Abstract
This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.
Abstract
Size-dependent free vibration responses and magneto-electro-elastic bending results of a three layers piezomagnetic curved beam rest on Pasternak's foundation are presented in this paper. The governing equations of motion are derived based on first-order shear deformation theory and nonlocal piezo-elasticity theory. The curved beam is containing a nanocore and two piezomagnetic face-sheets. The piezomagnetic layers are imposed to applied electric and magnetic potentials and transverse uniform loadings. The analytical results are presented for simply-supported curved beam to study influence of some parameters on vibration and bending results. The important parameters are spring and shear parameters of foundation, applied electric and magnetic potentials, nonlocal parameter and radius of curvature of curved beam. It is concluded that the increase in radius of curvature tends to an increase in the stiffness of curved beam and consequently natural frequencies increase and bending results decrease. In addition, it is concluded that with increase of nonlocal parameter of curved beam, the stiffness of structure is decreased that leads to decrease of natural frequency and increase of bending results.
Key Words
curved sandwich nanobeam; piezomagnetic face-sheets; Pasternak's foundation; radius of curvature; nonlocal parameter
Address
(1) Mohammed Arefi:
Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan, Kashan 87317-51167, Iran;
(2) Ashraf M. Zenkour:
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
(3) Ashraf M. Zenkour:
Department of Mathematics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
Abstract
This research presents an investigation on the thermal buckling resistance of FGM plates having parabolic-concave thickness variation exposed to uniform and gradient temperature change. An analytical formulation is derived and the governing differential equation of thermal stability is solved numerically using finite difference method. A specific function of thickness variation is introduced where it controls the parabolic variation intensity of the thickness without changing the original material volume. The results indicated that the loss ratio in buckling resistance is the same for any gradient temperature profile. Influencing geometrical and material parameters on the loss ratio in the thermal resistance buckling are investigated which may help in design guidelines of such complex structures.
Address
(1) Fouad Benlahcen, Khalil Belakhdar, Mohammed Sellami:
Department of Science and Technology, University Centre of Tamanrasset, BP 10034 Sersouf, Tamanrasset, 11000, Algeria;
(2) Fouad Benlahcen:
Laboratory of Science and Environment, University Centre of Tamanrasset, BP 10034 Sersouf, Tamanrasset, 11000, Algeria;
(3) Khalil Belakhdar, Abdelouahed Tounsi:
Laboratory of Materials and Hydrology, University of Sidi Bel Abbes, BP 89 Citऻ Ben M'hidi, Sidi Bel Abbes, 22000, Algeria.
Abstract
Precast concrete structures are erected from individual prefabricated components, which are assembled on-site using different types of connections. In the present design of these structures, beam-to-column connections are assumed pin jointed. Bolted billet beam to-column connections have been used in the precast concrete industry for many years. They have many advantages over other jointing methods in component production, quality control, transportation and assembly. However, there is currently limited information concerning their detailed structural behaviour under vertical loadings. The experimental work has involved the determination of moment-relative rotation relationships for semi-rigid precast concrete connections in full-scale connection tests. The study reported in this paper was undertaken to clarify the behaviour of such connections under symmetrical vertical loadings. A series of full-scale tests was performed on sample column for which the column geometry and bolt arrangements conformed to successful commercial practice. Proprietary hollow core floor slabs were tied to the beams by 2T25 tensile reinforcing bars, which also provide the in-plane continuity across the connections. The contribution of the floor strength and stiffness to the flexural capacity of the joint is currently neglected in the design process for precast concrete frames. The flexural strength of the connections in the double-sided tests was at least 0.93 times the predicted moment of resistance of the composite beam and slab. The secant stiffness of the connections ranged from 0.94 to 1.94 times the flexural stiffness of the attached beam. In general, the double-sided connections were found to be more suited to a semi-rigid design approach than the single sided ones. The behaviour of double sided bolted billet connection test results are presented in this paper. The behaviour of single sided bolted billet connection test results is the subject of another paper.
Abstract
A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-δ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.
Key Words
second-order; steel; imperfection; semi-rigid; design; plastic hinge
Address
(1) Si-Wei Liu:
School of Civil Engineering, Sun-Yat-Sen University, China;
(2) Jake Lok Yan Chan:
Department of Civil Engineering, The University of Hong Kong, Hong Kong, China;
(3) Rui Bai, Siu-Lai Chan:
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Abstract
Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.
Address
(1) Anh P. Nguyen, Thanh T. Banh, Dongkyu Lee, Jaehong Lee:
Department of Architectural Engineering, Sejong University, Seoul 05006, Korea;
(2) Joowon Kang:
Department of Architecture, Yeungnam University, Gyeongsan 38541, Korea;
(3) Soomi Shin:
Research Institute of Industrial Technology, Pusan National University, Busan 46241, Korea.
Abstract
Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.
Key Words
molecular dynamic; graphene; vacancy defect; lekhnitskii coefficients; anisotropic materials; temperature effects
Address
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abstract
This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength 41 N/mm2 and steel tubes with yield strength 310 N/mm2 are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.
Abstract
The rapidly decreasing natural resources and the global variation of the climate push us to find intelligent and efficient structural systems to provide more people with fewer resources. This paper proposed a kinematic cable-strut system to realize sustainable structures in responding to changing environmental conditions. At first, the concept of the kinematic system based on crystal-cell pyramid (CP) cable-strut unit was given. Then the deployment of the structure was studied experimentally. After that, the static behaviors in the fully deployed state under the symmetric and asymmetric load cases were investigated. Moreover, the effects of thermal loading and the initial prestress distribution were also discussed. Comparative studies between the proposed structure and other deployable cable-strut system under three times of design load cases were carried out. Finally, the robustness of the system was studied by removal of one passive cable at one time.
Key Words
kinematic roof; cable-strut structures; deployment; mechanical behavior; robustness
Address
(1) Jianguo Cai, Qian Zhang, Jian Feng:
Key Laboratory of C & PC Structures of Ministry of Education, National Prestress Engineering Research Center, Southeast University, Nanjing 210096, China;
(2) Jianguo Cai, Yiqun Zhang:
Key Laboratory of Electronic Equipment Structure Design, Ministry of Education, Xian 710071, China;
(3) Daniel Sang-hoon Lee:
Institute of Architecture and Technology, The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation, Copenhagen 1435, Denmark.
Abstract
In this paper, buckling load of edge stiffened composite plates is assessed. The effect of stiffener edge size, circular hole, and the fiber orientation angle on buckling behavior of composite plates under uni-axial compressive load is investigated. This paper includes two parts as experimental and numerical studies. L-shape composite plates are manufactured in three different layups. Then the buckling loads are experimentally determined. Subsequently, by using the numerical simulation, the size variation effects of stiffener edge and circular cutout on the plate buckling loads are analyzed in five different layups. The results show that cutout size, stiffener edge height and fiber orientation angle have important effects on buckling load. In addition, there is an optimum height for stiffener edge during different conditions.
Key Words
composite plate; buckling; finite element analysis; experiment; stiffener edge; cutout
Address
Aerospace Engineering Department, K.N. Toosi University of Technology, Tehran, 16698-3911, Iran.