Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

sem
 
CONTENTS
Volume 72, Number 6, December25 2019
 


Abstract
As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Key Words
Sensitivity analysis; plastic hinge; wall pier; tornado diagram

Address
Ali Babaei: Civil Engineering Department, Semnan Branch, Islamic Azad University, Semnan, Iran
Alireza Mortezaei and Hamid Salehian: Seismic Geotechnical and High Performance Concrete Research Centre, Civil Engineering Department, Semnan Branch,
Islamic Azad University, Semnan, Iran

Abstract
Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

Key Words
Damage assessment, multi constraint optimization, time series analysis, ARMAX model, cepstral distance, Subspace angles, measurement noise

Address
CSIR-Structural Engineering Research Centre, Chennai, Tamil Nadu, India

Abstract
Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature

Key Words
Periodic boundary conditions; Asymptotic homogenization theory; Three dimensional RVE; Mechanical properties; Python scripting; Non linear resin behavior; USDFLD subroutine

Address
School of Mechanical Engineering, Iran University of Science and Technology, P.O.B. 1684613114 Tehran, Iran

Abstract
The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Key Words
Beam column connections; Rehabilitation; Strengthening; Epoxy resin; FRP; Seismic capacity; Damage assessment

Address
Department of Civil Engineering, National Institute of Technology Meghalaya, Shillong 793003, India

Abstract
Concrete mechanical properties change constantly with age, temperature, humidity and the other environmental factors. This research studies the effects of temperature and age on the development of concrete elastic modulus by a series of prism specimens. Elastic modulus test was conducted at various temperatures and ages in the laboratory to examine the effects of temperature and age on it. The experimental results reveal that the concrete elastic modulus decreases with the rise of temperature but increases with age. Then, a temperature coefficient K is proposed to describe the effects of temperature and validated by existing studies. Finally, on the basis of K, analytical models are proposed to determine the elastic modulus of concrete at a given temperature and age. The proposed models can offer designers an approach to obtain more accurate properties of concrete structures through the elastic modulus modification based on actual age and temperature, rather than using a value merely based on laboratory testing.

Key Words
environmental temperature; age; elastic modulus; temperature coefficient

Address
Shuzhen Yang, Baodong Liu, Yuzhong Li and Minqiang Zhang: Department of Bridge Engineering, Beijing Jiaotong University, No 3 Shangyuancun, Haidian District, Beijing, China
Yuzhong Li: Hebei University of Architecture, No13, Chaoyang Avenue (West), Qiaodong District, Zhangjiakou City, Hebei Province, China
Minqiang Zhang: China Civil Engineering Construction Corporation, No 4 North Cellular, Haidian District, Beijing, China

Abstract
Based on the ball-screw mechanism, a tuned viscous mass damper (TVMD) has been proposed, which has functions of amplifying physical mass of the system and frequency tuning. Considering the sensitivity of a single TVMD\'s effectiveness to frequency mistuning like that of the conventional tuned mass damper (TMD) and according to the concept of the conventional multiple tuned mass damper (MTMD), in the present paper, multiple tuned mass viscous dampers (MTVMD) consisting of many tuned mass dampers (TVMD) with a uniform distribution of natural frequencies are considered for attenuating undesirable vibration of a structure. The MTVMD is manufactured by keeping the stiffness and damping constant and varying the mass associated with the lead of the ball-screw type inerter element in the damper. The structure is represented by its mode-generalized system in a specific vibration mode controlled using the mode reduced-order method. Modal properties and fundamental characteristics of the MTVMD-structure system are investigated analytically with the parameters, i.e., the frequency band, the average damping ratio, the tuning frequency ratio, the total number of TVMD and the total mass ratio. It is found that there exists an optimum set of the parameters that makes the frequency response curve of the structure flattened with smaller amplitudes in a wider input frequency range. The effectiveness and robustness of the MTVMD are also discussed in comparison with those of the usual single TVMD (STVMD) and the results shows that the MTVMD is more effective and robust with the same level of total mass.

Key Words
MTVMD; TVMD; inerter; dynamic characteristic; passive vibration control

Address
Huating Chen and Xuefeng He:Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology, Guangzhou University,
Guangzhou, 510006, China
Shaomin Jia: College of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China

Abstract
The main aim of this paper is enhancing design of traditional laminated composite plates subjected to static loads. In this regard, this paper suggests embedding a lightweight porous layer in the middle of laminated composite as the core layer of the resulted sandwich plate. The static responses of the suggested structures with uniform, symmetric and non-symmetric porosity distributions are compared to optimize their design. Using the first order shear deformation theories, the static governing equations of the suggested laminated composite plates with a porous layer (LCPPL) rested on two-parameter foundation are obtained. A finite element method is also utilized to solve the governing equations of LCPPLs. Effects of laminated composite and porosity characteristics as well as geometry dimension, edges\' boundary conditions and foundation coefficients on the static deflection and stress distribution of the suggested composite plates have been investigated. The results reveal that the use of core between the layers of laminated composites leads to a sharp reduction in the static deflections of LCPPLs. Furthermore, in compare with perfect cores, the use of porous core between the layers of laminated composite plates can offer a considerable reduction in structural weight without a significant difference in their static responses.

Key Words
lightweight structures; plate design; porosity effects; laminated composites; static loads

Address
School of Mechanical and Precision Instrument Engineering, Xi\'an University of Technology,
Xi\'an, 710048, China

Abstract
The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

Key Words
contact mechanics; numerical analysis; normal stress; shear stress

Address
Murat YaylacI, Cemalettin Terzi: Department of Civil Engineering, Recep Tayyip Erdogan University, 53100, Rize, Turkey
Mehmet Avcar: Department of Civil Engineering, Suleyman Demirel University, 32260, Isparta, Turkey

Abstract
Power transmission substations are susceptible to potential damage under seismic excitations. Two of the major seismic failure modes in substation supplies are: the breakage of brittle insulator, and conductor end fittings. This paper presents efficient isolation strategies for seismically strengthening of a two-item set of equipment including capacitive voltage transformer (CVT) adjacent to a Lightning Arrester (LA). Two different strategies are proposed, Case A: implementation of base isolation at the base of the CVT, while the LA is kept fixed-base, and Case B: implementation of base isolation at the base of the LA, while the CVT is kept fixed-base. Both CVT and LA are connected to each other using a cable during the dynamic excitation. The probabilistic seismic behavior is measured by Incremental Dynamic Analysis (IDA), and a series of appropriate damage states are proposed. Finally, the fragility curves are derived for both the systems. It is found that Friction Pendulum System (FPS) isolator has the potential of decreasing flexural stresses caused by intense ground motions. The research has shown that when the FPS is placed under LA, i.e. Case B (as oppose to Case A), the efficiency of the system is improved in terms of reducing the forces and stresses at the bottom of the porcelain. Several parametric studies are also performed to determine the optimum physical properties of the FPS.

Key Words
friction pendulum system; lightning arrester; capacitor voltage transformer; porcelain breakage; incremental dynamic analysis; fragility curves

Address
Reza Karami Mohammadi, Masoud Mirtaheri , Mojtaba Salkhordeh, Erfan Mosaffa: Department of Civil Engineering, K.N. Toosi University of Technology, Tehran, Iran
Golsa Mahdavi: Department of Civil and Architectural Engineering and Mechanics, University of Arizona, Tucson, Arizona, USA
Mohammad Amin Hariri Ardebili: Department of Civil Environmental and Architectural Engineering, University of Colorado, Boulder, USA

Abstract
In this study, an exact transfer matrix expression for a twisted uniform beam considering the effect of shear deformation and rotary inertia is developed. The particular transfer matrix is derived by applying the distributed mass and transcendental function while using a local coordinate system. The results obtained from this method are independent for a number of subdivided elements, and this method can determine the required number of exact solutions for the free vibration characteristics of a twisted uniform Timoshenko beam using a single element. In addition, it can be used as a useful numerical method for the computation of high-order natural frequencies. To validate the accuracy of the proposed method, the computed results are compared with those reported in the existing literature, and the comparison results indicate notably good agreement. In addition, the method is used to investigate the effects of shear deformation and rotary inertia for a twisted beam.

Key Words
Timoshenko beam, transfer matrix method, exact solution, twisted beam

Address
Department of Mechanical System Engineering, Kyonggi University, 154-42, Gwanggyosan-ro,
Yeongtong-gu, Suwon-si, Gyeonggi-do, 16227, Republic of Korea


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com