Abstract
In this paper, utilizing void ratio-effective stress and void ratio-permeability relationships, a system of two nonlinear partial differential equations is derived to predict the consolidation characteristics of normally consolidated (NC) and overconsolidated (OC) soft clays subjected to cyclic loading. A developed feature of the coefficient of consolidation containing two key parameters is emerged from the differential equations. Effect of these parameters on the consolidation characteristics of soft clays is analytically discussed. It is shown that the ratios between the slopes of e−logσ’ and e-logk lines in the NC and OC states play a major role in the consolidation process. In the companion paper, the critical assumptions made in the analytical discussion are experimentally verified and a numerical study is carried out in order to examine the proposed theory.
Key Words
nonlinear; consolidation; cyclic loading; permeability; compressibility; soft clays
Address
Hessam Yazdani : School of Civil Engineering and Environmental Science, University of Oklahoma, USA
Mohammad Mohsen Toufigh : Civil Engineering Department, University of Kerman, Kerman, Iran
Abstract
In the companion paper, the nonlinear consolidation of soft clays subjected to cyclic loading was analytically investigated. This paper reports the results of an experimental program conducted to verify some critical assumptions made in the analytical study. It, also, includes a numerical study carried out to examine the capability of the proposed theory to determine the consolidation characteristics of soft clays subjected to cyclic loading. Results show that the permeability of the soft clays does not significantly change during the cyclic loading. It is also shown that, compared to the Terzaghi\'s solution for a linear clay, the inherit nonlinearity of the clay tends to decrease the degree of consolidation due to
the smaller rate of dissipation in the excess pore water pressure.
Address
Hessam Yazdani : School of Civil Engineering and Environmental Science, University of Oklahoma, USA
Mohammad Mohsen Toufigh : Civil Engineering Department, University of Kerman, Kerman, Iran
Abstract
Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum
amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.
Key Words
triaxial test; laboratory study; cyclic test; large scale testing; installation.
Address
Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
Abstract
The present paper deals with the analysis of combined footings resting on geosynthetic reinforced granular fill overlying stone column improved poor soil. An attempt has been made to study the influence of inclusion of geosynthetic layer on the deflection of the footing. The footing has been idealized as a beam having finite flexural rigidity. Granular fill layer has been represented by Pasternak shear layer and stone columns and poor soil have been represented by nonlinear Winkler springs. Nonlinear behavior of granular fill layer, stone columns and the poor soil has been considered by means of hyperbolic stress strain relationships. Governing differential equations for the soil-foundation system have been derived and solution has been obtained employing finite difference scheme by means of iterative Gauss Elimination method. Results of a detailed parametric study have been presented, for a
footing supporting typically five columns, in non-dimensional form in respect of deflection with and without geosynthetic inclusion. Geosynthetic layer has been found to significantly reduce the deflection of the footing which has been quantified by means of parametric study.
Key Words
Stone columns, combined footing, geosynthetic layer, nonlinear behavior.
Address
Priti Maheshwari : Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
Shubha Khatri : Formerly Research Scholar, Department of Civil Engineering, Indian Institute of Technology Roorkee,
Roorkee-247667, India
Abstract
Filtration using granular media such as quarried sand, anthracite and granular activated carbon is a well-known technique used in both water and wastewater treatment. A relatively new prefiltration method called pebble matrix filtration (PMF) technology has been proved effective in treating high turbidity water during heavy rain periods that occur in many parts of the world. Sand and pebbles
are the principal filter media used in PMF laboratory and pilot field trials conducted in the UK, Papua New Guinea and Serbia. However during first full-scale trials at a water treatment plant in Sri Lanka in 2008, problems were encountered in sourcing the required uniform size and shape of pebbles due to cost, scarcity and Government regulations on pebble dredging. As an alternative to pebbles, hand-made clay pebbles (balls) were fired in a kiln and their performance evaluated for the sustainability of the PMF
system. These clay balls within a filter bed are subjected to stresses due to self-weight and overburden, therefore, it is important that clay balls should be able to withstand these stresses in water saturated conditions. In this paper, experimentally determined physical properties including compression failure load (Uniaxial Compressive Strength) and tensile strength at failure (theoretical) of hand-made clay balls are described. Hand-made clay balls fired between the kiln temperatures of 875oC to 960oC gave failure loads of between 3.0 kN and 7.1 kN. In another test when clay balls were fired to 1250oC the failure load was
35.0 kN compared to natural Scottish cobbles with an average failure load of 29.5 kN. The uniaxial compressive strength of clay balls obtained by experiment has been presented in terms of the tensile yield stress of clay balls. Based on the effective stress principle in soil mechanics, a method for the estimation of maximum theoretical load on clay balls used as filter media is proposed and compared with experimental failure loads.
Address
J.P. Rajapakse and C. Gallage : Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
G. Madabhushi and R. Fenner : Department of Engineering, Cambridge University, UK