Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

sem
 
CONTENTS
Volume 77, Number 2, January25 2021
 


Abstract
This paper aims to present a novelty damage detection method to identify damage locations by the simultaneous use of both the energy and displacement damage indices. Using this novelty method, the damaged location and even the damaged floor are accurately detected. As a first method, a combination of the instantaneous frequency energy index (EDI) and the structural acceleration responses are used. To evaluate the first method and also present a rapid assessment method, the Displacement Damage Index (DDI), which consists of the error reliability (β) and Normal Probability Density Function (NPDF) indices, are introduced. The innovation of this method is the simultaneous use of displacement-acceleration responses during one process, which is more effective in the rapid evaluation of damage patterns with velocity vectors. In order to evaluate the effectiveness of the proposed method, various damage scenarios of the ASCE benchmark problem, and the effects of measurement noise were studied numerically. Extensive analyses show that the rapid proposed method is capable of accurately detecting the location of sparse damages through the building. Finally, the proposed method was validated by experimental studies of a six‐story steel building structure with single and multiple damage cases.

Key Words
damage detection; structural health monitoring; instantaneous frequency energy index; displacement index; velocity vector

Address
Mohammad Javad Khosraviani: Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Omid Bahar: Department of Structural Engineering Research Center, International Institute of Earthquake Engineering and Seismology (IIEES),
Tehran, Iran
Seyed Hooman Ghasemi: Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract
Due to various benefits such as unlimited degrees of freedom, environment adaptability, and safety for humans, engineers have used soft materials with hyperelastic behavior in various industrial, medical, rescue, and other sectors. One of the applications of these materials in the fabrication of bending soft actuators (SA) is that they have eliminated many problems in the actuators such as production cost, mechanical complexity, and design algorithm. However, SA has complexities, such as predicting and monitoring behavior despite the many benefits. The first part of this paper deals with the prediction of SA behavior through mathematical models such as Ogden and Darijani, and its comparison with the results of experiments. At first, by examining different geometric models, the cubic structure was selected as the optimal structure in the investigated models. This geometrical structure at the same pressure showed the most significant bending in the simulation. The simulation results were then compared with experimental, and the final gripper model was designed and manufactured using a 3D printer with silicone rubber as for the polymer part. This geometrical structure is capable of bending up to a 90-degree angle at 70 kPa in less than 2 seconds. The second section is dedicated to monitoring the bending behavior created by the strain sensors with different sensitivity and stretchability. In the fabrication of the sensors, silicon is used as a soft material with hyperelastic behavior and carbon fiber as a conductive material in the soft material substrate. The SA designed in this paper is capable of deforming up to 1000 cycles without changing its characteristics and capable of moving objects weigh up to 1200 g. This SA has the capability of being used in soft robots and artificial hand making for high-speed objects harvesting.

Key Words
soft actuator; gripper; silicone rubber; bending behavior prediction; flexible strain sensors

Address
Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran

Abstract
Experimental investigations on the seismic behaviors of the PVC-FRP Confined Reinforced Concrete (PFCRC) columns under low cyclic loading are carried out and two variable parameters including CFRP strips spacing and axial compression ratio are considered. The PFCRC column finally fails by bending and is characterized by the crushing of concrete and yielding of the longitudinal reinforcement, and the column with a high axial compression ratio is also accompanied by the cracking of the PVC tube and the fracture of CFRP strips. The hysteretic curves and skeleton curves of the columns are obtained from the experimental data. With the increase of axial compression ratio, the stiffness degradation rate accelerates and the ductility decreases. With the decrease of CFRP strips spacing, the unloading sections of the skeleton curves become steep and the ductility reduces significantly. On the basis of fiber model method, a numerical analysis approach for predicting the skeleton curves of the PFCRC columns is developed. Additionally, a simplified skeleton curve including the elastic stage, strengthening stage and unloading stage is suggested depending on the geometric drawing method. Moreover, the loading and unloading rules of the PFCRC columns are revealed by analyzing the features of the skeleton curves. The quantitative expressions that are used to predict the unloading stiffness of the specimens in each stage are proposed. Eventually, an analytical model for the PFCRC columns under low cyclic loading is established and it agrees well with test data.

Key Words
PVC-FRP confined concrete; column; seismic behavior; skeleton curve; unloading stiffness

Address
Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road 59, Maanshan, China

Abstract
Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Key Words
life-cycle seismic performance; wind-induced fatigue; steel-concrete composite frame structure; buckling-restrained braces; uncertainty

Address
Yang Liu: State Lab. of Coastal and Offshore Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology,
Dalian 116024, Liaoning, China
Hong-Nan Li: State Lab. of Coastal and Offshore Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology,
Dalian 116024, Liaoning, China; School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China
Chao Li: State Lab. of Coastal and Offshore Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology,
Dalian 116024, Liaoning, China
Tian-Ze Dong: Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon 999077, China

Abstract
The effect of distribution shape of porosity using a quasi-3D theory for free vibration analysis of FG microbeams is studied analytically in the present paper. The microbeams are simply-supported and nonhomogeneous, with power function variation of Young's modulus along their thickness. The modified coupled stress theory is utilized to consolidate size dependency of microbeam. Both even and uneven distribution shape of porosity are considered and the effective properties of porous FG microbeams are defined by theoretical formula with an additional term of porosity. The equation of motion is obtained through Hamilton's principle, however, Navier type solution method is used to obtain frequencies. The influences played by many parameters are also investigated.

Key Words
free vibration; FG microbeam; quasi 3D theory; distribution shape of porosity

Address
Youcef Tlidji: Department of Civil Engineering, University of Tiaret, Algeria; Laboratory of Matérials et Hydrology, University of Sidi Bel Abbés, Algeria
Rabia Benferhat: Department of Civil Engineering, University of Tiaret, Algeria; Laboratory of Geomatics and Sustainable Development, University of Tiaret, Algeria
Hassaine Daouadji Tahar: Department of Civil Engineering, University of Tiaret, Algeria;Laboratory of Geomatics and Sustainable Development, University of Tiaret, Algeria

Abstract
In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01m2, 6.81m2 and 9.79m2, respectively.

Key Words
high-speed railway; subgrade void; orthogonal test; Support vector regression; Reliability theory

Address
Engineering Research Center of Railway Environment Vibration and Noise, Ministry of Education, East China Jiao Tong University, Nanchang, 330013, China

Abstract
In this research, the influence of the laminate stacking sequence on thermal stress distribution in symmetric composite plates with a quasi-square cutout subjected to uniform heat flux is examined analytically using the complex variable technique. The analytical solution is obtained based on the thermo-elastic theory and the Lekhnitskii's method. Furthermore, by employing a suitable mapping function, the solution of symmetric laminates containing a circular cutout is extended to the quasi-square cutout. The effect of important parameters including the stacking sequence of laminates, the angular position, the bluntness, the aspect ratio of cutout, the flux angle and the composite material are examined on the thermal stress distribution. It is found out that the circular shape for cutout may not necessarily be the optimum geometry for all stacking sequences. The finite element analysis results are used to validate the analytical solution.

Key Words
stacking sequence; thermal stress; quasi-square cutout; symmetric laminated composite; complex variable method

Address
Adhesively Bonded and Sandwich Structures Research Laboratory, School of Mechanical Engineering,
Iran University of Science and Technology, Narmak, Tehran 16846, Iran

Abstract
The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

Key Words
EBIMFCW; Restoring force model; Horizontal cyclic loading; Unloading stiffness; Hysteresis loop

Address
Qiang Lin, Sheng-cai Li: Shool of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
Yongfu Zhu: Minnan University of Science and Technology, Fujian Engineering Research Center for Construction and Management
of Green Buildings, Quanzhou 362700, Fujian, China

Abstract
The strut-and-tie method (STM) has been widely accepted and used as a rational approach for the design of disturbed regions ('D' regions) of reinforced concrete members such as in corbels and deep beams, where traditional flexure theory does not apply. This paper evaluates the applicability of the equilibrium based STM in strength predictions of deep beams (with rectangular and circular cross-section) and corbels using the available experiments in literature. STM is found to give fairly good results for corbel and deep beams. The failure modes of these deep members are also studied, and an optimum amount of distribution reinforcement is suggested to eliminate the premature diagonal splitting failure. A comparison with existing empirical and semi empirical methods also show that STM gives more reliable results. The nonlinear finite element analysis (NLFEA) of 50 deep beams and 20 corbels could capture the complete behaviour of deep members including crack pattern, failure load and failure load accurately.

Key Words
strut-and-tie; deep beam; corbel; disturbed region; nonlinear, shear

Address
Adrija D.: Atkins, Bangalore, India
Indu Geevar: Department of Civil Engineering, Rajagiri School of Engineering and Technology, Kochi, India
Devdas Menon and Meher Prasad: Department of Civil Engineering, IIT Madras, Chennai, India

Abstract
Structural failure due to seismic pounding between two adjacent buildings is one of the major concerns in the context of structural damage. Pounding between adjacent structures is a commonly observed phenomenon during major earthquakes. When modelling the structural response, stiffness of impact spring elements is considered to be one of the most important parameters when the impact force during collision of adjacent buildings is calculated. Determining valid and realistic stiffness values is essential in numerical simulations of pounding forces between adjacent buildings in order to achieve reasonable results. Several impact model stiffness values have been presented by various researchers to simulate pounding forces between adjacent structures. These values were mathematically calculated or estimated. In this study, a linear spring impact element model is used to simulate the pounding forces between two adjacent structures. An experimental model reported in literature was adopted to investigate the effect of different impact element stiffness k on the force intensity and number of impacts simulated by Finite Element (FE) analysis. Several numerical analyses have been conducted using SAP2000 and the collected results were used for further mathematical evaluations. The results of this study concluded the major factors that may actualise the stiffness value for impact element models. The number of impacts and the maximum impact force were found to be the core concept for finding the optimal range of stiffness values. For the experimental model investigated, the range of optimal stiffness values has also been presented and discussed.

Key Words
stiffness of impact spring; pounding forces; k value; SAP2000; linear spring impact model

Address
School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology,
University of Technology Sydney (UTS), Australia


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com