Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

gae
 
CONTENTS
Volume 23, Number 6, December25 2020
 


Abstract
Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45oC and 9.58oC for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6oC was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.

Key Words
failure; laboratory analysis; rock; stress-strain relations; energy geomechanics

Address
Alper Kirmaci and Mustafa Erkayaoglu: Department of Mining Engineering, Middle East Technical University,
Universiteler Mahallesi, Dumlupinar Bulvari No:1, 06800 Çankaya/Ankara, Turkey


Abstract
In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Key Words
shield cutting pile; penetrating; cement soil single pile composite foundation; field test

Address
Shi-ju Ma, Ming-yu Li and Yuan-cheng Guo: School of Civil Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan province, People's Republic of China
Babak Safaei: Department of Mechanical Engineering, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey


Abstract
The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Key Words
steel pipe pile; pile end shape; installation effort; pressing and rotation; dense sand

Address
Muhammad A. Saleem, Adnan A. Malik and Jiro Kuwano: Department of Civil and Environmental Engineering, Saitama University,
255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan


Abstract
The stress environment of deep rock masses is complex. Under the action of earthquakes or blasting, the strength and stability of anchored rock masses in fracture zones or faults are affected. To explore the variation in anchored rock masses under creep-fatigue loading, shear creep comparative testing of anchored marble specimens with or without fatigue loading is performed. Considering the damage variable of rock under fatigue loading, a rheological model is established to characterize the whole shear creep process of anchored rock masses under creep-fatigue loading. The results show that (1) the overall deformation of marble under creep-fatigue loading is larger than that under only shear creep loading, and the average deformation is increased by 18.3%. (2) By comparing the creep curves with and without fatigue loading, the two curves basically coincide when the first level stress is applied, and the two curves are stable with the increase in stress level. The results show that the strain difference among the specimens increases gradually in the steady-state stage and reaches the maximum at the fourth level. (3) The shear creep is described by considering the creep mechanical properties of anchored rock masses under fatigue loading. The accuracy of this creep-fatigue model is verified by laboratory tests, and the applicability of the model is illustrated by the fitting parameter R2. The proposed model provides a theoretical basis for the study of anchored rock masses under low-frequency earthquakes or blasting and new methods for the stability and reinforcement of rock masses.

Key Words
anchored rock mass; fatigue load; shear creep; accelerating element; creep-fatigue model

Address
Yang Song: Department of Architecture and Transportation, Liaoning Technical University, 47 Zhonghua Road, Fuxin, Liaoning Province 123000, China

Yong qi Li: Department of Civil Engineering, Liaoning Technical University, 47 Zhonghua Road, Fuxin, Liaoning Province 123000, China

Abstract
This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's s function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Key Words
soil-structure interaction; BEM; TLM; dynamic response; nonlinear regression; soil

Address
Badreddine Sbartai: 1.) Department of Civil Engineering, University of Badji Mokhtar-Annaba, BP.25, Annaba 23000, Republic of Algeria
2.) LMGHU, University of 20 Aout 1955-Skikda, B.P.26, Skikda 21000, Republic of Algeria


Abstract
The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Key Words
thermal consolidation; thermal creep; saturated clay; thermodynamic constitutive model; thermo-hydro-mechanical; finite element

Address
Hao Wang: 1.) Department of Civil Engineering, Tsinghua University, Beijing 100084, China
2.) Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resource Engineering,
University of Science and Technology Beijing, Beijing 100083, China

Xiaohui Qi: School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract
In this numerical study, the 2D dynamic behavior of a clayey basin and its effect on damage pattern over basin edge are investigated. To attain this goal, a fully nonlinear time domain analysis method has been applied. Then, the fragility curves of the considered two typical industrial structures for that certain point are estimated using the acceleration time histories recorded at each surface point. The results show that the use of the damage related parameters in site effect analyses, instead of amplification curves, can yield more realistic estimation of the basin dynamic response. In a distance about 150m from outcrop at the basin edge, the differences between fragility curves increase when increasing the distance from outcrop with respect to the reference rock site. Outside this region and towards the basin center, they tend to occur in rather single curves. Furthermore, to connect the structural damage to the basin edge effect, the earthquake demand value at different points for two typical structures was evaluated. It was seen that the probability of occurrence of damage increases over 250 m from outcrop, while the effect of the basin edge was limited to 150 m in case of the basin edge evaluation by using fragility curves.

Key Words
site effect; basin edge effect; 2D dynamic behavior; fragility curve

Address
Hadi Khanbabazadeh, Abdullah C. Zulfikar and Ali Yesilyurt: Department of Civil Engineering, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey

Abstract
Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30o, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90o~150o, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30o-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Key Words
flaws; cracking; stress distribution; acoustic emission; PFC

Address
Yuanchao Zhang and Yujing Jiang: Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan

Xinshuai Shi and Qian Yin: State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

Miao Chen: College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com