Techno Press
Tp_Editing System.E (TES.E)
Login Search
You logged in as

acc
 
CONTENTS
Volume 13, Number 3, March 2022
 


Abstract
Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33x104 MPa and 1.42x104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54x104 MPa and 1.19x104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36x104 MPa and 0.95x104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.

Key Words
clay brick powder; fly ash; micro-concrete; marble powder; shaking table test; similitude-scaling relationship

Address
Ji Zhou, Xin Gao and Chaofeng Liu: School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract
The problem is formulated by applying the Kirchhoff's conception for shell theory. The longitudinal modal displacement functions are assessed by characteristic beam ones meet clamped-clamped end conditions applied at the shell edges. The fundamental natural frequency of rotating functionally graded cylindrical shells of different parameter versus ratios of length-to-diameter and height-to-diameter for a wide range has been reported and investigated through the study with fractions laws. The frequency first increases and gain maximum value with the increase of circumferential wave mode. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The trigonometric frequencies are lower than that of exponential and polynomial frequencies. Stability of a cylindrical shell depends highly on these aspects of material. More the shell material sustains a load due to physical situations, the more the shell is stable. Any predicted fatigue due to burden of vibrations is evaded by estimating their dynamical aspects.

Key Words
cylindrical shell; Kirchhoff's conception; polynomial; strain, stainless steel

Address
Ahmad Yahya: Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah P.O.Box 80204, Jeddah 21589, Saudi Arabia
Muzamal Hussain: Department of Mathematics, Govt. College University Faisalabad, 38000, Faisalabad, Pakistan
Mohamed A. Khadimallah: Civil Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, BP 655, Al-Kharj, 16273, Saudi Arabia; Laboratory of Systems and Applied Mechanics, Polytechnic School of Tunisia, University of Carthage, Tunis, Tunisia
Khaled Mohamed Khedher: Department of Civil Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia; Department of Civil Engineering, High Institute of Technological Studies, Mrezgua University Campus, Nabeul 8000, Tunisia
K.S. Al-Basyouni: Mathematics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
Emad Ghandourah: Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah P.O.Box 80204, Jeddah 21589, Saudi Arabia
Essam Mohammed Banoqitah: Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah P.O.Box 80204, Jeddah 21589, Saudi Arabia
Adil Alshoaibi: Department of Physics, College of Science, King Faisal University, Al-Hassa, P.O. Box 400, Hofuf 31982, Saudi Arabia

Abstract
An attempt is made to develop an eco-friendly concrete with ground granulated blast furnace slag (GGBS) and pond ash as partial replacement materials for cement and fine aggregate, respectively without compromising the strength and durability. Sixteen concrete mixes were developed by replacing cement and fine aggregate by GGBS and pond ash, respectively in stages of 10%. The maximum replacement levels of cement and fine aggregates were 50% and 30% respectively. Experimental results revealed that the optimum percentage of GGBS and pond ash replacement levels were 30% and 20% respectively. The optimized mix was used further to study the flexural behavior and durability properties. Reinforced Concrete (RC) beams were cast and tested under a four-point bending configuration. Also, the specimens prepared from the optimized mix were subjected to alternate wet and dry cycles of acid (3.5% HCl and H2SO4) and sulphate (10% MgSO4) solutions. Results show that the optimized concrete mix with GGBS and pond ash had a negligible weight loss and strength reduction.

Key Words
durability; flexure; ground granulated blast-furnace slag; pond ash; RC beam

Address
J. Maheswaran: Department of Civil Engineering, St Xavier's Catholic College of Engineering Nagercoil, India
M. Chellapandian: Department of Civil Engineering, Mepco Schlenk Engineering College, Sivakasi, India
V. Kumar: Thanthai Periyar Government Institute of Technology Vellore, India

Abstract
Reinforced concrete (RC) deep beams are critical structural elements used in offshore pile caps, rectangular cross-section water tanks, silo structures, transfer beams in high-rise buildings, and bent caps. As a result of the low shear span ratio to effective depth (a/d) in deep beams, arch action occurs, which leads to shear failure. Several studies have been carried out to improve the shear resistance of RC deep beams and avoid brittle fracture behavior in recent years. This study was performed to investigate the behavior of RC deep beams numerically and experimentally with different reinforcement arrangements. Deep beams with four different reinforcement arrangements were produced and tested under monotonic static loading in the study's scope. The horizontal and vertical shear reinforcement members were changed in the test specimens to obtain the effects of different reinforcement arrangements. However, the rebars used for tension and the vertical shear reinforcement ratio were constant. In addition, the behavior of each deep beam was obtained numerically with commercial finite element analysis (FEA) software ABAQUS, and the findings were compared with the experimental results. The results showed that the reinforcements placed diagonally significantly increased the load-carrying and energy absorption capacities of RC deep beams. Moreover, an apparent plastic plateau was seen in the load-displacement curves of these test specimens in question (DE-2 and DE-3). This finding also indicated that diagonally located reinforcements improve displacement ductility. Also, the numerical results showed that the FEM method could be used to accurately predict RC deep beams' behavior with different reinforcement arrangements.

Key Words
deep beam; energy absorption; finite element analysis; reinforced concrete, reinforcement

Address
Metin Husem: Department of Civil Engineering, Karadeniz Technical University, Trabzon, Turkey
Mehmet Yilmaz: Department of Construction, Vocational School, Erzincan Binali Yildirim University, Erzincan, Turkey
Suleyman I. Cosgun: Department of Civil Engineering, Erzincan Binali Yildirim University, Erzincan, Turkey

Abstract
Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Key Words
body forces; MTs; orthotropic elastic shell model; vibration; wave propagation

Address
Khurram Farid and Muhammad Taj: Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

Abstract
The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

Key Words
bond strength; cohesion; double-shear test; friction coefficient; precast and new concrete; quantitative roughness; slant shear test; splitting tensile test

Address
Olawale O. Ayinde, Erjun Wu and Guangdong Zhou: College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China


Techno-Press: Publishers of international journals and conference proceedings.       Copyright © 2024 Techno-Press ALL RIGHTS RESERVED.
P.O. Box 33, Yuseong, Daejeon 34186 Korea, Email: admin@techno-press.com