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Abstract.  Agriculture production is a critical human intensive task, which takes place in all regions of the 
world. The process to grow and harvest crops is labor intensive in many countries due to the lack of 
automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production 
can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic 
team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, 
from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and 
agents to work together for automation of gathering and collection functions. The focus of the research is a 
model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work 
together indistinguishably. With this model, any capability-based human-like organization can be conceived 
and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a 
technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an 
agricultural gathering and collection function. The gathering and collection functions were chosen as they are 
some of the most labor intensive and least automated processes in the process acquisition of agricultural 
products. The use of robotic organizations can reduce human labor and increase efficiency allowing people 
to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future. 
In this work, the HARMS model was applied to three different robotic instances and an integrated test was 
completed with satisfactory results that show the basic promise of this research. 
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Basic fruits are an important crop utilized and depended on as a staple food in the diet of many 

people. This dependence spans many parts of the world and is of particular importance in many 

parts of Asia. The process to harvest fruits and some vegetables is not currently as automated as 

many other dependent staple crops across the world such as wheat, corn or sorghum. These crops 

are produced in large fields with efficient techniques, large machinery and mass production. 

Unlike these crops, the production of fruits and other gathered crops remains a very human labor-

intensive practice. Given the statement of belief by the IEEE Robotics and Automation Society 

(2014), the automation of agriculture can be enhanced with robotic, and therefore agent-oriented 

systems. 

Agriculture is humankinds oldest and still its most important economic activity, providing the 

food, feed, fiber, and fuel necessary for our survival. With the global population expected to reach 

9 billion by 2050, agricultural production must double if it is to meet the increasing demands for 

food and bio-energy. Given limited land, water and labor resources, it is estimated that the 

efficiency of agricultural productivity must increase by 25% to meet that goal, while limiting the 

growing pressure that agriculture puts on the environment. Robotics and automation can play a 

significant role in society meeting 2050 agricultural production needs. For six decades robots have 

played a fundamental role in increasing the efficiency and reducing the cost of industrial 

production and products. 

Much of the difficult labor of fruit production can be automated with intelligent and robotic 

platforms. We propose an intelligent agent architecture, which can use sensors, robots and 

agricultural machinery to automate the process to gather and collect crops, so that a robot can 

minimize or eliminate human labor in the fields. The difficulty in picking and collecting basic fruit 

crops is abstract to a human, given our dexterity, physical traits and ease to pick fruits from trees 

or bushes. But, we take for granted the capabilities to pick fruits such as berries, shown in Fig. 1 or 

apples, shown in Fig. 2. While these two fruits are commonly consumed and easy for a human to 

pick, collect and gather, it is very complex to develop a machine to perform the range of tasks with 

equal capability. Previous studies in this area have endeavored to facilitate picking of cherries 

(Tanigakia et al. 2008) and other general fruits (Hayashia et al. 2010), as examples of the 

opportunities as well as difficulties in this task.  

This problem and need for technology, such as sensors, machines, robots and HARMS 

architectures are as much of an economic issue as it is a labor, safety or agricultural issue. A short 

supply of labor can seriously hinder crop production and create massive ripple effects in the food 

supply. 

As the human drive to communicate directly to robots (Rani et al. 2008) and other non-human 

actors increases and becomes more common place in some configuration of artificial 

communication, it is equally important to speak with other classes of cyber-physical systems, as 

shown by Erickson 2004. In the near future, ubiquity in this technological area will provide near-

human communication with a range of devices in which humans interact on a common and daily 

basis. The foundation is set by Kim et al. (2004) by defining the need for ubiquity in robotics. A 

ubiquitous future leans to the notion that we can give commands or request services (Yachir et al. 

2009) to any range of cyber-physical systems capable of accomplishing a specific task without 

regard to the physiological or cognitive definition of the system. In terms of multi -agent or 

artificial, organizations, there is typically a goal to accomplish. If an actor in the organization 

announces a task to all other actors, the first actor only cares that the task is accomplished, but not 

necessarily concerned with who carries out execution, within reason. The actor who executes the 

task must be capable of executing the task to accomplish the goal. There may be many actors, in  
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Fig. 1 Berries-Purdue farm 
 

 

 

Fig. 2 Apples-Purdue farm 

 

 

the organization, with this capability and these actors may all be different, in terms of class, 

embodiment, mobility and physiology. For example, a person can ask for someone to get a 

morning newspaper from the lawn. A human, dog or robot can accomplish this task, as all have 

capability. If the requester can give a general command that each can understand then any can 

execute this task to satisfy the goal of getting the paper. Thus, given that all can understand the 

command, it is a request ubiquitous to all actors but indistinguishable who must execute the task, 

given that all are equally or necessarily capable. One of the most recent research work in the field 

of task allocation in organizational multi-agent systems is reported in (Esmaeili et al. 2017). In this 

work, the authors have proposed a dynamic method in which the agents try to group together to 

form organizational structures to execute the incoming tasks. The strength point of the suggested 

method is that it does not utilize any external forces to manage the formation of the groups and 

performing the tasks. 

This research is an extension of an initial work (Lewis et al. 2012) and a specific publication 

extension (Kim et al. 2015). This remainder of this paper is organized with section 2 showing the 

HARMS model to enable work in large cyber-physical organizations. Section 3 shows the 

realization of a robotic system to implement and allow testing of the model. Section 4 provides 
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some initial results of the system and section 5 and 6, respectively, provide conclusions and 

planned future extensions to this research work. 

 

 

2. HARMS Layered model 
 

As robots become more pervasive and ubiquitous in agriculture, they become increasingly 

involved in the lives of humans. Farmers and those involved in production agriculture expect 

robots will take on tasks to ease their lives, by working with humans just as other humans do, in 

normal organizations and teams. This labor specialization, by ubiquitous robots, allows humans 

more comfort, time or focus to concentrate on higher level desires, tasks or goals. To further this 

unification of cooperative relationships, the defined line between humans and other robots must 

become somewhat indistinguishable. 

 

 

 

Fig. 3 HARMS layered model concept 

 

 

Fig. 4 HARMS functionality 
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This ever-increasing degree of indistinguishability provides that we care less about who or 

what executes a task or solves a goal, as long as that acting entity is capable, functional and 

available. In this section, we propose an on-going developing model and a simple example 

implementation which minimizes the strict line between humans, software agents, robots, 

machines and sensors (HARMS) and reduces the distinguishability between these actors, which can 

be applied to many task domains, specifically gathering and collection, in this work. 

The development of an organization, which supports indistinguishability within its members 

requires a model definition enabling these actors to connect, communicate and interact. Secondly, 

the model must support actors of many different cyber-physical definitions. In this research, we 

have defined a model to connect humans, software agents, robots, machines and sensors, called 

the HARMS Model, where each layer of the model, previously introduced (Matson and Min 2011, 

Matson et al. 2011) integrates with the layers above and below it, as shown in Fig. 3. The abstract 

goal of this effort is the integration of humans and non-human actors, in this case, humanoid 

robots and unmanned ground robots. The control of a human and non-human system has explored 

in terms of control (Lim et al. 2009, Meteb et al. 2016), more specifically formation control (Hsu 

and Liu 2007) and collaboration (Bauer et al. 2008) of human and non-human actors. This 

category of research is the basis for investigation into a HARMS model and architecture.  

The end goals are artificial organizations, which can exhibit not only the organizational 

capabilities of humans but go beyond to the state of evolution where cultural and social normative 

behavior emerges in the non-human organizations. The model in Fig. 3 shows the 5 layers with 

collective behaviors, as the highest layer. Achievement to this level extends the ability of labor-

strapped agriculture sectors to perform at a more human replacement level. The application of this 

type of artificial organization function has potentially far reaching economic impacts and can 

lessen the stress of labor fluctuations caused by social, economic, government or legal forces. 

Each of the layers in Fig. 4 is connected to the layers immediately below or above it in the 

model. Layers higher in the model depend on the lower layer’s function and service. For example, 

the ability of an agent to communicate depends on its ability to network with another agent. The 

layers are presented from the lowest layer to the highest. The level does not represent the level of 

abstraction in the model. 

 

2.1 Network 
 

The Network layer represents the basic communication between the system actors. Each system 

actor must have basic network capabilities to connect to other actors. In this case, actors will 

connect via a wired or wireless network to any other system actor. In this model, networking 

represents the physical connection between actors. The actors have the capability to communicate 

via sending TCP/UDP messages using unicast, multicast or broadcast, depending on the message 

type and set of actors the communication is directed towards. For example, a robot can connect to 

several sensors and send them a TCP multicast message. 

 

2.2 Communication 
 

The Communication layer enables the basic common exchange capability between any systems 

actors. Communication is defined by elements such as meaning, syntax, protocols and semantics 

(Hidayat et al. 2008). This layer is modeled in a generic sense to allow any actor to communicate 

in many ways, including natural language, gestures, simple text and many other possibilities. This 
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layer enables any n actors to communicate via a standardized, understandable interface and is 

dependent on the ability of actors to network, in the lower level. An example is the same robot, 

sending a text message via multicast to several sensors, in using natural language such as English. 

 

2.3 Interaction 
 

The Interaction layer represents a set of common, well understood algorithms and techniques 

which provide a layer for group rational decision making by a set of actors, such as voting, 

auctions and also some new models, such as hierarchical decisions. Common economically-driven 

and market-based algorithms provide a basis for this layer typical to the description in Weiss 

(1999). In this system, there is a collective, cooperative interest in which there exists negotiation 

and bargaining between agents for decision-making. These layers depend on the actors’ ability to 

effectively communicate from the layer 2 functionality. An example will be a robot, using the 

network and communication layers to effectively send a message to the sensors for getting a 

temperature reading, then voting on which sensor is the most precise and capable. 

 

2.4 Organization 
 

The Organization layer uses multiagent systems organization models such as OMACS
3
, 

enabled by networking, communication and interaction services provided by the HARMS Model’s 

three lowest levels. The organization layer provides for the needed group rational decision-making 

required to organize based on capability, around a set of common organizational goals. Each of the 

actor’s possess specific capabilities required to play a role in an organization. Each role can work 

to solve a set of 1 to N goals. The overall set of organization goals can be accomplished by the 

aggregate set of roles, played by the diverse actors, available to be active in the organization. 

 

2.5 Collective intelligence 
 

The Collective Intelligence behavior in a collection of agents, robots and humans can lean in a 

number of different directions. In this case, we focus on collective organizations with emergent 

and planned behavior. Examples are the societal or organizational norms, which exist in a 

collective (Grizard et al. 2007, Savarimuthu et al. 2008)
 
or models of social agreement in agent 

societies by Lorini and Verdicchio (2010). The collective intelligence will not only allow emergent 

behaviors, but also the connection of multiple organizations into higher-level collectives such as 

societies or organizations, and potentially a definition of consciousness (Raskin et al. 2012). 

 

2.6 Indistinguishability 
 

The concept of indistinguishability is not a layer in the HARMS Model but is a concept the 

HARMS Model will enable. Indistinguishability enables a system to choose between n different 

options of minimally capable actors relative to some task or goal. If there are a number of 

heterogeneous actors, each with the capability, the selection is not dependent on a specific 

embodiment, physiology or cognitive design. Capability to solve the systems goals, potentially 

within a temporal constraint, is the only distinguishing factor between indistinguishable actors, in 

a system. For example, asking a cheap temperature sensor or a human what is the temperature will 

result in two valid answers. But, the cheap temperature sensor is more capable of providing an 
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accurate and more precise answer than the human. So, if a HARMS message is sent to both a 

cheap temperature sensor and a highly capable human, the temperature sensor will be selected, but 

indistinguishably. 
 

 

3. HARMS communication 
 

For this research, the bulk of work is in the first two layers of the HARMS model 

implementation. A basic example of this is shown in Fig. 5. Each actor will possess access to a 

HARMS five-layer stack in their computational infrastructure. For agents, robots, machines and 

sensors, the interface is fairly self-explanatory. For humans, the human has two basic options; 1. 

Interact with a device that allows an obvious interface such as a computer, cell phone or TCP-

enabled device, or 2. The human using natural language or some non-TCP-enabled form of natural 

communcation. In Fig. 5, the example shows a human, DARwIn robot (Robotis 2015) and a 

temperature sensor. In a simple example where a human asked the DARwIn to discover the 

temperature in the room, the DARwIn does not have a viable temperature sensor, so it sends a 

message to an available actor, which is capable to provide this information and solve the overall 

system goal. To accomplish this, the human will connect to DARwIn then communicate a query. 

Then, DARwIn will connect to the temperature sensor to propagate the query. The temperature 

sensor will answer to the DARwIn and in turn, will propagate the answer to the human. 

The HARMS model (Matson et al. 2011) assumes communication in a semi-formalized 

language format between all actors. To appear indistinguishable, the actors will communicate in 

English, or another natural language subset, limited lexically for a restricted domain, but fully 

conforming to the rules of the specific morphology, syntax and semantics. The actors will 

exchange messages in terms of questions, directives and information messages. Given the actors 

can send messages via unicast u, multicast m or broadcast b, they can send from actora to any 
 

 

 

Fig. 5 HARMS Communication 
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actorb . . . actor∞. The set of actors Act is defined by Act = {H, Ag, Ro, M, S} where H is a set of 

humans, Ag is a set of agents, Ro is a set of robots, M is a set of machines and S is a set of sensors. 

There are 3 basic communication functions in the system; questions, messages and directives. 

An example of a common command is:  

drive forward then stop and retrieve apple  

Realistically, there are three commands here, so it will be broken down into a set of sequential 

commands. The next three subsections describe the basic structure of questions, messages and 

directives and then a subsection on implementing a directive. 
 

3.1 Questions 
 

Questions send a message msg to a group of {n actors | actors ∈ Act, n ∈ א} and return a msg 

back to actorx, the inquiring agent. Content of the functions is dependent on the domain structure 

and problem.  

msgx   ←  questionactorx (actory, msgy, u) (1) 

Each question function has unique parameters, based on its problem and audience. Eq. (1) 

represents actorx asking a message msg of only actory as the third parameter u represents a cast 

function, which can be unicast, multicast or broadcast.  

{msgx,y | x,y ∈ Act} ← questionactorx({actory_1 . . . actory_n}, msgy, m) (2) 

Eq. (2) represents actorx asking a question message msg of to all actors in the set {actory_1 . . . 

actory_n} as the third parameter m represents a multicast function, which targets an inquiry to a 

select group of actors. The function returns a set of messages from each actor. 

{msgx,y | x, y ∈ Act} ← questionactorx (msgy, b) (3) 

Eq. (3) represents actorx asking a question message msg of to all actors in the organization as 

the third parameter b represents a multicast function, which targets a question to a select group of 

actors. The function returns a message from each actor.  

 

3.2 Messages 
 

The Message function sends a message to a group of n actors, without any return. Eq. (4) 

represents actorx sending a message to a single actory. 

Messageactorx (actory , msgy , u) (4) 

Eq. (5) represents actorx sending a message to all actors in the set {actory_1. . . actory_n}. 

Messageactorx({actory_1 . . . actory_n}, msgy, m) (5) 

Eq. (6) represents actorx sending a message to all actors. 

Messageactorx (msgy , b) (6) 

 

3.3 Directives 
 

The Directive function sends a command to a group of n actors, without any return. Eq. (7) 

represents actorx sending a message to a single actory. The basic assumption is in a cooperative 
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system, all agents will obey and honor the command.  

Directiveactorx (actory , msgy , u) (7) 

Eq. (8) represents actorx sending a directive command to all actors in the set {actory_1 . . . 

actory_n}. 

Directiveactorx({actory_1 . . . actory_n}, msgy, m) (8) 

Eq. (9) represents actorx sending a directive command to all actors. 

Directiveactorx (msgy, b) (9) 

 

3.4 Implementing a directive 
 

The example of a common command directive is drive forward then stop and retrieve apple. 

This directive is compound as there are three commands here to drive, stop and retrieve. Also, two 

directives have a sub-directive, forward and apple, respectively. For example, we can send this 

directive to a single actor, a group of actors or all actors, in a system.  

For a single directive, the robot in question will be named George from the source actor Bob. 

The message sequence will be:  

DirectiveactorBob(actorGeorge, msgdriveforward, u) 

then  

DirectiveactorBob (actorGeorge, msgstop, u) 

and finally  

DirectiveactorBob (actorGeorge, msgretrieveapple , u) 

The assumption is the configuration and capability on-board any HARMS actor allows correct 

execution of the directive.  

 

 

4. Realization 
 

The ultimate goal is to pick up all of the fruits (balls), which simulate agricultural products and 

move them to a collection point, typically near a human. In a real scenario, the fruit would be 

loaded onto a transport and moved to a cleaning and preparation facility for final packing and 

storage, prior to being shipped to a retail outlet. This realization only looks at the field picking 

operation with a set of robots acting as pickers and movers to the collection point. The focus on 

picking and collection is due to those tasks being the most labor-intensive. 

This experiment is not appropriate for all picking and collection scenarios in agriculture, such 

as harvesting grain crops, as that is already highly mechanized. This work focuses on high value 

crops such as field-based or orchard-based fruit picking. Specific examples area an apple orchard, 

ground fruit and low plant fruit fields. This would be such fruits as picking apples off low trees, 

picking strawberries from low plants or picking blueberries from small bushes. While the robots in 

this experiment are too small to necessarily adapt to all three scenarios, the basic concept for the 

work can be realized. 

To realize this HARMS oriented project, with heterogeneous robots working together, we 

constructed a field with different-colored balls to represent fruits on the ground. The robots 

gathered the balls as substitutes for the fruits, as the complexity of just picking a fruit without 
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crushing it is beyond the scope of this work. The focus of this work is the logistics of picking and 

collection. The human is the initiating actor in this experiment.  

In this section the human and non-human actors are defined, followed by a description of the 

system goals. Finally, the process and control of the system are described. 
 

4.1 Actors 
 

In this experiment, three heterogeneous robots and a human are utilized. The human actorHuman 

is the originator of commands. The DARwIn humanoid robot actorDARwIn is used as the fruit picker 

and collector, as it has both capabilities. An iRobot Create (iRobot 2014) with a basket on the top 

is used as a collector actorCollector. Another iRobot Create is configured a specialized bulldozer 

actorBulldozer robot, to gather fruit already on the ground by pushing it to the collection point. 

Each actor will utilize the lower two layers of HARMS, networking and communication, as 

shown in Fig. 5. For all communication, a combination of Zigbee connection and IEEE 802.11 

wifi protocols were used to connect the robots. 
 

4.2 Goals 
 

Our first goal is to enable actorDARwIn find the fruit and pick them up as in Fig. 6. And drop the 

ball into a basket on top of actorCollector, shown in Fig. 8 which is the transporter, or the basket, 

which is located at designated collection point. Where the actorDARwIn will drop fruit depends on 

the proximity to each point. 

The picking capability of the actorDARwIn with a prehensile gripping hand, as shown in Fig. 6, 

could only collect 1 fruit per pick, so the hands were rebuilt with custom scoop boxes on each arm 

as shown in Fig. 7. This forms a box that allows scooping the fruit and ease of picking without 

damaging the fruit.  

The second goal is autonomous control the actorCollector in order to carry balls from actorDARwIn 

to a human-based collection point. The final goal is to enable the actorBulldozer to gather and 

assemble balls at the designated spot and go back to the original starting location. This is similar to 

gathering fruit on the ground as shown in Fig. 2. As the robots go through these steps to goal 

completion they will network together and communicate using a HARMS model instance in each 

robot to enable the cooperative work. Fig. 9 shows the operational flow chart of activities for the 

fruit picking system as it goes through completion of the system goals. 
 

 

 

Fig. 6 Ball picking humanoid actorDARwIn 
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Fig. 7 Ball picking actorDARwIn 

 

 

Fig. 8 Collector actorCollector 

 

 

Fig. 9 HARMS Flow chart for the ball picking system 
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Fig. 10 actorDARwIn vision 
 

 

4.3 Process and control 
 

As bootstrapping a completely autonomous system has some intrinsic complexities, the 

actorHuman will initiate this process. To start the system, actorHuman gives 2 commands to the robot 

team to collect all fruits, DirectiveactorHuman(actor∗, msgcollect, m) and bring the fruits to the collection 

point, DirectiveactorHuman(actor∗, msgdestination, m). These commands are structured in the format as 

previously described. The actorBulldozer begins to assemble all of balls at the destination coordinates. 

When the task is completed, the actorBulldozer sends a message, “task complete” to all others. Then, 

actorBulldozer returns to the point of origin. A diagram of the interaction is shown in Fig. 12. 

Then, the actorDARwIn initiates motion and uses color-based vision to find the fruit as shown as 

Fig. 10. Once actorDARwIn finds a ball, he sends a message to the actorCollector to “follow me” to let 

the actorCollector receive the fruit from actorDARwIn. When actorDARwIn retrieves the fruit, he then 

locates the actorCollector to drop it into the moving basket of actorCollector. If there is no basket in 

actorDARwIn range of view, actorDARwIn will rotate until it finds the actorCollector. 

Then, actorDARwIn conveys the ball to a ball basket installed on the actorCollector. To do this step, 

the actorDARwIn sends a message to actorCollector to call and position next to actorDARwIn. actorCollector 

will receive that message “follow me” from actorDARwIn and then he will start to move to find the 

actorDARwIn and calculate the distance and angle between actorDARwIn and iRobot to go near 

actorDARwIn as shown in Fig. 11. When the actorDARwIn approaches to place the ball, the moving 

basket of actorCollector will wait the ball is fully dropped off into his basket. When the set number of 

balls have been collected, the actorCollector will move to the initial collection point, co-located with 

the actorHuman. 

By using this approach, the fruits, randomly distributed on the floor, can be collected quickly 

and efficiently. 
 

 

 

Fig. 11 Co-location and following 
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Fig. 12 Interaction of all actors in the system 
 

 

5. Experiments and evaluation 
 

Testing was conducted in a controlled lab environment for this initial experiment. The test 

range was an indoor smooth floor with varying size. There were 4 sets of experiments starting with 

the same initial state but differing in the constitution of the robot team. Every experiment has same 

initial state as shown Fig. 13. Each experiment has red balls in a row and a yellow basket in the 

corner. The goal of the experiments is to put all balls to the yellow basket. 

In the test environment, there are a total 4 agents; actorHuman, actorDARwIn, actorCollector and 

actorBulldozer. Each robot has its positives and negative attributes and capabilities, as shown in Table 

1. These varying capabilities and the ability to communicate to solve a goal through the HARMS 

implementation, drives the results, and affects to HARMS multi-actor system. It enables the  
 

 

 

Fig. 13 Initial test environment 

 
Table 1 Positives and negative capabilities of each actor 

Robot Positives Negatives 

actorDARwIn 

Can pick up the ball 

Find the basket 

Drop the ball into the basket 

Slow movement 

 

actorBulldozer Control multiple balls Cannot pick up a ball 

actorCollector Fast movement Cannot pick up a ball 
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Table 2 Total elapsed time of ball picking as a result of differential actor combinations 

 Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Robot DARwIn 
DARwIn, 

Bulldozer 

DARwIn, 

Collector 

DARwIn, 

Bulldozer, 

Collector 

Trial 1 124 sec 103 sec 114 sec 92 sec 

Trial 2 124 sec 112 sec 110 sec 92 sec 

Trial 3 113 sec 110 sec 101 sec 92 sec 

Trial 4 119 sec 104 sec 101 sec 92 sec 

Trial 5 119 sec 102 sec 98 sec 92 sec 

Average 119.8 sec 106.2 sec 104.8 sec 92 sec 

 
Table 3 Task and participation of each actor 

Actors Interaction 
Experiment* 

1 2 3 4 

Human, DARwIn DARwIn moves only when human sends a signal to start OOOO 

DARwIn, Bulldozer Bulldozer moves 2 secs after DARwIn has started to move XOXO 

DARwIn, Collector Collector moves only when DARwIn has noticed a ball XXOO 

Human, Collector Human controls iRobot XXOO 

*Experiment: O represents actors participated in the corresponding experiments, while X represents actors 

did not participate in the experiments 

 

 

HARMS system efficiency by providing suitable positions for each robot. We attached the 

yellowbasket to iRobot in order to enable a moving basket because of consistent movement. In 

each experiment, Darwin picks a set of balls, the actorBulldozer collects the balls to the end point, the 

actorHuman controls the iRobot, and the actorCollector waits for actorDARwIn until it drops a ball. The 

experiment initiates when the actorDARwIn receives the initial input signal. Experiments are shown 

in Table 2. 

 

5.1 Results 
 

There are 4 different experiments performed; only actorDARwIn, actorDARwIn with actorBulldozer, 

actorDARwIn with actorCollector and actorDARwIn with actorBulldozer and actorCollector. So, overall system 

shows that the closer organization robots, the faster the work can be done, relieving the human of 

labor.  

Experiment 1 took 119.8 seconds in average to carry 3 balls, and it showed that with only the 

actorDARwIn, it is hard to achieve great performance because of slow walking and inaccurate vision 

processing. In experiment 2, we added the actorBulldozer to complement the actorDARwIn. According 

to Table 2., it communicates with the actorDARwIn and it collects the three balls to one place, so it 

reduces the total elapsed time to shorten the actorDARwIn walking distance. Therefore, experiment 2 

took 106.2 second in average which is a better result than experiment 1.  

In experiment 3, we used actorDARwIn and actorCollector. The actorCollector initiates movement after 

actorDARwIn has noticed a ball. It follows the actorDARwIn with a ball with the basket, so actorDARwIn 

can shorten the travel to the basket and overcome its weakened capability. The actorCollector 
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following function saves actorDARwIn walking travel time, so experiment 3 also has better result 

(104.8 sec) than experiment 1.  

In experiment 4, we used all robotic agent actors to maximize the efficiency of the HARMS 

team, even though it is the most complex system, requiring the most communication. The 

actorHuman initiates by sending a signal to actorDARwIn, then actorDARwIn starts to move. The 

actorBulldozer starts to collect all balls after 2 seconds. When actorDARwIn sees the ball, the actorCollector 

starts to follow the actorDARwIn. In this scenario, the HARMS system minimizes actorDARwIn slow 

walking time, so it maximizes the efficiency. The result of experiment 4, taking the shortest time, 

shows the best use and capability of this system (Table 3). Each robot has somewhat maximized 

their advantages and minimized their shortcomings, and it finally maximizes the relative 

efficiency. This shows the ability to capture capability to minimize time, maximize efficiently and 

utilize specialization of labor. 
 
 

6. Conclusions 
 

Production agriculture is a critical human survival and growth effort, but also an intensive 

human task which takes place in all parts of the world. The investment, time and process to grow 

and harvest fruit cops is expensive partly due to the nature of intense human labor involvement. 

Much of the human involvement is due to the lack of automation and advanced technology. These 

difficult, dangerous and dirty crop production tasks can and should be automated with intelligent 

and robotic platforms, for labor, economic, security and sustainability reasons. We propose an 

intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and 

collecting crops and fruits, of many types, from agricultural fields. 

The goal of this research is to create a HARMS prototype to demonstrate a multi-actor system 

integrated to act in an agricultural task domain and save labor, in that function, to show that 

capability-based robots can be employed in intensive human labor tasks to reduce involvement in 

dirty, dangerous and dull activities. Thereby, saving economic labor costs and spurring financial 

savings through capability-based robotic specialization of labor and application of specific picking 

and collecting capability. 

Overall, while it is a small implementation and test, it shows the basic capability of the system 

to enable a team to perform a function. Given the results, it also shows that the time can be 

decreased as the actors’ capabilities are more efficiently utilized. Showing a trend to greatly utilize 

the capability of non-human actors in an agricultural collection, validates further investment and 

basic economic promise to employ robots, in this function. 

The next steps are to transition this basic infrastructure to field projects in a realistic 

agricultural setting. The HARMS team will be developed to go into an apple orchard, ground fruit 

and low plant fruit fields and work to pick fruit, in an actual setting. This test will include more 

capable robots and more heterogeneous types of robots. The development of the interaction and 

organization layers of HARMS will be included to further the efficiency of the research effort. 
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