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Abstract. In this paper, numerical solution of the singular integral equation for the multiple curved
branch-cracks is investigated. If some quadrature rule is used, one difficult point in the problem is to
balance the number of unknowns and equations in the solution. This difficult point was overcome by
taking the following steps: (a) to place a point dislocation at the intersecting point of branches, (b) to use
the curve length method to covert the integral on the curve to an integral on the real axis, (c) to use the
semi-open quadrature rule in the integration. After taking these steps, the number of the unknowns is
equal to the number of the resulting algebraic equations. This is a particular advantage of the suggested
method. In addition, accurate results for the stress intensity factors (SIFs) at crack tips have been found in
a numerical example. Finally, several numerical examples are given to illustrate the efficiency of the
method presented.
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1. Introduction

The curved crack problems have got much attention by many researchers. A weakly singular

integral equation with logarithmic kernel was developed to solve the problems (Cheung and Chen

1987). In the equation the dislocation distribution is taken as the unknown function, and the

resultant force as the right hand term. Two types of singular integral equations were developed to

the same problems. In the first type of equations the dislocation distribution is taken as the

unknown function, and the traction as the right hand term (Savruk 1981, Dreilich and Gross 1985,

Chen 1995). In the second type of equations the crack opening displacement (COD) is taken as the

unknown function, and the resultant force function as the right hand term. Recently, a hypersingular

integral equation was developed to solve the curved crack problems (Mayrhofer and Fischer 1992,

Linkov and Mogilevskaya 1994, Mogilevskaya 2000, Martin 2000, Linkov 2002, Chen 2003). In

the equation, the crack opening displacement (COD) is taken as the unknown function, and the

traction as the right hand term. 

In addition, several relevant publications are introduced. A concentric arc crack in a circular disk

was studied (Xu 1995). A fundamental solution was obtained, which is used for the formulation of
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the singular integral equation. A new boundary integral equation formulation for plane elastic

bodies containing cracks and holes was suggested (Chau and Wang 1999). Suppose that the inner

cracks and the holes and the outer boundary are under traction boundary condition. In the resultant

integral equation, the involved unknowns are the derivative of displacement with respect to the

curve length, or derivative of COD with the curve length. Therefore, the kernels involved are not

hyperpersingular, and are Cauchy type singular. 

The interaction of a curved crack with a circular elastic inclusion was solved by using the

complex variable function method, and computed results for SIFs were given (Cheeseman and

Santare 2000). Crack problems with branches or kinks were solved (Burton and Phoenix 2000). The

solution depends on an appropriate assumption of the dislocation density distribution along crack. A

hypersingular integral equation was suggested to solve the edge crack problem of half-plane

(Mogilevskaya 2000). Based on the hypersingular integral equation for curve crack problem, the

perturbation method is used to solve the slightly curved crack problem (Martin 2000). Solution of

multiple edge cracks in an elastic half plane was studied (Jin and Keer 2006). The solution depends

on an appropriate distribution of dislocation along the prospective site of crack.

The line branch-crack problem was studied previously (Theocaris 1977). In the study, in order to

balance the number of unknowns and equations, different discretization schemes were used to

different branches. This is a difficult point in the branch crack problem. This difficult point was

overcome in this paper, and the detail can be found in the following analysis. 

In addition to the formulation of integral equations the numerical solutions for the equations are

important to obtain the final solution. Recently, a curve length method was developed to solve the

hypersingular integral equations in the curved crack problems numerically (Chen 2003). A striking

advantage of the method is that the integral defined on a curve can be converted to a relevant

integral defined on the real axis. Therefore, the known integration rules on the real axis can be used

to the curved cracks. 

For the branch crack problem, an extended finite element method was suggested to solve

problems of the arbitrary branched and intersecting cracks (Daux et al. 2000). Recently, an

algorithm for the computation of the stress field around a branched crack was suggested (Englund

2006). The algorithm is based on an integral equation with good numerical properties. Those papers

devoted to the line crack case.

For a slightly curved crack, a treatment of the integral equations by Frobenius’ method was

suggested (Ballarini and Vallaggio 2006). The complex variable function method was used to

formulate the multiple curved crack problems into hypersingular integral equations. The equations

were solved numerically using the so-called curve length coordinate method (Nik Long and

Eshkuvatov 2009).

A general formulation for evaluating the T-stress at tips of a curved crack was introduced. In the

formulation, a singular integral equation with the distribution of dislocation along the curve was

suggested (Chen and Lin 2008). A perturbation method was suggested for evaluating the T-stress at

crack tips in a curved crack (Chen et al. 2008).

In this paper, the problem for multiple curved branch-cracks is studied. A singular integral

equation is suggested to solve the problem. It is found that there was a difficult point in the

numerical solution. We know that the integral equation is generally solved by discretization of the

unknown function. However, after discretization the number of unknowns may not be equal to the

number of the algebraic equations. This difficult point was overcome by assuming a point

dislocation at the intersect point of the branch-cracks. Based on this assumption, the semi-open
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quadrature rule and the curve length method will lead to a final solution numerically. Finally,

several numerical examples are given to illustrate the efficiency of the presented method.

 

2. Singular integral equation for curved branch-cracks

The fundamentals of the complex variable function method, which plays an important role in

plane elasticity, are briefly introduced in what follows (Muskhelishvili 1953). In the method, the

stresses ( ), the resultant forces (X, Y) and the displacements (u, v) are expressed in terms

of the complex potentials  and  such that 

(1)

(2)

 (3)

where G is the shear modulus of elasticity,  in the plane stress problem,

 in the plane strain problem, and ν is the Poisson’s ratio. In Eq. (1) we denote

, .

Except for the physical quantities mentioned above, from Eqs. (2) and (3) two derivatives in

specified direction (abbreviated as DISD) are introduced as follows (Savruk 1981, Chen 1995)

 (4)

(5)

σx σy σxy, ,
φ z( ) ψ z( )

σx σy+ 4ReΦ z( )=

σy iσxy– 2ReΦ z( ) zΦ′ z( ) Ψ z( )+ +=

f Y– iX+ φ z( ) zφ′ z( ) ψ z( )+ += =

2G u iv+( ) κφ z( ) zφ′ z( )– ψ z( )–=

κ 3 ν–( )/ 1 ν+( )=

κ 3 4ν–=

Φ z( ) φ′ z( )= Ψ z( ) ψ ′ z( )=

J1 z( ) d

dz
----- Y– iX+{ } Φ z( ) Φ z( ) dz

zd
------ zΦ′ z( ) Ψ z( )+( )+ + N iT+= = =

J2 z( ) 2G
d

dz
----- u iv+{ } κΦ z( ) Φ z( )–

dz

zd
------ zΦ′ z( ) Ψ z( )+( )– κ 1+( )Φ z( ) J1–= = =

Fig. 1 The curved branch-cracks and the curve length coordinate
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It is easy to verify that  denotes the normal and tangential tractions along the segment

 (Fig. 1). Secondly, the J1 and J2 values depend not only on the position of a point “z”, but

also on the direction of the segment “ ”. The symbol of derivative  is always defined

as a derivative in a specified direction (DISD).

If the tractions applied on the curved crack are the same in magnitude and opposite in direction

for the upper and lower crack faces, the complex potentials caused by a dislocation distribution

 ( , j = 1, 2, ... N) along the curved branch-cracks and a point dislocation “D” can be

expressed by (Savruk 1981, Chen 1995) 

,

 (6)

where 

, (7)

In Eq. (7),  stands for the jump value of the

displacements, and  denotes the displacements at a point “t” of the

upper (lower) face of the j-th branch-crack “Lj”(Fig. 1). In Eq. (6), the terms D/2πz and /2πz are

assumed, which corresponds to a point dislocation at the origin. The reason for introducing this

term will be illustrated later.

Clearly, from Eqs. (3), (6) and the single-valuedness condition of displacements, the following

constraint equation is obtained (Savruk 1981, Chen and Hasebe 1995)

 (8)

In the problem, the boundary condition is expressed as

,  (9)

where  is traction assumed along the k-th curved branch-crack (Fig. 1).

Simply taking the following steps: (a) substituting Eq. (6) into (4), (b) letting “z” approach “to”

( ) and “ ” to “ ” in Eq. (4), (c) using the equations for limit values of the

Cauchy type integral (Savruk 1981, Chen 1995), (d) using the boundary condition (9), we obtain the

following integral equation

 

J1 N iT+=

z z, dz+

dz /dz d{ }/dz

gj′ t( ) t Lj∈

φ z( ) 1

2π
------ ln t z–( )gj′ t( ) t

D

2π
------lnz+d

Lj

 

∫
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N

∑–= with D D1 iD2+=( )
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----------------
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---------+
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∫
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∆
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 (10)

where the kernels are defined by 

(11) 

In Eq. (11) the expression  should be defined as a DISD-derivative (Chen 1995). Note

that only if the observation point to is on Lk (or ) and the integration is performed along the

curve “Lk” (or ), one of the first integral in Eq. (10) is singular. Meantime, other integrals in

Eq. (10) are regular.

The curve length method is used to solve the integral equations numerically (Chen 2003). The j-th

curved branch-crack is mapped on the real axis “sj” with a crack length “aj” (Fig. 1). The mapping

is expressed by the function . After mapping, the function  is rewritten in the form

,  (12)

The assumed expression in Eq. (12) is obtained from the behavior of the dislocation distribution

in the vicinity of a crack tip (Chen and Hasebe 1995).

When the observation point in on the j-th curved branch-crack (or ), the first two integrals

along the integration path Lj in Eq. (10) may be rewritten in the form

 (13)

(14)

where sjo is obtained from the mapping  (Fig. 1). Clearly, I1 is a singular integral and I2 is

a regular integral. Note that all integrals in Eq. (10) belong to the types shown by Eqs. (13) and

(14).

In the following derivation, the semi-open quadrature rules for the singular integral and the

regular integral are suggested (Boiko et al. 1981)

(15)

1
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where 

(16)

 

where M is some integer. Here and after, we call tm the abscissas, and xk the collocation points (or

the observation points).

After taking the following steps: (a) to use the integral Eq. (10) and the constraint equation (8),

(b) to use the curve length method based on the mapping relation function  (j = 1, 2, ... N), (c)

to use the quadrature rues shown by Eq. (15), an algebraic equation is obtained. In the equation, the

unknowns are the values of  (j = 1, 2, … N) at abscissas and D1, D2. It is proved that in the

present formulation the number of equations is equal to the number of unknowns. Details for this

formulation can be referred to (Chen and Hasebe 1995). 

 From obtained solution of the algebraic equation, the stress intensity factor (abbreviated as SIF)

at the j-th crack tip can be evaluated by (Savruk 1981, Chen 1995)

(17)

At the intersecting point of branches, the sharp corner may have some singular stress distribution.

However, the order of the singularity at the corner is generally less than that at the crack tip.

Therefore, many researchers neglected the singularity (Savruk 1981, Chen and Hasebe 1995).

 

 

3. Numerical example

Some numerical examples are given to illustrate the results of the presented method.

Example 1

In the first example, a circular arc crack is considered as composed of two arc cracks (OA and

OB) and the remote tension is  (Fig. 2(a)). In the computation, M = 5, 11 and 21 in

Wm
πa

M
------sin

2mπ

2M
-------- m 1 2 … M 1–, , ,=( ), WM

πa

2M
--------= =

tm asin
2mπ

M
-------, m 1 2 … M, , ,=( )=

xk asin
2 k 0.5–( )π

M
-----------------------, k 1 2 … M, , ,=( )=

t sj( )

Hj s( )

K1 iK2–( )j 2π t tj–

t tj→

lim–= gj′ t( ) 2πaj( )1/2
Hj aj( )–=Lim

σx

∞
σy

∞
p= =

Fig. 2 Four cases of the curved branch-cracks: (a) a circular arc crack composed of two branches “OA” and
“OB”, (b) the curved branch-cracks composed of a line crack and a half-circle crack, (c) the curved
branch-cracks composed of two arc cracks, (d) many circular arc cracks  in a stacked position
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Eq. (15) is used. The calculated results for the SIFs at the crack tip “A” are expressed as

, (18)

and are listed in Table 1. From tabulated results we see that even M = 5 is taken, accurate results for

SIFs are obtained. The difference between the results of M = 5 and those from an exact solution is

negligible. In Table 1, a comparison result (marked with *) is also listed (Chen 2003). The result is

obtained from the hypersingular integration equation with the number of abscissas M = 155. Thus, it

is easy to see the advantage of the present approach. 

 

Example 2

In the second example, one branch is a half-circular crack, and other is a line crack (Fig. 2(b)).

The length of the line crack is , and the crack has a rotation with an angle β. The remote

tension is , and M = 21 in Eq. (15) is used. The calculated results for the SIFs at the

crack tips “A” and “B” are expressed as

 

 (with b = πr)  (19)

and are plotted in Fig. 3. From Fig. 3 we see that in the assumed loading case ( ),

variation of the F1A with respect to the rotation angle β is significant, for example, F1A = 0.4886,

F2A = −0.3222 for  case, and F1A = 0.0325, F2A = −0.1956 for  case. Secondly, in

the studied range of β, the SIFs for F1B are generally in a higher level, and they are varying from

0.7449 to 0.9095. That is to say the propagation of crack may happen at the tip of the line crack

“OB”.

 

K1A F1A β( ) πrsinβ= K2A F2A β( )p πrsinβ=

b πr=

σx

∞
σy

∞
p= =

K1A F1A β( )p πb= , K2A F2A β( )p πb=

K1B F1B β( )p πb= , K2B F2B β( )p πb=

σx

∞
σy

∞
p= =

β 0
o

= β 160
o

=

 
Table 1 Non-dimensional SIFs F1A(β) and F2A(β) for an arc crack (see Fig. 2(a) and Eq. (18))

 F1A(β) 

 β (degree)  15 30 45 60 75  90 105 120 135 150  165

 M = 5  0.9748 0.9053 0.8059 0.6928  0.5788  0.4714 0.3736 0.2857 0.2065 0.1339 0.0659

 M = 11  0.9748  0.9053 0.8059 0.6928 0.5788  0.4714  0.3736  0.2857 0.2065 0.1339 0.0658

 M = 21  0.9748  0.9053 0.8059 0.6928 0.5788 0.4714 0.3736 0.2857 0.2065 0.1339 0.0658

 *  0.9752 0.9056 0.8063 0.6935 0.5794 0.4717 0.3734 0.2851 0.2053  0.1319  0.0619

 Exact**  0.9748  0.9053 0.8059 0.6928 0.5788 0.4714 0.3736 0.2857 0.2065 0.1339 0.0658

F2A(β)

β (degree)  15 30  45  60  75  90  105  120  135  150  165

 M = 5 0.1283 0.2426  0.3338 0.4000 0.4442  0.4714  0.4869  0.4949  0.4984  0.4997 0.5002

 M = 11  0.1283 0.2426  0.3338 0.4000  0.4442  0.4714  0.4869  0.4949  0.4984  0.4997 0.5000

 M = 21  0.1283 0.2426  0.3338 0.4000  0.4441  0.4714  0.4869  0.4949  0.4984  0.4997 0.5000

 * 0.1285 0.2427  0.3340  0.4006  0.4449 0.4724  0.4877  0.4957  0.4991  0.5001 0.4999

 Exact**  0.1283 0.2426  0.3338  0.4000  0.4441  0.4714  0.4869  0.4949  0.4984  0.4997 0.5000

*Using the hypersingular integral equation method (Chen 2003), Exact** (Murakami 1987).
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Example 3

In the third example, two arc cracks are in series with the radius ra and rb, respectively (Fig. 2(c)).

Cracks have a spanning angle 2θ. The remote tension is . M = 21 is used for the arc

crack “OA”, and  is used for the arc crack “OB”. The calculated results for the SIFs

at the crack tips “A” and “B” are expressed as

 (with a = 2θra)

 (with b = 2θrb) (20)

and are plotted in Fig. 4. From Fig. 4 we see that with the increase of the angle “θ ”, for example,

the value of  is gradually reduced, and the value of  is gradually increased.

 

σx

∞
σy

∞
p= =

M 21* rb/ra=

K1A F1A θ( )p πa= , K2A F2A θ( )p πa=

K1B F1B θ( )p πb= , K2B F2B θ( )p πb=

F1A θ( ) F2A θ( )

Fig. 3 Non-dimensional SIFs F1A(β), F2A(β), F1B(β) and F2B(β) for the multiple curved branch-cracks (see
Fig. 2(b) and Eq. (19))

Fig. 4 Non-dimensional SIFs F1A(θ), F2A(θ ), F1B(θ) and F2B(θ ) for two multiple curved branch-cracks in
series (see Fig. 2(c) and Eq. (20))
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Example 4

In the fourth example, N arc cracks with a radius “r” are in a stacked position (Fig. 2(d)). Cracks

have a spanning angle 2θ. The remote tension is . M = 21 is used for all curved

branch-cracks. For N = 2, 3 … to 10 and ,.. to 90o. The calculated results for the SIFs

at the crack tip “A” are expressed as

, (21)

and are listed in Table 2. As in the previous example, we see that with the increase of the angle

“θ ”, the value of  is gradually reduced, and the value of  is gradually increased.

Secondly, when the N (the number of braches) is increased, SIFs are generally reduced. For

example, in the case of  , F1A = 0.8799, F2A = 0.2404 is for N = 2 case, and F1A = 0.5083,

F2A = 0.1931 is for N = 10 case. This is somewhat called shielding effect in fracture analysis.

 

σx

∞
σy

∞
p= =

θ 10
o

20
o,=

K1A F1A θ( )p πa= , K2A F– 2A θ( )p πa= with a 2θr=( )

F1A θ( ) F2A θ( )

θ 30
o

=

         
Table 2 Non-dimensional SIFs F1A(β) and F2A(β) for N arc crack in a stacked position (see Fig. 2(d) and Eq.

(21)) 

  F1A(θ)

 N =   2  3  4 5  6 7 8 9 10

θ =

→ 0 1.0000 0.9415 0.8635 0.7952 0.7425 0.6972 0.6590 0.6263 0.5979

 10.0    0.9861 0.9267 0.8494 0.7838 0.7299 0.6852 0.6476 0.6154 0.5875

 20.0 0.9453 0.8836 0.8081 0.7448 0.6931 0.6503 0.6143 0.5835 0.5569

 30.0 0.8799 0.8147 0.7423 0.6828 0.6344 0.5947 0.5613 0.5329  0.5083

 40.0 0.7940 0.7248 0.6565 0.6019 0.5581 0.5223 0.4925 0.4672  0.4454

 50.0 0.6926 0.6195 0.5563 0.5076 0.4692 0.4383 0.4126 0.3910  0.3724

 60.0 0.5819  0.5056 0.4483 0.4061 0.3738 0.3481 0.3271 0.3095 0.2944

 70.0 0.4678   0.3899 0.3391 0.3039 0.2779 0.2577 0.2414 0.2279 0.2165

 80.0 0.3564 0.2791 0.2353 0.2073 0.1875 0.1727  0.1610   0.1514 0.1435

 90.0 0.2529  0.1789 0.1430 0.1221 0.1082 0.0982 0.0905 0.0843 0.0801

  F2A(θ)

 N =   2  3  4 5  6 7 8 9 10

θ =

→ 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

 10.0 0.0864 0.0939 0.0922 0.0885 0.0845 0.0808 0.0774 0.0744 0.0716

 20.0 0.1681 0.1818 0.1780 0.1707 0.1629 0.1557 0.1490 0.1430 0.1377

 30.0 0.2404 0.2579 0.2517 0.2407 0.2294 0.2189 0.2094 0.2008 0.1931

 40.0 0.2993 0.3177 0.3083 0.2938 0.2793 0.2659 0.2539 0.2432 0.2336

 50.0 0.3419 0.3574 0.3442 0.3263 0.3090 0.2933 0.2793 0.2669 0.2559

 60.0 0.3663 0.3753 0.3573 0.3361 0.3164 0.2989 0.2836 0.2702 0.2583

 70.0 0.3719 0.3708 0.3473 0.3229 0.3011 0.2824 0.2662 0.2523 0.2402

 80.0 0.3592 0.3452 0.3154 0.2877 0.2642 0.2445 0.2280 0.2140 0.2020

 90.0 0.3302 0.3008 0.2641 0.2331 0.2079 0.1875 0.1708 0.1568 0.1443
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4. Conclusions

In reality, the crack may propagate in a curve configuration. Therefore, the problem for the curved

crack is important in analysis. However, the investigations in literature for the curved branch-cracks

are few. This paper provides some numerical technique to solve the problem. 

It is proved that the curve length method is very effective for the problem of curved branch-

cracks. In this case, one does not need to construct a boundary element and simply use the available

quadrature rule. 
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