Techno Press
You logged in as Techno Press

Advances in Concrete Construction
  Volume 8, Number 3, November 2019 , pages 207-215
DOI: https://doi.org/10.12989/acc.2019.8.3.207
 


Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites
Mohd Moonis Zaheer, Mohd Shamsuddin Jafri and Ravi Sharma

 
Abstract
    Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.
 
Key Words
    carbon nano tubes; nano materials; nanotechnology; flexural strength; toughness; ductility
 
Address
Mohd Moonis Zaheer, Mohd Shamsuddin Jafri and Ravi Sharma: Department of Civil Engineering, Z.H. College of Eng. & Tech., AMU Aligarh-202002, India
 
References
    -acc0803005-
 

Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno Press
P.O. Box 33, Yuseong, Daejeon 305-600 Korea, Tel: +82-42-828-7996, Fax : +82-42-828-7997, Email: info@techno-press.com