Abstract
The most soil anchor works have been concerned with the uplift problem on embedded in non-reinforced soils under pullout test. Symmetrical anchor plates are a foundation system that can be resisting tensile load with the support of around soil in which symmetrical anchor plate is embedded. Engineers and authors proved that the uplift response can be improved by grouping the symmetrical anchor plates, increasing the unit weight, embedment ratio and the size of symmetrical anchor plates. Innovation of geosynthetics in the field of geotechnical engineering as reinforcement materials found to be possible solution in symmetrical anchor plate responses. Unfortunately the importance of reinforcement in submergence has received very little attention by researchers. In this paper, provision of tensile reinforcement under embedded conditions has been studied through uplift experiments on symmetrical anchor plates by few researchers. From the test results it has been showed that the provision of geogrid reinforcement system enhances the uplift response substantially under uplift test although other results are such as increase the ultimate uplift response of symmetrical anchor plate embedded using geosynthetic and Grid Fixed Reinforced (GFR) and symmetrical anchor plate improvement is very dependent on geosynthetic layer length and increases significantly until the amount of beyond that further increase in the layer length does not show a significant contribution in the anchor response.
Address
Hamed Niroumand, Khairul Anuar Kassim: Department of geotechnical Engineering, Faculty of civil engineering, Universiti Teknologi Malaysia, Malaysia
Abstract
A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.
Key Words
negative skin friction; dragload; pile; centrifuge model test; finite element method
Address
R.F. Shen, C.F. Leung, Y.K. Chow: Centre for Soft Ground Engineering, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576
Abstract
In the present study an attempt was made to predict the complex nonlinear parameters of the soil-pile system subjected to the vertical vibration of rotating machines. A three dimensional (3D) finite element (FE) model was developed to predict the nonlinear dynamic response of full-scale pile foundation in a layered soil medium using ABAQUS/CAE. The frequency amplitude responses for different eccentric moments obtained from the FE analysis were compared with the vertical vibration test results of the full-scale single pile. It was found that the predicted resonant frequency and amplitude of pile obtained from 3D FE analysis were within a reasonable range of the vertical vibration test results. The variation of the soil-pile separation lengths were determined using FE analysis for different eccentric moments. The Novak
Key Words
boundary zone parameter; layered soils; nonlinear response; soil-pile separation; vertical vibration; 3D finite element analysis
Address
Sanjit Biswas, Bappaditya Manna, Shiva S. Choudhary: Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
Abstract
The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.
Key Words
constitutive model; particle crushing; finite element analysis; pile foundation; surcharge pressure
Address
Yang Wu, Haruyuki Yamamoto: Graduate School for International Development and Cooperation, Hiroshima University, Higashi-Hiroshima 739-8529, Japan; Yangping Yao: Department of Civil Engineering, Beihang University, Beijing 100191, China
Abstract
Geotextiles and geogrids have been in use for several decades in variety of geo-structure applications including foundation of embankments, retaining walls, pavements. Geocells is one such variant in geosynthetic reinforcement of recent years, which provides a three dimensional confinement to the infill material. Although extensive research has been carried on geocell reinforced sand, clay and layered soil subgrades, limited research has been reported on the aggregates/ballast reinforced with geocells. This paper presents the behavior of a railway sleeper subjected to monotonic loading on geocell reinforced aggregates, of size ranging from 20 to 75 mm, overlying soft clay subgrades. Series of tests were conducted in a steel test tank of dimensions 700 mm
Key Words
ballast; geocells; model studies; numerical simulations; soft clay
Address
Sireesh Saride: Department of Civil Engineering, Indian Institute of Technology Hyderabad, India; Sailesh Pradhan, Sitharam T.G.: Department of Civil Engineering, Indian Institute of Science, Bangalore, India; Anand J. Puppala: Department of Civil Engineering, The University of Texas at Arlington, Texas, USA