Techno Press
Tp_Editing System.E (TES.E)
Login Search


eas
 
CONTENTS
Volume 18, Number 4, April 2020
 

Abstract
In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures, in addition to the structural integrity of platforms components under the maximum and minimum operating loads when subjected to the environmental conditions. In-place analysis have been executed to check that the structural member with all appurtenance´s robustness have the capability to support the applied loads in either storm or operating conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the dynamic characteristics of the platform model and the response of platform joints then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have significant effects in the results of the in-place analysis behavior. The most of bending moment responses of the piles are in the first fourth of pile penetration depth from pile head level. The axial deformations of piles in all load combinations cases of all piles are inversely proportional with penetration depth. The largest values of axial soil reaction are shown at the pile tips levels (the maximum penetration level). The most of lateral soil reactions resultant are in the first third of pile penetration depth from pile head level and approximately vanished after that penetration. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the force responses demands of the offshore platform with a piled jacket-support structure well.

Key Words
offshore platform; SACS; storm condition; pile soil interaction; in-place analysis

Address
Shehata E Abdel Raheem, Elsayed M. Abdel Aal, Aly G.A. AbdelShafy, Mohamed F.M. Fahmyd and Mahmoud H Mansoure: Civil Engineering Dept., Faculty of Engineering, Assuit University, Assiut 71516, Egypt

Abstract
An accurate evaluation of structural damage is essential to performance-based seismic design for the structure across the earth fissure. By comparing the calculation results from three commonly used damage models and the experimental results, a weighted combination method using Chen model was selected in this paper as the seismic damage evaluation. A numerical model considering the soil-structure interaction (SSI) was proposed using ABAQUS software. The model was calibrated by comparing with the experimental results. The results from the analysis indicated that, for the structure across the earth fissure, the existence of earth fissure changed the damage distribution of the structural members. The damage of structural members in the hanging wall was greater than that in the foot wall. Besides, the earth fissure enlarged the damage degree of the structural members at the same location and changed the position of the weak story. Moreover, the damage degree of the structure across the earth fissure was greater than that of the structure without the earth fissure under the same excitation. It is expected that the results from this research would enhance the understanding of the performance-based seismic design for the structure across the earth fissure.

Key Words
earth fissure; frame structure; damage model; performance-based seismic design; soil-structure interaction

Address
Zhongming Xiong, Xiaopeng Huo, Xuan Chen, Jianjian Xu: School of Civil Engineering, Xi\'an University of Architecture & Technology, Xi\'an 710055, China
Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi

Abstract
It is quite apparent that engineering concerns related to the influence of masonry infills on seismic behavior of reinforced concrete (RC) structures is likely to remain relevant in the long term, as infill walls maintain their functionalities in construction practice. Within this framework, the present paper mainly deals with the issue in terms of modal expansion of effective earthquake forces and the resultant modal responses. An adequate determination of spatial distribution of effective earthquake forces over the height of the building is highly essential for both seismic analysis and design. The possible influence of infill walls is investigated by means of modal analyses of two-, three-, and four-bay RC frames with a number of stories ranging from 3 to 8. Both uniformly and non-uniformly infilled frames are considered in numerical analyses, where infill walls are simulated by adopting the model of equivalent compression strut. Consequently, spatial distribution of effective earthquake forces, modal static base shear force response of frames, modal responses of story shears from external excitation vector and lateral floor displacements are obtained. It is found that, infill walls and their arrangement over the height of the frame structure affect the spatial distribution of modal inertia forces, as well as the considered response quantities. Moreover, the amount of influence varies in stories, but is not very dependent to bay number of frames.

Key Words


Address
Department of Architecture, Dokuz Eylul University, 35390, Buca, Izmir, Turkey

Abstract
In this paper, the effect of Engineered Cementitious Composites (ECC) on the lateral strength of a bearing unreinforced Masonry (URM) wall, was experimentally and numerically investigated. Two half scale solid walls were constructed and were tested under quasi-static lateral loading. The first specimen was an un-retrofitted masonry wall (reference wall) while the second one was retrofitted by ECC mortar connected to the wall foundation via steel rebar dowels. The effect of pre-compression level, ECC layer thickness and one or double-side retrofitting on the URM wall lateral strength was numerically investigated. The validation of the numerical model was carried out from the experimental results. The results indicated that the application of ECC layer increases the wall lateral strength and the level of increment depends on the above mentioned parameters. Increasing pre-compression levels and the lack of connection between the ECC layer and the wall foundation reduces the influence of the ECC mortar on the wall lateral strength. In addition, the wall failure mode changes from flexure to the toe-crashing behavior. Furthermore, in the case of ECC layer connected to the wall foundation, the ECC layer thickness and double-side retrofitting showed a significant effect on the wall lateral strength. Finally, a simple method for estimating the lateral strength of retrofitted masonry walls is presented. The results of this method is in good agreement with the numerical results.

Key Words
retrofitting; engineered cementitious composites; earthquake; quasi-static lateral loading; numerical study

Address
Alireza Namayandeh Niasar, Farshid Jandaghi Alaee : Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
Sohail Majid Zamani: Structural Engineering Dept., BHRC, Tehran, Iran

Abstract
Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Key Words
concrete; rectangular liquid storage tank; isolation; shock absorption; fluid-structure interaction

Address
Wei Jing, Peng Chen : Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology,
Lanzhou, 730050, PR China
Yu Song:Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou, 730050, PR China

Abstract
A New hyperbolic shear deformation theory is developed for the bending analysis of softcore and hardcore functionally graded sandwich beams. This theory satisfies the equilibrium conditions at the top and bottom faces of the sandwich beam and does not require the shear correction factor. The governing equations are derived from the principle of virtual work. Sandwich beams have functionally graded skins and two types of homogenous core (softcore and hardcore). The material properties of functionally graded skins are graded through the thickness according to the power-law distribution. The Navier solution is used to obtain the closed form solutions for simply supported FGM sandwich beams. The accuracy and effectiveness of proposed theory are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the deflections, stresses, and sandwich beam type on the bending responses of functionally graded sandwich beams.

Key Words
FG sandwich beams; bending; stress; hardcore; softcore; navier solution

Address
Lazreg Hadji :Department of Mechanical Engineering, University of Tiaret, BP 78 Zaaroura, Tiaret,14000, Algeria
Laboratory of Geomatics and Sustainable Development, University of Tiaret, Algeria
Abdelkader Safa:Department of Civil Engineering, Ahmed Zabana University Centre, Relizane (48000), Algeria

Abstract
In this paper, a new opposition based charged system search (CSS) is proposed to be used as a parameter identification of highly nonlinear semi-active magneto-rheological damper. By replacing the opposition particles with current solutions, the mentioned strategy is used to enhance the search space and to increase the exploration of CSS. To investigate the effectiveness of the proposed method, a nonlinear modified Bouc-Wen model of MR damper is considered to find its parameters, and compare it with those achieved from experimental model of MR damper. Also, by exploiting the sensitivity analysis and using the importance vector, the less importance parameters in the Bouc-Wen model are eliminated which makes the MR damper model simpler. Results demonstrate the new proposed algorithm (OBLCSS) has a high ability to tackle highly nonlinear problems. Based on the results of the α importance vector, a simplified model is proposed and its parameters are identified by using the presented OBLCSS algorithm. The simplified proposed model also has a high capability of estimating damper responses.

Key Words
parameter identification; Bouc-Wen model; charged system search; opposition based learning; MR damper; importance vector; reliability analysis

Address
Sina Shirgir, Bahman Farahmand Azar and Ali Hadidi: Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract
This study aims to present new frequency-related seismic intensity parameters (SIPs) based on the Hilbert-Huang Transform (HHT) analysis. The proposed procedure is utilized for the processing of several seismic accelerograms. Thus, the entire evaluated Hilbert Spectrum (HS) of each considered seismic velocity time-history is investigated first, and then, a delimited area of the same HS around a specific frequency is explored, for the proposition of new SIPs. A first application of the suggested new parameters is to reveal the interrelation between them and the structural damage of a reinforced concrete frame structure. The index of Park and Ang describes the structural damage. The fundamental frequency of the structure is considered as the mentioned specific frequency. Two statistical methods, namely correlation analysis and multiple linear regression analysis, are used to identify the relationship between the considered SIPs and the corresponding structural damage. The results confirm that the new proposed HHT-based parameters are effective descriptors of the seismic damage potential and helpful tools for forecasting the seismic damages on buildings.

Key Words
seismic intensity parameters; Hilbert-Huang Transform (HHT); Hilbert Spectrum (HS); seismic damage potential; Park and Ang damage index; multivariate statistics.

Address
Magdalini Tyrtaiou and Anaxagoras Elenas: Department of Civil Engineering, Institute of Structural Statics and Dynamics, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract
Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.

Key Words
cumulative damage failure mechanism; hysteretic structure system; pseudo excitation method; precise integration method; seismic reliability analysis

Address
Qiang Liu and Miaofang Wang: College of Engineering Technology, Jimei University, Xiamen, Fujian, 361021, China


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2020 Techno-Press
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Tel: +82-42-828-7996, Fax : +82-2-736-6801, Email: info@techno-press.com