Abstract
In this paper, the problem of interfacial stresses in steel cantilever beams strengthened with bonded composite laminates is analyzed using linear elastic theory. The analysis is based on the deformation compatibility approach, where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The original study in this paper carried out an analytical solution to estimate shear and peel-off stresses, as, interfacial stress analysis concentration under the uniformly distributed load and shear lag deformation. The theoretical prediction is compared with authors solutions from numerous researches. This phenomenon of deformation of the members, which gives probably approach on the study of interface of the reinforced structures, is called "shear lag effect". The resolution in this paper shows that the shear stress and the normal stress are significant and, are concentrated at the end of the composite plate of reinforcement, called "edge effect". A parametric study is carried out to show the effects of the variables of design and the physical properties of materials. This research is helpful for the understanding on mechanical behaviour of the interface and design of such structures.
Key Words
composite plate; interfacial stresses; shear lag effect; steel cantilever beam; strengthening
Address
(1) Laboratory of Geomatics and Sustainable Development, University of Tiaret, Algeria;
(2) Department of Civil Engineering, Ibn Khaldoun University of Tiaret, Algeria.
Abstract
Very slow degradation of synthetic based polymers has created a severe environmental issue that increased awareness towards research in polymers of biodegradable property. Soy protein isolate (SPI) is a natural biopolymer used as matrix in green composites but it has limitations of low mechanical properties and high water sensitivity. To enhance mechanical properties and reduce water sensitivity of Jute-SPI composites, SPI was modified with pine rosin which is also a natural cross-linking agent. 30% glycerol on the weight basis of a matrix was used as a plasticizer. The fibre volume fraction was kept constant at 0.2 whereas the pine rosin in SPI ranged from 5% to 30% of the matrix. The effects of pine rosin on mechanical, thermal, water sensitivity and surface morphology have been characterized using various techniques. The mechanical properties and water absorbency were found to be optimum for 15% pine rosin in Jute-SPI composite. Therefore, Jute-SPI composite without pine rosin and with 15% pine rosin were chosen for investigation through characterization by Fourier transforms infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-Ray diffraction (XRD) and Scanning electron microscope (SEM). The surface morphology of the composite was influenced by pine rosin which is shown in the SEM image. TGA measurement showed that the thermal properties improved due to the addition of pine rosin. Antimicrobial test showed antimicrobial property in the composite occurring 15% pine rosin. The research paper concludes that the modification of SPI resin with an optimum percentage of pine rosin enhanced mechanical, thermal as well as water-resistant properties of jute fibre reinforced composites.
Key Words
antimicrobial; biodegradability; green composite; jute fibre; pine rosin; soy protein isolate
Address
Textile Manufactures Department, Veermata Jijabai Technological Institute, Mumbai, 400019, India.
Abstract
The shrinkage and the mechanical properties of polypropylene hybrid fiber reinforced mortar PHFRM were investigated in this study. Mortars were prepared with limestone crushing sand, Portland cement and polypropylene hybrid fibers PHF. Two types of virgin fibers, having the same length (30 mm) were used for reinforcing test mortars, fibers in diameter of 0.45 mm, used by PLAST BROS factory of Bordj Bou Arreridj (Algeria) for the fabrication of brooms (for household cleaning) and fibers in diameter of 0.25 mm, available on the market, having multiple applications. In this investigation, it was aimed to study the total and autogenous shrinkage, the flexural and compressive strength of mortars based on hybrid fibers. As a result, PHF have negatively affected the mortar workability. However, shrinkage risk was reduced and coarser fibers (PF45) were most effective for reducing shrinkage risk. The mechanical performances and the ductility of PHFRM were also enhanced.
Key Words
autogenous shrinkage; hybrid fibers; mechanical strength; mortar; polypropylene fibers; total shrinkage
Address
(1) Khadra Bendjillali, Benharzallah Krobba:
Laboratory of Structures Rehabilitation and Materials, Faculty of Civil Engineering and Architecture, University Amar Telidji, Laghouat, Algeria;
(2) Fatiha Bendjilali:
Faculty of Civil Engineering and Architecture, Hassiba Benbouali University, Chlef, Algeria.
Abstract
It includes the synthesis of pristine ZnO nanoparticles and a series of Ag-doped zinc oxide nanoparticles was carried out by reflux method by varying the amount of silver (1, 3, 5, 7 and 9% by mol.). The morphology of these nanoparticles was investigated by SEM, XRD and FT-IR techniques. These techniques show that synthesized particles are homogenous spherical nanoparticles having an average particle size of about 50-100 nm along with some agglomeration. The photocatalytic activity of the ZnO nanoparticles and Ag doped ZnO nanoparticles were investigated via photodegradation of methylene blue (MB) as a standard dye. The data from the photocatalytic activity of these nanoparticles show that 7% Ag-doped ZnO nanoparticles exhibit much enhanced photocatalytic activity as compared to pristine ZnO nanoparticles and other percentages of Ag-doped ZnO nanoparticles. Furthermore, 7% Ag-doped ZnO was made composites with sulfur-doped graphitic carbon nitride by physical mixing method and a series of nanocomposites were made (3.5, 7.5, 25, 50, 75% by weight). It was observed that the 25% composites exhibited better photocatalytic performance than pristine S-g-C3N4 and pure 7% Ag-doped ZnO. Tauc's plot also supports the photodegradation results.
Key Words
composites; nanoparticles; photocatalytic activity; photodegradation; S-g-C3N4; ZnO
Address
(1) Naveed Ahmad, Mohsin Javed, Muhammad A. Qamar, Umbreen Kiran, Sammia Shahid, Mudassar Sher, Adnan Amjad:
Department of Chemistry, University of Management and Technology, Lahore, Pakistan;
(2) Naveed Ahmad:
Department of Chemistry, University of Turin Via Pietro Giuria 5, 10125 Turin, Italy;
(3) Muhammad B. Akbar:
National Center for Nanoscience Technology (NCNST), No. 11, Zhong Guan Cun Bei Yitiao, 100190 Beijing, P.R. China.
Abstract
The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.
Key Words
cone bolts; energy absorption capacity; grouted rock bolts; support performances
Address
Department of Civil Engineering, Giresun University, Giresun, Turkey.