Structural Engineering and Mechanics, Vol. 37, No. 1 (2011) 61-77 61

Response of a completely free beam on a tensionless
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Z. Celep*!, K. Giiler' and F. Demir®

"Department of Structural and Earthquake Engineering, Faculty of Civil Engineering,
Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
2Department of Civil Engineering, Faculty of Engineering,

Sdleyman Demirel University, 32260 Isparta, Turkey

(Received April 24, 2010, Accepted September 7, 2010)

Abstract. Static and dynamic responses of a completely free elastic beam resting on a two-parameter
tensionless Pasternak foundation are investigated by assuming that the beam is symmetrically subjected to
a uniformly distributed load and concentrated load at its middle. Governing equations of the problem are
obtained and solved by paying attention on the boundary conditions of the problem including the
concentrated edge foundation reaction in the case of complete contact and lift-off condition of the beam in
a two-parameter foundation. The nonlinear governing equation of the problem is evaluated numerically by
adopting an iterative procedure. Numerical results are presented in figures to demonstrate the non-linear
behavior of the beam-foundation system for various values of the parameters of the problem
comparatively by considering the static and dynamic loading cases.
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1. Introduction

In recent years considerable attention has been given to the response of elastic beams on an elastic
foundation which is one of the structural engineering problems of theoretical and practical interest.
A large number of studies have been devoted to the subject. In these studies a number of foundation
models having various degrees of sophistication have been used to capture the complex behavior of
the soil. The simplest model for the soil is the one-parameter Winkler model which represents the
soil as a system of closely spaced but mutually independent linear springs. In the model, the
foundation reaction is assumed to be proportional to the vertical displacement of the foundation at
the same point. However, the Winkler model has various shortcomings due to the independence of
the springs. Because the springs are assumed to be independent and unconnected to each other, no
interaction exists between the springs. When loading displays a discontinuity, similar discontinuity
will appear on the foundation surface as well. The soil outside the loading area does not contribute
to the foundation response. In order to take care of these shortcomings and to improve the model,
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two-parameter models have been proposed. Pasternak model is one of the simplest two-parameter
models used commonly. This model can be visualized as a system of closely spaced linear springs
coupled to each other with elements which transmit a shear force proportional to the slope of the
foundation surface. The model can be seen as a membrane having a surface tension laid on a
system of elastic springs as well. Due to connection of spring the continuity of the foundation
surface is maintained. However, a discontinuity in slope of the displacement can appear at a edge of
the beam or the plate resting on the foundation. The analytical aspects of the continuously supported
structures and corresponding boundary conditions on various soil models have been discussed by
Kerr (1964, 1976). It is pointed out that the intuitive approach in the boundary conditions may lead
to the incorrect formulation of the boundary conditions for the case of a two-parameter foundation
model.

Response of structural elements resting on the one- and two-parameter foundation is usually
analyzed by assuming that the foundation supports compressive as well as tensile stresses. Although
this assumption simplifies the analysis considerably, it is questionable or not valid for many
supporting media including the soil. In order to increase the validity of the model, tensionless
foundation models which can support compressive reactions only are introduced. In this model
separation between the foundation and the structural element takes place in order to avoid the
tensile stresses. However, this assumption complicates the analysis and makes it highly non-linear,
since the region of contact and separation is not known in advance. As a result, only a limited
number of studies dealing with the tensionless foundation are published.

Response of structural elements such as, rings and beams resting on tensionless Winkler
foundation is considered. There are various studies dealing with the static problems (Tsai ef al.
1967, Weisman 1971, Lin et al. 1987, Hsu 2006) and the dynamic problems (Celep et al. 1989,
1990 and Coskun et al. 1999). The papers dealing with the rectangular and circular plates on
tensionless Winkler foundation can be considered as extension of the beam problem. There are
various studies dealing with the plates subjected to static loads (Weisman 1970, Dempsey et al.
1984, Celep et al. 1988, Hong et al. 1999, Silva ef al. 2001) and to dynamic loads (Celep et al.
2003, 2004, Giler et al. 1995). Generally, in order to investigate lift-off occurrence from the
foundation and separation condition, completely free beams and plates are considered in many
studies and solutions are obtained by applying approximate numerical techniques to the nonlinear
governing equation of the problem by employing the coordinate functions which satisfy the
corresponding boundary conditions. In this way the nonlinear problem is reduced to the iterative
solution of the system of the nonlinear algebraic equations, since the contact region is not known in
advance. On the other hand, when the load is a function of time, then the contact region appears as
a function of time as well. After the initial configuration of the contact region is found, the
numerical analysis is carried out by adopting step-wise integration in the time domain by updating
the contact region continuously.

There are various studies dealing with the structural elements resting on the conventional two-
parameter foundation assuming continuous contact. When the boundary of the beam or the plate is
fixed, then the boundary condition does not pose any new aspect that of the Winkler foundation.
However, when a free end of the beam or plate is considered, then the corresponding boundary
condition includes an additional concentrated load due to the membrane stiffness of the two-
parameter foundation, which is discussed in detail by Kerr et al. (1964, 1991). When a tensionless
two-parameter Pasternak model is considered, the solution gets more complicated due to the free
edge conditions even in the static problems. Another major difficulty lays in the definition of the
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contact zone. Due to these reasons the number of the publications on a two-parameter foundation
model that reacts in compression only is very limited. Rings, beams and plates resting on a two-
parameter foundation are investigated by Giiler (2004), Celep et al. (2005, 2007), Coskun et al.
(2008) and Ma et al. (2009). Nonlinear oscillations take place, when the external loads depend on
time. Celep et al. (1984, 2007) and Coskun (2003) studied dynamic response of beams and circular
plates subjected to time dependent loading.

In the present study a completely free beam resting on a two-parameter foundation, i.e., Pasternak
model is studied. The beam is assumed to be subjected to a concentrated load at the middle and a
uniformly distributed load which depend on time. The problem investigated in the present study is
symmetric and similar to the study of Coskun (2003), however the present treatment is more
straightforward. The study is carried out by assuming symmetric lift-off region and it depends on
time, when oscillation takes place. The nonlinear governing equation of the problem is discretized
by using Galerkin’s approximation technique. Numerical results are obtained and presented to assess
the validity of the procedure adopted and to illustrate the response of the beam. In the analytical and
numerical investigations special attention is paid on the boundary conditions at the free end of the
beam, on the contact-lift-off condition and on the global force equilibrium in the static dynamic
cases including inertia force. Moreover the time variations of the displacements and that of the
extent of the contact region are obtained and illustrated comparatively for various values of the
parameters of the problem.

2. Statement of the problem

Consider a completely free elastic beam of length 24 and bending stiffness E/, on a two-
parameter elastic foundation having a Winkler (spring) stiffness K and a shear (membrane) stiffness
G, as Fig. 1 shows. The beam is assumed to be subjected to a concentrated load P(¢) applied at the
middle of the beam and a uniformly distributed load Q(r). These two loads are assumed to depend
on time. Since the geometry and the loading of the problem is symmetric with respect to the middle
axis of the beam, it is obvious that the displacement configuration of the beam and that of the
foundation surface in the contact and lift-off regions will reflect the same symmetry. For the two-
parameter foundation model, it is assumed that foundation reaction P,(X) and the foundation
displacement W (X) are related to each other according to

2
PA(X) = Py(X)+ P(X) = KW, () - G2 LAY (1)
ox°

As Eq. (1) shows, the two-parameter foundation can be visualized as spaced closely linear springs
of stiffness K and a membrane having a surface tension G. Consequently, the response of the
foundation consists of two parts. The first one P, (X) is proportional to the vertical displacement
directly. On the other hand, the second part P,(X) is proportional to the second derivative of the
surface displacement. In the present case, it is assumed that the foundation reacts in compression
only. In other word, a contact between the beam and the foundation develops only, when the
interaction is maintained by compression, i.e., F(X,#)>0. In order to avoid tensile reaction, the
beam lifts off the foundation. The separation point is not necessarily point of zero displacement in
the Pasternak foundation, as it is in the Winkler foundation. When a load is static, the separation
point between the contact and lift-off regions is an unknown parameter to be determined. In case of
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Fig. 1 Completely free beam on a tensionless Pasternak foundation

dynamic load, the position of the separation point depends on time to be determined as one of the
main parameters of the problem.

Fig. 1(a) shows the beam on the two-parameter foundation, where a partial contact develops. The
beam has a contact region for —-B<X<B and a lift-off region for -4 <X<-B and B<X<4. The
surface of the foundation is divided into two regions. The first one is the stress free surface of the
foundation and its displacement W (X, ¢) is controlled by the equation

2
Ga I/ZS—KWS =0 )
o0X
obtained from Eq. (1). On the other hand the displacement of the beam is controlled by
at'w 2 2
EI—2+ KW,,—Ga W, —H(X,t)—P(t)8(X)—0O(1) = M2 Vf” 3)
ax* ox ot

where W,(X,t) is the displacement of the beam, E/ is the bending rigidity of the cross section of
the beam, M is the mass of the beam per unit length and S(X) is the Dirac’s delta function. In
addition to the regular terms, the above equation includes the concentrated load P(¢) at the middle
of the beam, the foundation reaction distributed on the contact region (—B < X< B). However, when
separation takes place, this edge reaction vanishes as stated by Kerr (1964). H(X, ) is an auxiliary
function known as the contact function and is defined as

H(X,t)=1 for -B<X<B
HX,t)=0 for -A<X<-B and B<X<4 4

which reflects the symmetry of the problem as well. When the complete contact develops, as
Fig. 1(b) shows, the edge reactions

oW, o,

Rc(t)=G[aX 6XJ for X=24 (5)
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come into being at the two ends of the beam. It is worth to note that the edge reactions have not
been considered and treated properly in various studies. Often the edge reaction is avoided by
assuming that the foundation is defined under the beam only and does not extend beyond the ends
of the beam. Consequently, the governing equation of the problem is analyzed under the beam only
and the differential equation for the free foundation surface is omitted. However, an additional
foundation spring under the edge of the beam is defined to represent the edge reaction. In this case
the edge reaction depends only on the edge displacement. Furthermore, the edge reaction can be
avoided as well, when a fixed support at the end of the beam is assumed. In the present study the
edge reactions as defined in Eq. (5) are taken into consideration in the analysis. In that case the
governing Eq. (1) can be modified as follows

4 2
E[aa)V;bJ{KWb—G%’}H(X 0 ~P()3(X) - O(1) +
ow, ow, B ow, ow, O,

For simplicity and convenience in the mathematical formulation, the following non-dimensional
parameters are introduced

7 = EIF/(MAY k=KA'/(EI) g=GAI(EI) p=PA/(E])
q=QANEI) b=BIA x=XIA A=klg=KAIG (7)

By using these nondimensional parameters, the two governing equations of the problem (2, 6) can
be rewritten as

gws—kw, =0 ®)

wy + (kwy—gwy)H(x, 2) =p(7) 8(x) —q(7) + g(wy—w,) S(x— H(x = 1, ) —
—gwy=w)S(x+ DH(x =~1,7) = =, (€))

Eq. (8) can be solved very easily for the left hand side of the beam as
w(x, 7) = Ce™ (10)

where C represents the integration constant to be determined by using boundary conditions of the
problem. The second integration constant in the solution (10) is eliminated by considering that the
displacement has to be finite and approaches to zero for larger values of x. Due to the tensionless
character of the foundation, the boundary between the contact and lift-off regions is not known in
advance and it depends on the parameters of the problem. Therefore the problem is highly non-
linear and the closed solution of Eq. (9), including the free end conditions of the beam, is very
difficult, if not impossible. In the present study Galerkin’s method is adopted for the solution. The
displacement function of the beam is assumed to be a linear combination of the axially symmetric
free vibration mode shapes of the completely free beam including a rigid vertical translation as
follows
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WyX0) = W, X0+ 3 WX, 1) = Awy(x, 1) = 4| T,(D)+ Y T, (0w, (x) (11)

where 7,(7r) and T,7) are the time dependent parameters of the series and w,(x) are the
symmetric free vibration mode shapes of completely free beam defined as

cosh24,—cos24,

— cosh A, (1-x)+cosA,(1—x)—
Wn(x) = cosh(1=x)+ cos A, (1-x) sinh2 4, —sin2 4,

[sinhA,(1-x)+sind,(1-x)] (12

and A, are the roots of the equation
cosh24cos24 =1 (13)
and the first five roots are
A, = 2.365020, 3.926602, 5.497803, 7.068582, 8.639379 (14)

which correspond to the symmetric mode shapes. The integration constant C in Eq. (10) can be
obtained in terms of 7,(7) and 7,(7) by using the displacement continuity at the lift-off point.

o

Considering the symmetry of the problem, this can be expressed as
Wb(X:Bat) = WS(X:Bat) (15)

or in terms of the non-linear parameters
ww=b,7 = T,(D+ 3 T,(w,(b) = w,(w=b,7)=Ce™ (16)
n=1

This equation is also valid for b = 1, when the complete contact develops. By substituting the
displacement function (11) into the governing equation of the problem (9) and by using the
following identity

wﬁ,v = l:w,, (17)

the following non-dimensional equation is obtained for the unknown parameters 7,(7) and 7,(7)

S 4w, (0T, + H(x, r)k[To +y wn<x)Tn}H(x, D83 Wi T, ~p(7)8(x) (o) +
n=1 n=1 n=1

+2g{i w'n(x)Tn+/1e/1(1b)(To+ i wn(x)Tnﬂé(x— DH(x=1,7)=-T,— iwn(x)i"n
" o = (18)

By employing Galerkin’s procedure, i.e., by requiring the error in the governing Eq. (18) to be
orthogonal to each mode shape including the rigid translation within the definition region of the
equation, the following system of ordinary differential equations is obtained:

MT+KT =F (19)
where the dots denote the differentiation with respect to the non-dimensional time 7 and
T(=[T, T, T, T; ...]' diag M=1[2 m, my ms ...]
K(D) =[k,] F=LLfi s ]
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m, = 2.[1 w,(x)w,(x)dx
0
ki (7) =k f H(x, D)dx+2gie ' ""H(x=1, 7)
0

ki (1) =k j; H(x, Dw,(x)dx—g jol H(x, Dw.(x)dx+2gH(x =1, )w,(x=1) +

+2gAH(x =1, Dw,(x=b)e "' ?

ke (7) = kjo' H(x, Dw,(x)dx+2gAH(x = 1, Dyw,(x = 1)e "

kan(2) = G [ WO ()l K [ HCx, DY, (0w, ()l —g [ HCx, 0w, ()W, () +

+2gw,(x=Dw, (x=1)H(x=1, 1) +2gAH(x = 1, Dw,(x = D)w, (x =b)e "' "

(1) = p(0) +2q(7)  f,(7) = p(D)w,(x=0) (20)
where ¢, denotes Kronecker’s delta. Inspection of the equations above justifies once more the use
of the Galerkin’s approximation, since it is very difficult, if not impossible to find a close solution

for the displacement functions of the beam which satisfy all these equations.
The vertical force equilibrium of the beam can be written as follows

P(£)+2A40(t) = R(t) + Ro(t) + Ro(£) + R,(7) (21)

where

Ry(f) =2 J':KWb(X, NH(X, )dX = 2 J':KWb(X, Ndx

2 2
Re() = -2’ GO XD oy nax = 2 P W
%) 0 aXZ
Re(1) = 2G[8 Wg(j(( 2 —aWé(XX’ t)}H(R = 4,1)
R = 2 [ M o)

P(¢) and Q(¢) are the external loads, and Rg(#) and R;(¢) correspond to the resultant of the
spring stiffness and the membrane stiffness reactions exerted by the foundation proportional to the
two stiffness parameters of the foundation K and G, respectively. R.(#) denotes the foundation edge
reaction which is proportional to the difference of the slopes of the foundation surfaces at the two
edges of the beam. These two reaction forces develop, when there is a complete contact between
the beam and the foundation. As a result of the tensionless character of the two-parameter
foundation model, the reaction exerted by the foundation due to the spring and membrane stiffness

has to be non-negative, i.e., compression. It means that
2
GRACT )

Pi(X.1) = PX.0)+ Py(X,1) = KW,(X,1)~G
o0X
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or in terms of the non dimensional parameters
pr(x, 1) = AP (X, 0)/(ED) = py(x, 1)+ py(x, 7) = kw,(x, 1) —gwy(x, 1) 20 (24)

Finally, R,(#) in Eq. (21) corresponds to the resultant of the inertia forces of the beam. By using
the assumption for the vertical displacement function W,(X,?), the force equilibrium in Eq. (21)
can be expressed in the following non-dimensional form as follows

p(D)+2q(7) = r(D) +r (D) +r(0)+r(7) (25)

where

_ ARK _ 1 0 _ 0
r(7) = =7 - 2k_[0 [T(,+;ann(x)}H(x, T)dx = 2ka0+2k'[jnZ_:1ann(X)dx

AR 1| & " i "
r(7) = TIG = —ZgIO LZ::I ann(x)}H(x, T)dx = —ZngLZ:l ann(x)}dx

AR & . —A(1-b) =
—C - = 1)+ + = =
5] 2g nzlean(x 1)+ Ae T, E: Tw,(x=b)||Hx=1,1)

n=1

ro(7) =

= Zg{i Tw,(x = 1)+/1[T0+ i Tw,(x= I)HH(x =1,7)

AR, .

r{7) = 77 27, (26)
and b(7) denotes half of the non-dimensional contact length. In the present formulation it is
assumed that the foundation can not support tensile reactions and the interaction between the
foundation and the beam is only possible, when the reaction under the beam is compressive. In
general, a separation takes place to avoid the tensile reactions.

As it can be seen, in addition to the differential equation which governs the problem within the
definition region, the continuity of the displacement of the foundation surface at the separation point
and at the edge of the beam for the complete contact case (20) are already included into Eq. (26).
The edge reactions which develop for the complete contact case are represented in the governing
equation of the problem (18).

When a separation takes place in the Winkler foundation model, the foundation displacement is
continuous at the point that separates the contact and lift-off regions, whereas no continuity for the
slope of the displacement is demanded. Since the vertical foundation reaction is controlled by the
displacement solely, the displacement of the lift-off point is zero. On the other hand, a discontinuity
in displacements appears at the free end of the beam, when a complete contact develops in case of
the Winkler model.

Generally the three anticipated conditions can be stated at the point of separation of a partial
contact, they are the continuity of the displacement of foundation, its slope and the zero foundation
reaction, as it is the case for the elastic continuum. However, Kerr (1991) pointed out that because
of the reduced order of the governing differential equation of the two-parameter foundation model,
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only two of the three anticipated conditions are to be satisfied as variational analysis yields. For the
problem under consideration, continuity of the displacement and vanishing of the foundation
reaction are required. An excellent discussion about the boundary conditions involving the two-
parameter foundation is given by Kerr (1976). Since a partial contact is in question, no edge
reaction exists. Due to the property of the contact function H(x, 7), the corresponding terms in the
governing Eq. (18) and in the reactions (25) will vanish. The contact function also provides that the
integrations are evaluated only along the contact region. On the other hand Dirac’s delta function in
the governing Eq. (18) provides that the concentrated loads p(7) at the middle of the beam and at
the edges are treated properly in the application of Galerkin’s method.

It is worth to note that at least in the present symmetric case a negative value of the beam
displacement, i.e., upward displacement guaranties a separation between the beam and the
foundation in the two-parameter foundation, as Eq. (1) clearly shows. On the other hand contrary to
the Winkler model, a positive value of the beam displacement i.e., a displacement into the
foundation, does not always indicate that there is contact at that point between the foundation and
the beam, as shown in Fig. 1(a).

Since the mode shapes of the completely free beam is used in the expansion of the beam
displacement function, the stiffness matrix K will be diagonal, when a conventional Winkler model
is assumed. Winkler foundation model is a special case of the two-parameter model for g=0,
however the analysis as well as the numerical treatment of the problem can not yield the
corresponding result straightforward, due to the definition of A = k/g. However, the numerical
result having acceptable degree of approximation can be obtained for the Winkler model for g— 0.

The evaluation of the governing Eq. (19) of the problem involves numerical integration; they are
a system of the linear algebraic equations and a system of the linear differential equations, in case
of static loads and dynamic loads, respectively, when the complete contact is maintained. However,
the coefficients of the governing equations depend on the contact length 5 between the beam and
the foundation in case of a partial contact. In this case the governing equation of the problem (19)
becomes highly non-linear due to the tensionless character of the foundation and it requires several
iterative procedures for the evaluation of the numerical results, although small displacements for the
beam and the foundation are assumed. In this case an iterative solution procedure for b is adopted
in the static case. On the other hand, in the dynamic case an iterative solution as in the static case is
required to establish as the initial condition of the problem, then the governing equation of the
problem is solved in the time domain by updating the contact length continuously.

3. Numerical results and discussion

The governing Eq. (19) can be employed for the conventional foundation model by assuming that
the full contact is maintained, i.e., H(x, 7) =1. For a partial contact, an initial value for the contact
length is estimated and the elements of the coefficients of the stiffness matrix are evaluated.
Eq. (19) can be solved, the displacement functions are obtained. The contact length is evaluated and
checked by using Eq. (24). Iterative process is continued until an acceptable approximation is
attained. In the dynamic case the initial configuration of the beam evaluated and the governing
equation is solved by checking the contact condition (25). The global force equilibrium (24) in the
beam is checked in the static case by excluding the inertia force and in the dynamic case at each
time step by including the inertia force. The numerical results are obtained and presented in figures
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by assuming that the beam is subjected to the concentrated load p(7) only, i.e., ¢ =0, to keep
number of the figures limited.

Figs. 2(a) and 2(b) show the half of the contact length b depending on the spring stiffness £ and
the membrane stiffness g, respectively. As it is well known, the contact length b, i.e., the position of
the lift-off point depends on the foundation stiffnesses £ and g, whereas it is independent of the
level of the loading. However it depends on the loading ratio ¢/p, when two types of loadings are
involved, as it is the case in the present problem. It means that the contact length does not change,
as the loads p and ¢ increase proportionally, whereas the vertical equilibrium is maintained due to
increase in vertical displacements proportionally. The beam subjected to a middle load on the
tensionless Winkler and Pasternak foundation has been investigated by Celep ef al. (1989) and
Coskun (2003), respectively. The results presented in Fig. 2 agree very well for g = 0 and for
k=100 and g=1 with those given in these studies, respectively. Fig. 2(a) shows that the
complete contact (b =1) develops for rather low values of the foundation stiffnesses £ and g. As the
stiffnesses increase, the beam starts to lift off from the foundation and the contact region decreases,
consequently the foundation reactions concentrate in a smaller region and get larger. These two
figures clearly show that the effect of the membrane stiffness g becomes less pronounced, when the
spring stiffness & increases.

Figs. 3(a) and 3(b) show the variations of the resultant of the foundation spring reaction r; and
that of the membrane reaction 7,, as a function of the spring stiffness & for various values of the
membrane stiffness g for the beam subjected to a middle load only (¢ =0). Figs. 3(a) and 3(b)
illustrate that the share of the spring reaction and that of the membrane increase as the
corresponding stiffnesses get larger. Similarly Fig. 3(c) shows the edge reaction which vanishes in
case of partial contact, i.e., for b <1 and comes into being, when the complete contact develops. In
these figures, the curves for g =10 seem to display discontinuities, when the beam goes from the
complete contact to a partial contact, as the spring stiffness increases. The same is valid other way
around, i.e., when the beam goes from a partial contact to the complete contact. In fact these
discontinuities are very steep variations, but not an absolute discontinuity in the mathematical sense.
For larger values of the membrane stiffness g, the discontinuity gets larger, since the edge force is

0 0
-2 1 0 1 2 3 4 5 -2 -1 0 1 2 3 4
log k log g
(@) (®)

Fig. 2 Variation of the contact length b for various (a) spring stiffness k£ and (b) membrane stiffness g for the
beam subjected to the load p at the middle
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Fig. 3 Variation of (a) the total spring stiffness reaction r;, (b) the membrane stiffness reaction r, and (c) the
total edge reactions r, for the beam subjected to the load p at the middle

directly affected by the membrane stiffness. However, no steep variation takes place, when only one
type of the contact (partial or complete) appears along a curve in Figs. 3(a) and 3(b). Fig. 3(c)
shows the edge membrane reaction . which is generated, when the complete contact develops. The
edge reaction is proportional to the difference of the slopes at the two sides of the beam edge and to
the foundation parameter g. The edge reaction 7, decreases and becomes zero, when the complete
contact develops. Comparison of Figs. 2(a) and 3(c) shows that there is no edge reaction exists,
when a partial contact comes into being, as expected. Since the sum of the all reactions has to be
equal to the external load, an increase in one of the foundation reactions results in a decrease in the
other foundation reactions, as Eq. (26) expresses.

When the external force is time depended, oscillations of the beam will take place and the contact
region will depend on time. Although the present formulation does not have any restriction
concerning the time variation of the loads, in the present study numerical solution of the governing
Eq. (19) is carried out for the forced vibrations by assuming that the beam is in static equilibrium
under the loading p,,, = 1 and g =0. Oscillations of the beam starts by changing the loading level
to fp,, instantly by using the dynamic load factor f. The time variation of the loading can be
written as p,,+(f—1)p,H(7), where H(7) denotes Heaviside step function. The governing
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Eq. (26) is a system of non-linear ordinary differential equations, because the coefficients of the
stiffness matrix K have time dependent terms. When the beam is partially uplifted, the coefficients
depend continuously on the vertical displacements of the beam on the contact area. When a partial
contact develops, the solution of the static case or the initial configuration of the beam in the
dynamic case is found by using an iterative procedure. The governing differential Eq. (26) is solved
along the time domain by employing a step-wise numerical integration in the dynamic case. At each
time step the contact function H(x, 7), the contact length b(7) and the parameters of the problem
including the coefficients of the stiffness matrix are evaluated numerically and updated by
considering the displacement configuration of the beam at the previous time step. For recognition of
the static and dynamic response of the beam, numerous results are evaluated for selected parameters
and they are presented in figures.

Figs. 4(a) and 4(b) show oscillations of the half of the contact length 5(7) for g=1 and k=100
by assuming p,, = 1 and ¢ =0, i.e., only a concentrated load is present for various unloading f< 1
and f>1 loading cases, respectively. As mentioned above, the contact length does not depend on
the loading in the static case; however its time variation depends on the level of the loading, since
the inertia forces are involved in the dynamic cases. As Fig. 4(a) shows the contact length b(7)
experiences oscillation which resembles to harmonic variations, since the complete contact does not
develop in these unloading cases. However, when the complete contact develops, the time variation
of b(7) represents highly nonlinear nature, as Fig. 4(b) illustrates. Similar variations can be seen in
Figs. 5 and 6, where the time variations of the middle displacement w,,(7) = w(x =0, 7) and the
edge displacement w,(7) = w(x =<1, 7) are shown. Nonlinear variations appear in all these figures,
when the beam goes from a partial contact to the complete contact in course of oscillations and vice
versa, which appears in the loading for the numerical values of the parameters used. Figs. 7(a), 7(b),
7(c) and 7(d) represent time variations of the resultant of the spring stiffness force ri(7), the
membrane stiffness force r,(7), the edge force r.(7), the inertia force r(7) and the total force r(7) of
the beam subjected to a load p,,, = 1 at the middle for = 0.2,1.4,2.0 and 2.4 assuming k= 100,
respectively. As Figs. 7(a) and 7(b) show, time variations of these parameters resemble to harmonic
oscillations for f=0.2 and 1.4, respectively, where the complete contact does not develops and no

b(7)
b(z)

(@)

Fig. 4 Time variation of the contact length b(7) of the beam subjected to the load p,, =1 at the middle for (a)
unloading <1 and (b) loading f> 1 cases for k=100 and g=1
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Fig. 5 Time variation of the middle displacement w,,(7)=w(x=0,7) of the beam subjected to the load
Psa=1 at the middle for (a) unloading f<1 and (b) loading f> 1 cases for k=100 and g=1
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Fig. 6 Time variation of the edge displacement w.(7) = w(x=+1, 7) of the beam subjected to the load p,, =1
at the middle for (a) unloading #< 1 and (b) loading #> 1 cases for k=100 and g=1

edge force comes into being, i.e., ».,=0 for b(7)<1 and r.20 for b(7) = 1. However, the
nonlinear character of the problem appears for f=2.0 and 2.4, where partial and complete contact
develop after one another, as the beam oscillates. The time variation of the total force r(7) satisfies
the global force equilibrium 7,(7) = r(7) +7,(7) +7.(7) +r(7) = Bp,, where the resultant of the
inertia force included as well. However, it is interesting to note that the edge force r.(7) illustrates
very step variation in a very small time interval, as if it is a discontinuity. Consequently the time
variation of the total force r(7) displays a very sudden small change, however it is corrected in a
very short time interval, as Figs. 7(c) and 7(d) show.

Fig. 8(a) shows oscillations of the half of the contact length 5(7) for g=1 and k=100 by
assuming the beam being at rest for 7= 0 is subjected to a harmonically varying concentrated load
p(7) = p,sinor, q(7) =0 and p, = 1 for various values of the nondimensional circular frequency
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Fig. 7 Time variations of the resultant of the spring stiffness force r(7), the membrane stiffness force 74(7),
the edge force r.(7), the inertia force r(7) and the total force r(7) of the beam subjected to the load
Psia =1 at the middle for (a) unloading = 0.2, (b) loading = 1.4, (¢) loading = 2.0 and (d) loading
=24 for k=100 and g=1

. The time variations of the middle displacement w,,(7) = w(x =0, 7) and the edge displacement
w.(7) = w(x==1, 7) are illustrated in Figs. 8(b) and 8(c) as well. The curves in the figures present
very sophisticated variations due to the nonlinearity of the problem. However, two types of
nonlinear oscillation can be seen. The first one is controlled by the harmonic variation of the
external load having a period of 27/@ and the other one is an oscillation which develops due to the
elastic response of the beam and the foundation which has an approximate period of 0.6 for the
present numerical values. Since these oscillations are heavily nonlinear, periods can not be defined
as it is defined in the linear harmonic analysis. Very similar analysis is carried out by assuming that
the contact length b is constant and does not depend on time by Coskun (2003), although the beam
is subjected to a harmonically varying concentrated load, where the analysis is focused on the
dependency of the contact length on the frequency of the external load mainly.
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Fig. 8 Time variation of (a) the contact length b(7), (b) the middle displacement w,(7) =w(x=0,7) and (c)
the edge displacement w.(7)=w(x=%1,7) of the beam subjected to the load ¢(7)=0 and
p(7) =p,sinor where p,=1 for k=100 and g=1

It is worth to note that the present analytical treatment is valid, when there is only one contact
zone in the middle of the beam where the foundation pressure is positive

Pr(x, 7) = kw,(x, )—gw,(x,7)=0 for 0<b(7)<1 (27)

4. Conclusions

The study presents analysis of the lift-off problem of an elastic beam resting on a two-parameter
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foundation and subjected to a concentrated force at the middle and a uniformly distributed load.
Special attention is paid to the non-dimensionlization of the formulation as well as on the boundary
conditions of the beam and the foundation. In order to cover a large spectrum of values of the
parameters, the analysis and the numerical results are presented by introducing non-dimensional
parameters. Although the displacements of the beam and the foundation are assumed to be small,
the governing equation of the problem is non-linear, due to tensionless character of the foundation.
The tensile reaction between the beam and the foundation is avoided, as the beam lifts off the
foundation. Numerical solution of the problem is carried out by applying Galerkin’s method and the
numerical results are presented comparatively for various values of the parameters of the problem.
The global force equilibrium of the beam in the vertical direction is formulated by including the
foundation reactions, the edge reactions and the inertia forces and it is checked numerically in all
static and dynamic loading cases. From the numerical analysis presented, the following conclusion
can be drawn:
a. In the present analysis for the separation condition between the beam and the foundation is
determined by requiring the total foundation reaction which constitutes due to the spring stiffness
and to the membrane stiffness of the foundation to be vanished. Due to the shortcoming of the
model, the slope of the foundation surface displays a discontinuity contrary to the intuitive
approach. However, due to the requirement at the separation point, the continuity of the
foundation reaction is guarantied.
b. As it is obvious, separation conditions are not used, when the complete contact is established.
However, in this case an edge reaction develops as a result of discontinuity of the slope of the
displacement function at that point. In the present formulation and in its numerical evaluation the
edge reaction is included into the governing equation of the problem; it is not treated as a
boundary condition.
c. The uplift of the beam is influenced mainly by the fundamental mode and the higher modes
have lesser effect on the behavior.
d. It is well known that the contact length does not depend on the loading in the static case when
only one type of loading is considered. When two types of loading is involved, as it is the case in
the present study, the contact length depends on the ratio of the loading. However, when the beam
is subjected to dynamic loads, then the time variation of the contact length depends on the level
of the loading even for a single loading, because the inertia forces are involved in the dynamic
case.
e.Due to the tensionless character of the foundation, oscillations of the beam subjected to
dynamic loads are highly nonlinear and no period can be defined, particularly when partial and
complete contacts develop subsequently during oscillations.
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