

{

ℜ𝑦(𝑡) = 𝑥𝑒(𝑡)/𝑥𝑦

ℜ̇𝑦(𝑡) = 𝑥̇𝑒(𝑡)/𝑥𝑦

ℜ̈𝑦(𝑡) = 𝑥̈𝑒(𝑡)/𝑥𝑦

 (9) 

Where: 𝑥(.) is the instantaneous displacement of the 

system; ℜ𝑦(. ) , ℜ̇𝑦(. ), ℜ̈𝑦(. )  are instantaneous yield 

strength reduction factor ℜ𝑦(. ) and first as well as second 

derivatives; t is any instant time during the motion. 

Also by analogy with the ductility demand for inelastic 

system 𝜇, (see Eq. (7)), it is also worth to associate, for 

each instantaneous inelastic displacement 𝑥(𝑡),  an 

instantaneous ductility demand ℳ(𝑡) defined as 

{

ℳ(𝑡) = 𝑥(𝑡)/𝑥𝑦

ℳ̇(𝑡) = 𝑥̇(𝑡)/𝑥𝑦

ℳ̈(𝑡) = 𝑥̈(𝑡)/𝑥𝑦

 (10) 

Where: ℳ(. ) ,  ℳ̇(. ),  ℳ̈(. )  are, respectively, 

instantaneous ductility demand ℳ(. ), its first and second 

derivatives. 

From Eqs. (4), (6), (9) and (10) and after division by 

𝑥𝑦, the new motion equations become 

{
  
 

  
 
ℳ̈(𝑡) + 2𝜉𝜔ℳ̇(𝑡) + 𝛼𝜔2ℳ(𝑡) + 𝜔2(1 − 𝛼)𝑧(𝑡)

= −
1

𝑥𝑦
𝑥̈𝑔(𝑡)

ℜ̈𝑦(𝑡) + 2𝜉𝜔ℜ̇𝑦(𝑡) + 𝜔
2ℜ𝑦(𝑡)

= −
1

𝑥𝑦
𝑥̈𝑔(𝑡)

 (11) 

The yield displacement can be expressed as 

𝑥𝑦 =
𝑞 𝑔

𝜔2(1 − 𝛼)
=

𝑄

𝑚𝑔
.

𝑔

𝜔2(1 − 𝛼)
 (12) 

Eqs. (11)-(12) can therefore be expressed as 

{
  
 

  
 
ℳ̈(𝑡) + 2𝜉𝜔ℳ̇(𝑡) + 𝛼𝜔2ℳ(𝑡) + 𝜔2(1 − 𝛼)𝑧(𝑡)

= −
𝜔2(1 − 𝛼)

𝑞𝑔
𝑥̈𝑔(𝑡)

ℜ̈𝑦(𝑡) + 2𝜉𝜔ℜ̇𝑦(𝑡) + 𝜔
2ℜ𝑦(𝑡)

= −
𝜔2(1 − 𝛼)

𝑞𝑔
𝑥̈𝑔(𝑡)

 (13) 

By using this instantaneous ductility demand ℳ(𝑡), 
yield strength reduction factor ℜ𝑦(𝑡)  and the yield 

strength ratio 𝑞, the bilinear system behavior described by 

Fig. 1 is transformed into a bilinear representation of the 

resisting force (as described by Eq. (13), (see Fig. 4)) which 

value equals 1 at the yield position. 

For illustrative purposes, Eqs. (13) are solved for El 

Centro 1940 ground motion (N/S) by using the new bilinear 

model shown in Fig. 4. The corresponding instantaneous 

ductility demand and yield strength reduction factor for a 

SDOF system are provided in Fig. 5. 

 

 

 
Fig. 4 New SDOF behavior used in Eq. (13) described in 

terms of new normalized parameters: 𝑞, ℳ and ℜ𝑦 
 

 

 

(a) Ductility demand 

 
(b) Yield strength reduction factor 

Fig. 5 Ductility demand and yield strength reduction 

factor when 𝑞 = 0.09, 𝑇 = 1 sec and 𝛼 = 10% 
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Fig. 6 Bilinear system behavior described in terms of 

new normalized parameters: 𝜂, ℳ and ℜ𝑦 

 
 
2.3 Normalization and control parameters 

 

The normalized yield strength coefficient η defined as 

the ratio between the system strength relative and the Peak 

Ground Acceleration (PGA) value 𝐴𝑔  is expressed as 

(Mahin and Lin 1983, Benazouz et al. 2012) 

𝜂 =
𝑞. 𝑔

𝐴𝑔
 (14) 

Incorporating 𝜂 into Eq. (13) results in: 

{
  
 

  
 
ℳ̈(𝑡) + 2𝜉𝜔ℳ̇(𝑡) + 𝛼𝜔2ℳ(𝑡) + 𝜔2(1 − 𝛼)𝑧(𝑡)

−
𝜔2(1 − 𝛼)

𝜂
𝑥̈𝑔̅̅ ̅(𝑡)

ℜ̈𝑦(𝑡) + 2𝜉𝜔ℜ̇𝑦(𝑡) + 𝜔
2ℜ𝑦(𝑡)

= −
𝜔2(1 − 𝛼)

𝜂
𝑥̈𝑔̅̅ ̅(𝑡)

 (15) 

Where: 𝑥̈𝑔̅̅ ̅(𝑡) =
𝑥̈𝑔(𝑡)

𝐴𝑔
 represents the normalized ground 

acceleration with respect to the 𝑃𝐺𝐴. 

The bilinear system behavior described by Fig. 4 is 

transformed into Fig. 6 when using the new normalized 

parameters 𝜂, ℳ(𝑡) and ℜ𝑦(𝑡). 

From the new representation of the SDOF behavior 

illustrated in Fig. 6, one can notice that, for a given ground 

acceleration, the instantaneous ductility ℳ(t)  and the 

yield strength reduction factor ℜ𝑦(𝑡) depend also on 𝛼, 𝜂 

and 𝑇 or 𝜔 (Period or circular frequency of the system). 

 
2.4 Applications and discussion 
 

For illustrative purposes, El-Centro 1940 (N/S) is 

applied as input for various systems and control parameters, 

(see Figs. 7 and 8). 

- Three inelastic models are used in this investigation in 

order to verify the influence of the behavior type on the 

ductility demand and yield strength reduction factor. 

- Four values for 𝜂 = 0.25, 0.5, 0.75 and 1.0, and four 

values for 𝛼 = 0%, 3%, 5%  and 10%  are used in 

order to study their influence,  

- and the damping ratio 𝜉 = 5 for all systems. 

The hysteretic models are based on the Wen-Bouc 

model (Wen 1976) with the set of values given above, i.e., 

𝐴 = 1, 𝐵 = 0.1, 𝜆 = 0.9  whereas 𝛽 , which controls the 

rate of transition from the elastic to the yield state, is so that 

(Lobo 1994): 

A large value 𝛽 = 20  corresponds to a bilinear 

hysteretic curve, and 

A lower value 𝛽 = 6  corresponds to a smoother 

transition. 

The three hysteretic models were adopted with the new 

theoretical approach. The results show that the whole 

models are capable of capturing the dynamic response of 

the inelastic SDOF system, whereas the Bouc-Wen model 

was reformulated in terms of instantaneous ductility needed 

for the time history analysis. 

The comparison provided in Figs. 7 and 8 shows that the 

Elastic Perfectly Plastic model gives overestimated results 

when compared to those obtained by using the bilinear and 

smooth model. Furthermore, the results of the bilinear 

behavior are very close to those obtained using the smooth 

model. Therefore, the post-to-preyield stiffness ratio leads 

to accurate evaluation of the dynamic response (see Fig. 7). 

The influences of the normalized yield strength 

coefficient (𝜂) and the post-to-preyield stiffness ratio (𝛼) 
are illustrated in Fig. 8. One can notice that, for the 

considered examples, the ductility demand (μ) and the yield 

strength reduction factor (Ry) decrease when the normalized 

yield strength coefficient ( 𝜂 ) or the post-to-preyield 

stiffness ratio (𝛼) increase. The results obtained for 𝑅𝑦 

indicate that the post-to-preyield stiffness ratio has a small 

effect on the yield strength reduction factor. 

 

2.5 Inelastic deformation ratio 
 

Structural analyses and designs, such as response 

spectrum and spectral anaylsis, are usually based on peak 

response in terms of deformations, accelerations, or shear 

forces, etc. Furthermore, the inelastic deformation ratio 

defined as the deformations ratio of inelastic vs. linear 

system has also been widely investigated (Miranda 2001, 

Chopra and Chintanapakdee 2003, 2004) 

𝐶 = 
𝑥𝑚
𝑥0

=
𝜇

𝑅𝑦

= {
𝐶𝜇 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑑𝑢𝑐𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝜇

𝐶𝑅 𝑓𝑜𝑟 𝑓𝑖𝑥𝑒𝑑 𝑦𝑖𝑒𝑙𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡𝑕 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑅𝑦
 

(16) 

By analogy, solutions of Eq. (15) provide the values of 

the inelastic deformation ratio defined as 

𝐶𝜂 =
𝜇 = ℳ𝑚𝑎𝑥(𝑡)

𝑅𝑦 = ℜ𝑦,𝑚𝑎𝑥(𝑡)
 (17) 

The bilinear system behavior described by Fig. 6 is 

transformed into Fig. 9 when using the new normalized 

parameters 𝜂 and 𝐶𝜂. 

As shown in Fig. 9, the inelastic deformation ratio 𝐶𝜂 

is defined as the ratio between the ductility demand μ and 

the yield strength reduction factor 𝑅𝑦. 𝐶𝜂 is then affected 

by the normalized yield strength coefficient (𝜂) and the 

post-to-preyield stiffness ratio (𝛼) so that 𝐶𝜂 = 1 when 

𝜇 = 𝑅𝑦. 

Therefore, it appears that the peak ductility factor 𝜇, the 

peak yield strength reduction factor 𝑅𝑦, and the inelastic 

deformation ratio 𝐶𝜂 correspond to particular values of the 
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Fig. 9 Normalized bilinear behavior of the systems 
 

 

 

corresponding parameters instantaneous values i.e., ℳ(𝑡), 
ℜ𝑦(𝑡) and 𝐶𝜂. The SDOF systems response spectra is then  

 

 

 

entirely described once the governing parameters (𝜂, 𝛼) are 

defined. It becomes then easy to obtain and construct the 

three specific spectra, i.e.: 

- Ductility demand (𝜇) 

- Yield strength reduction factor (𝑅𝑦), and 

- Inelastic deformation ratio 𝐶𝜂 . 

The required procedure to construct these spectra is thus 

summarized as follows: 

1. Select the ground motion to investigate 

2. Select and fix: 

- the damping ratio 𝜉 

- the range of natural period 𝑇 

- the post-to-preyield stiffness ratio 𝛼 and 

- the normalized strength coefficient 𝜂. 

3. Determine the instantaneous ductility ℳ(𝑡) and 

strength reduction factor ℜ𝑦(𝑡) according to the values  
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Fig. 7 Hysteretic response 𝑓/𝑚𝑔 vs. 𝑥(𝑡), instantaneous ductility demand ℳ(𝑡)and instantaneous yield st

rength reduction factor ℜ𝑦(𝑡) when η = 0.5, α = 10%, T = 1 sec 

 
Fig. 8 Ductility demand and yield strength reduction factor time histories: effect of (𝜂) and (𝛼) when 𝑇 = 1 sec 
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Fig. 11 Ductility demand and yield strength reduction 

factor spectra for different values of 𝛼 and 𝜂 = 0.75 

subjected to the El-Centro (N/S) components 

 

 

selected for 𝑇, 𝜉, 𝜂and 𝛼. 

4. Derive from ℳ(𝑡) and ℜ𝑦(𝑡)  the peak ductility 

demand𝜇 and the yield strength reduction factor 𝑅𝑦. 

5. Repeat steps 3 and 4 for the given range of periods T. 

Calculate the inelastic deformation ratios 𝐶𝜂(𝜉, 𝑇, 𝛼,

𝜂). 
For illustrative purposes, the response spectra are 

plotted in Fig. 10 for perfect elasto-plastic behavior 

(𝛼 = 0%)  and for various values of the normalized 

strength coefficient (𝜂 = 0.25, 0.5, 0.75, 1.0, 1.5 and 2. 
Fig. 11 is plotted for fixed normalized strength coefficient 

(𝜂 = 0.75) and four values of post-to-preyield stiffness 

ratio (𝛼 = 0, 3, 5 and 10%), under the effect of El-Centro 

1940 ground motion with (N/S) component. From the 

obtained results it can be drawn that (see Figs. 10-11): 

- The effect of 𝜂 and 𝛼 is significant. Their increase 

produces a decrease of 𝜇 and 𝑅𝑦 values. 

- When 𝜂 increases, the 𝜇 spectra approaches the 𝑅𝑦  

 

 
Fig. 12 Inelastic deformation ratio spectra for bilinear 

SDOF systems subjected to the El-Centro(N/S) components 

(influence of normalized yield strength coefficient η) 

 

 

spectra.In the short period region, 𝜇 > 𝑅𝑦 , and for 

𝑇 > 1 sec, 𝜇 = 𝑅𝑦 for all values of 𝜂 (see Fig. 10).  

- The (𝛼) ratio reduces 𝜇values for periods shorter 

than 0.6 sec, but has a small effect on 𝑅𝑦 for all periods 

(see Fig. 11). 

A parametric study is performed in order to study the 

influence of the normalized yield strength coefficient (𝜂) 
and the post-to-preyield stiffness ratio (𝛼) on the inelastic 

deformation ratio (𝐶𝜂)  (see Figs. 12-13). Though they 

differ greatly for given ranges of α and η, they take close 

values for systems for any 𝑇  value when 𝜂 > 1 . 

Furthermore, they are equal to 1 for periods 𝑇 ≥ 1𝑠𝑒𝑐. This 

confirms, as shown in Fig. 9, that for periods shorter than 

0.6 sec and 𝜂 < 1, (1/𝐶𝜂) is proportional to 𝜂 and 𝛼. 

The classical methods had up to now to distinguish two 

conditional parametric ratios 𝐶 : 𝐶𝜇  when 𝜇  is constant 

and 𝐶𝑅 when 𝑅𝑦 is constant (Miranda 1993, Whittaker et 

al. 1998, Chopra and Chintanapakdee 2004). 
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Fig. 10 Ductility demand and yield strength reduction factor spectra for different values of 𝜂 and 

𝛼 = 0% subjected to the El-Centro (N/S) components 

 

 

 
 

 

 

 

 

 

 

 

 

0 1 2 3
0

2

4

6

8

10

0 1 2 3
0

2

4

6

8

10

 

 

0 1 2 3
0

2

4

6

8

10

0 1 2 3
0

2

4

6

8

10

Period, sec

0 1 2 3
0

2

4

6

8

10

Period, sec

0 1 2 3
0

2

4

6

8

10

Period, sec

Yield Strength Reduction Factor Ductility Demand

0 1 2 3
0

2

4

6

8

10

0 1 2 3
0

2

4

6

8

10

 

 

0 1 2 3
0

2

4

6

8

10

0 1 2 3
0

2

4

6

8

10

Period, sec

0 1 2 3
0

2

4

6

8

10

Period, sec

0 1 2 3
0

2

4

6

8

10

Period, sec

Yield Strength Reduction Factor Ductility Demand

   

   

 a
n

d
 

 

0 1 2 3
0

5

10

15

0 1 2 3
0

5

10

15

0 1 2 3
0

5

10

15

0 1 2 3
0

5

10

15

Period, sec

0 1 2 3
0

5

10

15

Period, sec

0 1 2 3
0

5

10

15

Period, sec

𝜇
 a

n
d

 𝑅
𝑦

 
𝜂 = 0.25 𝜂 = 0.5 𝜂 = 0.75 

𝜂 = 1.5 𝜂 = 1.5 𝜂 = 2.0 

403



 

Benazouz Chikh et al 

 
Fig. 13 Inelastic deformation ratio spectra for bilinear 

SDOF systems subjected to the El-Centro (N/S) 

components (influence of post-to-preyield stiffness ratio 𝛼) 

 

 

The original method, developed in the present paper, 

provides similar results whereas it considers a unique 

parameter, i.e., the newly defined unique inelastic 

deformation ratio Cηwhatever are 𝜇 and 𝑅𝑦 values. 
 

 
2.6 Comparison with existing formulations 

 

Based on the fact that the inelastic deformation ratio is 

defined as a function of 𝛼 and 𝑇, especially 𝜂, the new 

approach results are compared to those obtained by classical  

methods, Chopra and Chintanapakdee (2004), FEMA-346 

(FEMA 2000) and FEMA-440 (FEMA 2005). Chopra and 

Chintanapakdee (2004) developed the following equation of 

the inelastic deformation ratio for bilinear systems: 

- Deformation of systems with known ductility 

𝐶𝜇 = 1 + *(𝐿𝜇 − 1)
−1
+ (

𝑎

𝜇𝑏
+ 𝑐) (

𝑇

𝑇𝑐
)
𝑑

+

−1

 (18) 

Where 

𝐿𝜇 =
𝜇

1 + (𝜇 − 1)𝛼
 (19) 

With: 𝑎 = 105, 𝑏 = 2.3, 𝑐 = 1.9 and 𝑑 = 1.7 

- Deformation of systems with known 𝑅𝑦 

𝐶𝑅 = 1 + *(𝐿𝑅 − 1)
−1 + (

𝑎

𝑅𝑦
𝑏
+ 𝑐)(

𝑇

𝑇𝑐
)
𝑑

+

−1

 (20) 

Where 

𝐿𝑅 =
1

𝑅𝑦
(1 +

𝑅𝑦 − 1

𝛼
) (21) 

With: 𝑎 = 61, 𝑏 = 2.4, 𝑐 = 1.5 and 𝑑 = 2.4. 

Where: 𝐿𝑅 =Deformation ratio 𝐶𝑅  for zero-period 

system; 𝐿𝜇 = Deformation ratio 𝐶𝜇  for zero-period 

system; 𝑇 = Period of the SDOF system; 𝑇𝑐 =Period 

separating acceleration- and velocity-sensitive regions in 

elastic response spectra; 𝑅𝑦 =Yield strength reduction 

factor;𝜇=Ductility factor; and α=Post-to-preyield stiffness 

ratio. 

The inelastic deformation ratio in FEMA-356 (FEMA 

2000) is given for fixed yield strength reduction factor 𝑅𝑦 

as 𝐶1 

𝐶1 = 1      𝑓𝑜𝑟 𝑇𝑒 ≥ 𝑇𝑠

𝐶1 =
[1.0 +

(𝑅−1)𝑇𝑠

𝑇𝑒
]

𝑅
       𝑓𝑜𝑟   𝑇𝑒 < 𝑇𝑠

 (22) 

Where: 𝑇𝑒=is the effective fundamental period of the 

SDOF model of the structure; 𝑇𝑠 the period associated with 

the transition from the constant acceleration segment of the 

spectrum to the constant velocity segment of the spectrum; 

and 𝑅=the strength ratio computed with Eq. (23) 

𝑅 =
𝑆𝑎

𝑉𝑦/𝑊
𝐶𝑚 (23) 

With 𝑆𝑎 =Spectral acceleration; 𝑉𝑦 =Yield strength; 

𝑊 =Effective seismic weight; and 𝐶𝑚 =Effective model 

mass calculated for the fundamental mode. 

A simple expression of the inelastic deformation ratio 

has been proposed in FEMA-440 (FEMA 2005) 

𝐶1 = 1 +
𝑅 − 1

𝑎 𝑇𝑒
2
    𝑓𝑜𝑟   𝑇 ≤ 1𝑠𝑒𝑐

𝐶1 = 1                  𝑓𝑜𝑟 𝑇 > 1𝑠𝑒𝑐

 (24) 

Where: a=130, 90 and 60 for site classes B, C and D, 

respectively. 

Earthquake records collected in Algeria during 

Boumerdes Mw=6.8 earthquake which occurred on May 21, 

2003 in Algiers region (Laouami et al. 2006), are selected 

as input motions for sensitivity analysis, see Table 1. 

The mean response spectrum for inelastic deformation 

ratio is constructed by selecting a range of values for the 

period 𝑇. For the present study case, the period is 

considered as varyingwithin the interval 0.02 up to 3 

seconds in order to study the inelastic deformation ratio 

response spectrum for each considered ground motion 

record, as described in section 2.5. Furthermore, the mean 

normalized spectra is calculated for the whole ground 

 

 

Table 1 Peak ground accelerations during Boumerdes 

earthquake (Laouami et al. 2006) 

 
PGA(g) 

Station East/West North/South 

Keddara1 0.34 0.26 

Keddara2 0.58 0.35 

Dar El Beida 0.52 0.46 

Hussein Dey 0.27 0.23 

Tizi Ouzou 0.2 0.19 

Blida 0.05 0.04 

Azazga 0.12 0.09 

El Afroun 0.16 0.09 

Hammam Righa 0.1 0.07 

Miliana 0.03 0.026 

Ain Defla 0.03 0.02 
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motions when 𝜂 = 0.5, 𝛼 = 10% and for each value of 

𝑇. 

The ground motion is defined by the mean spectrum of 

the whole accelerograms, normalized by the PGA 

values(peak ground acceleration). The mean spectrum 𝐶𝜂 

for this set of records with ξ = 5%is shown in Fig. 14.  

Fig. 15 illustrates the inelastic deformation ratio 

calculated for ground motions records from Boumerdes 

earthquake in 2003 with 𝜂 = 0.5 , and 𝛼 = 10% . The 

values of the inelastic deformation ratioobtained by the 

proposed approach are closeto those predicted by the most 

efficient existing methods (Chopra and Chintanapakdee 

2004, FEMA 2000, 2005). 

 

 

3. Conclusions 
 

The new methodology develops a theoretical modeling 

of the inelastic deformation ratio (𝐶𝜂) which is expressed as 

a function of the natural period (𝑇), the post-to-preyield  

 

 

 
Fig. 14 Inelastic deformation ratio for individual 

accelerograms (Boumerdes earthquake 2003): set of 

ground motions and mean spectrum (𝛼 = 10%, 𝜂 =
0.5 and 𝜉 = 5%) 

 

 

 
Fig. 15 Inelastic deformation ratio for Boumerdes 

earthquake 2003 with 𝛼 = 10%  and 𝜂 = 0.5 :    

comparison between the proposed approachand 

Chopra-Chintanapakdee (2004), FEMA-356 (2000), 

and FEMA-440 (2005) results 
 

stiffness ratio (α) and the normalized yield strength 

coefficient (𝜂). Thus, any SDOF bilinear systems motion 

can be expressed in terms of ductility demand and yield 

strength reduction factor, the equations of motions for 

inelastic and elastic systems being then solved separately. It 

subsequently requires the development of a unique 

combined effect, i.e., the inelastic deformation ratio (𝐶𝜂) 

which is the ratio between the peak ductility demand and 

the yield strength reduction factor whatever are their 

individual values. The resolution of the resulting equations, 

for nonlinear systems, shows efficiency and requires small 

calculation time duration in order to obtain the maximal 

response of the structure. To study the efficiency of the 

method, applications have been performed for SDOF 

systems under the effect of a selected ground motion, El-

Centro ground motion. The results show that the proposed 

ratio 𝐶𝜂  is sensitive to the normalized yield strength 

coefficient (𝜂) and the post-to-preyield stiffness ratio (𝛼). 

Furthermore, it can be drawn that. 

1. The inelastic deformation ratio (𝐶𝜂) decreases with 

any increase of the influencing parameters, i.e., the 

normalized yield strength coefficient (𝜂), the post-to-

preyield stiffness ratio (𝛼) or the period (T). 

2. When the normalized yield strength coefficient values 

is so that (𝜂 > 1), the inelastic deformation ratio (𝐶𝜂) is 

not significantly influenced by the post-to-preyield 

stiffness ratio (𝛼). Actually, when (𝜂 > 1), the system 

is likely to remain in the elastic range. 

3. But, when the normalized yield strength coefficient 

values is so that ( 𝜂 ≤ 1 ), ( 𝐶𝜂 ) values decreases 

significantly with (𝛼) for periods (𝑇 < 0.6 s), whereas 

this variation becomes very slight for long periods 

(𝑇 >  0.6 s). 
4. As limit cases, (𝐶𝜂) takes very large values for very 

rigid systems (i.e., natural period T~0 s), whereas it 

equals 1 for 𝑇 > 1 s. 
A sensitivity analysis of the proposed method can 

therefore be performed in order to investigate with further 

details individual as well as combined effects of the more 

influencing parameters such as: 

- The effects of earthquakes magnitude as well as the 

distance from the site to the faults, i.e., usual cases of 

Large Magnitude Short distance for Rupture (LMSR), 

Large Magnitude Large distance for Rupture (LMLR), 

Small Magnitude Short distance for Rupture (SMSR), 

Small Magnitude Large distance for Rupture (SMLR); 

- The soil effects following the National Earthquake 

Hazard Reduction Program (NHERP) classification for 

instance; 

- The effect of the ductility (𝜇); 

- The effect of the post-to-preyield stiffness ratio (𝛼); 

- As well as the damping and the fundamental periods. 
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N°16/49/2011(Algeria). The final simulations and redaction 

have benefited from the bilateral research project CMEP 

Tassili project (11 MDU 847: 2011-2014). 
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