Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

scs
 
CONTENTS
Volume 8, Number 1, February 2008
 


Abstract
Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Key Words
fire-resistance; steel structure; catenary action.

Address
Department of Structural Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China

Abstract
This paper presents the results of a validation and parametric study for the theory presented in the companion paper. The parameters investigated include the stiffness of axial and rotational restraints, load ratio, depth-span ratio of the beam, the yield strength of steel, load type and the temperature distribution in the crosssection of the beam.

Key Words
fire-resistance; steel structure; catenary action; large deflection.

Address
Department of Structural Engineering Tongji University, 1239 Siping Road, Shanghai 200092 P. R. China

Abstract
The paper investigates the seismic performance of a Partially-Restrained (PR) steel-concrete composite frame using the probabilistic approach. The analysed frame was tested at the ELSA laboratory of the Joint Research Centre of Ispra (Italy), while the representative beam-to-column composite connections were tested at the Universities of Pisa, Milan and Trento (Italy). The component modelling of both interior and exterior composite joints is described first, including the experimental-numerical validation. The Latin Hypercube method has been used to draw the probabilistic distribution curves of joints, and then the whole PR composite frame has been analysed. Pushover and incremental dynamic analyses have been carried out using the non-linear FE code SAP2000 version 9.1. The fragility and performance curves of the PR composite frame have been determined for four damage limit states.

Key Words
fragility curves; Latin Hypercube method; probabilistic approach; composite structures.

Address
Department of Civil and Environmental Engineering, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy

Abstract
A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

Key Words
seismic design; irregular space steel frames; finite element method; advanced analysis methods; inelastic dynamic analysis; pushover analysis; Eurocode 8; Eurocode 3

Address
A. A. Vasilopoulos amd N. Bazeos; Department of Civil Engineering, University of Patras, GR-26500 Patras, Greece
D. E. Beskos; Department of Civil Engineering, University of Patras, GR-26500 Patras, Greece
Office of Theoretical and Applied Mechanics, Academy of Athens, 4 Soranou Efessiou Str., GR-11527 Athens, Greece

Abstract
In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

Key Words
steel moment frames; progressive collapse; plastic design; virtual work method.

Address
Department of Architectural Engineering, Sungkyunkwan University, Suwon, Korea


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com