A HARMS-based heterogeneous human-robot team for gathering and collecting

Miae Kim1d, Inseok Koh2e, Hyewon Jeon*1, Jiyeong Choi3f, Byung Cheol Min4b, Eric T. Matson1,5a and John Gallagher6c

1M2M Lab and Computer and Information Technology, Purdue University, West Lafayette, Indiana, U.S.A.
2Department of Computer Engineering, Pohang University of Science and Technology, Pohang, South Korea
3Department of Computer Science, Kyung Hee University, Yongin, Korea
4SMART Lab and Computer and Information Technology, Purdue University, West Lafayette, Indiana, U.S.A.
5Department of Electrical Engineering, Kyung Hee University, Yongin, Korea
6Department of Computer Science and Engineering, Wright State University, Dayton, Ohio, U.S.A.

(Received October 3, 2018, Revised October 25, 2018, Accepted October 26, 2018)

Abstract. Agriculture production is a critical human intensive task, which takes place in all regions of the world. The process to grow and harvest crops is labor intensive in many countries due to the lack of automation and advanced technology. Much of the difficult, dangerous and dirty labor of crop production can be automated with intelligent and robotic platforms. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. This paper describes a novel robotic organization enabling humans, robots and agents to work together for automation of gathering and collection functions. The focus of the research is a model, called HARMS, which can enable Humans, software Agents, Robots, Machines and Sensors to work together indistinguishably. With this model, any capability-based human-like organization can be conceived and modeled, such as in manufacturing or agriculture. In this research, we model, design and implement a technology application of knowledge-based robot-to-robot and human-to-robot collaboration for an agricultural gathering and collection function. The gathering and collection functions were chosen as they are some of the most labor intensive and least automated processes in the process acquisition of agricultural products. The use of robotic organizations can reduce human labor and increase efficiency allowing people to focus on higher level tasks and minimizing the backbreaking tasks of agricultural production in the future.

In this work, the HARMS model was applied to three different robotic instances and an integrated test was completed with satisfactory results that show the basic promise of this research.

Keywords: multi-robot system; multiagent system; HARMS

1. Introduction

*Corresponding author, M.Sc. Student, E-mail: jeon30@purdue.edu
aProfessor, E-mail: ematson@purdue.edu
bProfessor, E-mail: minb@purdue.edu
cProfessor, E-mail: john.gallagher@wright.edu
dM.Sc. Student, E-mail: miae@purdue.edu
eM.Sc. Student, E-mail: inseok@postech.ac.kr
fB.Sc. Student, E-mail: a0107128229@gmail.com

Copyright © 2018 Techno-Press, Ltd.
http://www.techno-press.org/?journal=arr&subpage=7 ISSN: 2287-4976 (Print), 2287-4984 (Online)
Basic fruits are an important crop utilized and depended on as a staple food in the diet of many people. This dependence spans many parts of the world and is of particular importance in many parts of Asia. The process to harvest fruits and some vegetables is not currently as automated as many other dependent staple crops across the world such as wheat, corn or sorghum. These crops are produced in large fields with efficient techniques, large machinery and mass production. Unlike these crops, the production of fruits and other gathered crops remains a very human labor-intensive practice. Given the statement of belief by the IEEE Robotics and Automation Society (2014), the automation of agriculture can be enhanced with robotic, and therefore agent-oriented systems.

Agriculture is humankind’s oldest and still its most important economic activity, providing the food, feed, fiber, and fuel necessary for our survival. With the global population expected to reach 9 billion by 2050, agricultural production must double if it is to meet the increasing demands for food and bio-energy. Given limited land, water and labor resources, it is estimated that the efficiency of agricultural productivity must increase by 25% to meet that goal, while limiting the growing pressure that agriculture puts on the environment. Robotics and automation can play a significant role in society meeting 2050 agricultural production needs. For six decades robots have played a fundamental role in increasing the efficiency and reducing the cost of industrial production and products.

Much of the difficult labor of fruit production can be automated with intelligent and robotic platforms. We propose an intelligent agent architecture, which can use sensors, robots and agricultural machinery to automate the process to gather and collect crops, so that a robot can minimize or eliminate human labor in the fields. The difficulty in picking and collecting basic fruit crops is abstract to a human, given our dexterity, physical traits and ease to pick fruits from trees or bushes. But, we take for granted the capabilities to pick fruits such as berries, shown in Fig. 1 or apples, shown in Fig. 2. While these two fruits are commonly consumed and easy for a human to pick, collect and gather, it is very complex to develop a machine to perform the range of tasks with equal capability. Previous studies in this area have endeavored to facilitate picking of cherries (Tanigakia et al. 2008) and other general fruits (Hayashia et al. 2010), as examples of the opportunities as well as difficulties in this task.

This problem and need for technology, such as sensors, machines, robots and HARMS architectures are as much of an economic issue as it is a labor, safety or agricultural issue. A short supply of labor can seriously hinder crop production and create massive ripple effects in the food supply.

As the human drive to communicate directly to robots (Rani et al. 2008) and other non-human actors increases and becomes more common place in some configuration of artificial communication, it is equally important to speak with other classes of cyber-physical systems, as shown by Erickson 2004. In the near future, ubiquity in this technological area will provide near-human communication with a range of devices in which humans interact on a common and daily basis. The foundation is set by Kim et al. (2004) by defining the need for ubiquity in robotics. A ubiquitous future leans to the notion that we can give commands or request services (Yachir et al. 2009) to any range of cyber-physical systems capable of accomplishing a specific task without regard to the physiological or cognitive definition of the system. In terms of multi-agent or artificial, organizations, there is typically a goal to accomplish. If an actor in the organization announces a task to all other actors, the first actor only cares that the task is accomplished, but not necessarily concerned with who carries out execution, within reason. The actor who executes the task must be capable of executing the task to accomplish the goal. There may be many actors, in
the organization, with this capability and these actors may all be different, in terms of class, embodiment, mobility and physiology. For example, a person can ask for someone to get a morning newspaper from the lawn. A human, dog or robot can accomplish this task, as all have capability. If the requester can give a general command that each can understand then any can execute this task to satisfy the goal of getting the paper. Thus, given that all can understand the command, it is a request ubiquitous to all actors but indistinguishable who must execute the task, given that all are equally or necessarily capable. One of the most recent research work in the field of task allocation in organizational multi-agent systems is reported in (Esmaeili et al. 2017). In this work, the authors have proposed a dynamic method in which the agents try to group together to form organizational structures to execute the incoming tasks. The strength point of the suggested method is that it does not utilize any external forces to manage the formation of the groups and performing the tasks.

This research is an extension of an initial work (Lewis et al. 2012) and a specific publication extension (Kim et al. 2015). This remainder of this paper is organized with section 2 showing the HARMS model to enable work in large cyber-physical organizations. Section 3 shows the realization of a robotic system to implement and allow testing of the model. Section 4 provides
some initial results of the system and section 5 and 6, respectively, provide conclusions and planned future extensions to this research work.

2. HARMS Layered model

As robots become more pervasive and ubiquitous in agriculture, they become increasingly involved in the lives of humans. Farmers and those involved in production agriculture expect robots will take on tasks to ease their lives, by working with humans just as other humans do, in normal organizations and teams. This labor specialization, by ubiquitous robots, allows humans more comfort, time or focus to concentrate on higher level desires, tasks or goals. To further this unification of cooperative relationships, the defined line between humans and other robots must become somewhat indistinguishable.

Fig. 3 HARMS layered model concept

Fig. 4 HARMS functionality
This ever-increasing degree of indistinguishability provides that we care less about who or what executes a task or solves a goal, as long as that acting entity is capable, functional and available. In this section, we propose an on-going developing model and a simple example implementation which minimizes the strict line between humans, software agents, robots, machines and sensors (HARMS) and reduces the distinguishability between these actors, which can be applied to many task domains, specifically gathering and collection, in this work.

The development of an organization, which supports indistinguishability within its members requires a model definition enabling these actors to connect, communicate and interact. Secondly, the model must support actors of many different cyber-physical definitions. In this research, we have defined a model to connect humans, software agents, robots, machines and sensors, called the HARMS Model, where each layer of the model, previously introduced (Matson and Min 2011, Matson et al. 2011) integrates with the layers above and below it, as shown in Fig. 3. The abstract goal of this effort is the integration of humans and non-human actors, in this case, humanoid robots and unmanned ground robots. The control of a human and non-human system has explored in terms of control (Lim et al. 2009, Meteb et al. 2016), more specifically formation control (Hsu and Liu 2007) and collaboration (Bauer et al. 2008) of human and non-human actors. This category of research is the basis for investigation into a HARMS model and architecture.

The end goals are artificial organizations, which can exhibit not only the organizational capabilities of humans but go beyond to the state of evolution where cultural and social normative behavior emerges in the non-human organizations. The model in Fig. 3 shows the 5 layers with collective behaviors, as the highest layer. Achievement to this level extends the ability of labor-strapped agriculture sectors to perform at a more human replacement level. The application of this type of artificial organization function has potentially far reaching economic impacts and can lessen the stress of labor fluctuations caused by social, economic, government or legal forces.

Each of the layers in Fig. 4 is connected to the layers immediately below or above it in the model. Layers higher in the model depend on the lower layer’s function and service. For example, the ability of an agent to communicate depends on its ability to network with another agent. The layers are presented from the lowest layer to the highest. The level does not represent the level of abstraction in the model.

2.1 Network

The Network layer represents the basic communication between the system actors. Each system actor must have basic network capabilities to connect to other actors. In this case, actors will connect via a wired or wireless network to any other system actor. In this model, networking represents the physical connection between actors. The actors have the capability to communicate via sending TCP/UDP messages using unicast, multicast or broadcast, depending on the message type and set of actors the communication is directed towards. For example, a robot can connect to several sensors and send them a TCP multicast message.

2.2 Communication

The Communication layer enables the basic common exchange capability between any systems actors. Communication is defined by elements such as meaning, syntax, protocols and semantics (Hidayat et al. 2008). This layer is modeled in a generic sense to allow any actor to communicate in many ways, including natural language, gestures, simple text and many other possibilities. This
layer enables any n actors to communicate via a standardized, understandable interface and is dependent on the ability of actors to network, in the lower level. An example is the same robot, sending a text message via multicast to several sensors, in using natural language such as English.

2.3 Interaction

The Interaction layer represents a set of common, well understood algorithms and techniques which provide a layer for group rational decision making by a set of actors, such as voting, auctions and also some new models, such as hierarchical decisions. Common economically-driven and market-based algorithms provide a basis for this layer typical to the description in Weiss (1999). In this system, there is a collective, cooperative interest in which there exists negotiation and bargaining between agents for decision-making. These layers depend on the actors’ ability to effectively communicate from the layer 2 functionality. An example will be a robot, using the network and communication layers to effectively send a message to the sensors for getting a temperature reading, then voting on which sensor is the most precise and capable.

2.4 Organization

The Organization layer uses multiagent systems organization models such as OMACS3, enabled by networking, communication and interaction services provided by the HARMS Model’s three lowest levels. The organization layer provides for the needed group rational decision-making required to organize based on capability, around a set of common organizational goals. Each of the actor’s possess specific capabilities required to play a role in an organization. Each role can work to solve a set of 1 to N goals. The overall set of organization goals can be accomplished by the aggregate set of roles, played by the diverse actors, available to be active in the organization.

2.5 Collective intelligence

The Collective Intelligence behavior in a collection of agents, robots and humans can lean in a number of different directions. In this case, we focus on collective organizations with emergent and planned behavior. Examples are the societal or organizational norms, which exist in a collective (Grizard et al. 2007, Savarimuthu et al. 2008) or models of social agreement in agent societies by Lorini and Verdicchio (2010). The collective intelligence will not only allow emergent behaviors, but also the connection of multiple organizations into higher-level collectives such as societies or organizations, and potentially a definition of consciousness (Raskin et al. 2012).

2.6 Indistinguishability

The concept of indistinguishability is not a layer in the HARMS Model but is a concept the HARMS Model will enable. Indistinguishability enables a system to choose between n different options of minimally capable actors relative to some task or goal. If there are a number of heterogeneous actors, each with the capability, the selection is not dependent on a specific embodiment, physiology or cognitive design. Capability to solve the systems goals, potentially within a temporal constraint, is the only distinguishing factor between indistinguishable actors, in a system. For example, asking a cheap temperature sensor or a human what is the temperature will result in two valid answers. But, the cheap temperature sensor is more capable of providing an
accurate and more precise answer than the human. So, if a HARMS message is sent to both a cheap temperature sensor and a highly capable human, the temperature sensor will be selected, but indistinguishably.

3. HARMS communication

For this research, the bulk of work is in the first two layers of the HARMS model implementation. A basic example of this is shown in Fig. 5. Each actor will possess access to a HARMS five-layer stack in their computational infrastructure. For agents, robots, machines and sensors, the interface is fairly self-explanatory. For humans, the human has two basic options; 1. Interact with a device that allows an obvious interface such as a computer, cell phone or TCP-enabled device, or 2. The human using natural language or some non-TCP-enabled form of natural communication. In Fig. 5, the example shows a human, DARwIn robot (Robotis 2015) and a temperature sensor. In a simple example where a human asked the DARwIn to discover the temperature in the room, the DARwIn does not have a viable temperature sensor, so it sends a message to an available actor, which is capable to provide this information and solve the overall system goal. To accomplish this, the human will connect to DARwIn then communicate a query. Then, DARwIn will connect to the temperature sensor to propagate the query. The temperature sensor will answer to the DARwIn and in turn, will propagate the answer to the human.

The HARMS model (Matson et al., 2011) assumes communication in a semi-formalized language format between all actors. To appear indistinguishable, the actors will communicate in English, or another natural language subset, limited lexically for a restricted domain, but fully conforming to the rules of the specific morphology, syntax and semantics. The actors will exchange messages in terms of questions, directives and information messages. Given the actors can send messages via unicast u, multicast m or broadcast b, they can send from actor a to any
The set of actors Act is defined by $\text{Act} = \{H, Ag, Ro, M, S\}$ where H is a set of humans, Ag is a set of agents, Ro is a set of robots, M is a set of machines and S is a set of sensors.

There are 3 basic communication functions in the system; questions, messages and directives. An example of a common command is:

drive forward then stop and retrieve apple

Realistically, there are three commands here, so it will be broken down into a set of sequential commands. The next three subsections describe the basic structure of questions, messages and directives and then a subsection on implementing a directive.

3.1 Questions

Questions send a message msg to a group of $\{n \text{act}_i | \text{act}_i \in \text{Act}, n \in \mathbb{N}\}$ and return a msg back to act_x, the inquiring agent. Content of the functions is dependent on the domain structure and problem.

$$msg_x \leftarrow \text{questionactorx}(\text{actory}, msg_y, u)$$ (1)

Each question function has unique parameters, based on its problem and audience. Eq. (1) represents act_x asking a message msg of only act_y as the third parameter u represents a cast function, which can be unicast, multicast or broadcast.

$$\{msg_x, y | x, y \in \text{Act}\} \leftarrow \text{questionactorx}(\text{actory}_1 \ldots \text{actory}_n, msg_y, m)$$ (2)

Eq. (2) represents act_x asking a question message msg of to all actors in the set $\{\text{actory}_1 \ldots \text{actory}_n\}$ as the third parameter m represents a multicast function, which targets an inquiry to a select group of actors. The function returns a set of messages from each actor.

$$\{msg_x, y | x, y \in \text{Act}\} \leftarrow \text{questionactorx}(msg_y, b)$$ (3)

Eq. (3) represents act_x asking a question message msg of to all actors in the organization as the third parameter b represents a multicast function, which targets a question to a select group of actors. The function returns a message from each actor.

3.2 Messages

The Message function sends a message to a group of n actors, without any return. Eq. (4) represents act_x sending a message to a single actory_y.

$$\text{Messageactorx}(\text{actory}, msg_y, u)$$ (4)

Eq. (5) represents act_x sending a message to all actors in the set $\{\text{actory}_1 \ldots \text{actory}_n\}$.

$$\text{Messageactorx}(\{\text{actory}_1 \ldots \text{actory}_n\}, msg_y, m)$$ (5)

Eq. (6) represents act_x sending a message to all actors.

$$\text{Messageactorx}(msg_y, b)$$ (6)

3.3 Directives

The Directive function sends a command to a group of n actors, without any return. Eq. (7) represents act_x sending a message to a single actory_y. The basic assumption is in a cooperative...
A HARMS-based heterogeneous human-robot team for gathering and collecting

system, all agents will obey and honor the command.

\[
\text{Directiveactor}_x(\text{actory}, \text{msg}_y, u)
\]

Eq. (8) represents \(x\), sending a directive command to all actors in the set \{actory_1, \ldots, actory_n\}.

\[
\text{Directiveactor}_x(\{actory_1, \ldots, actory_n\}, \text{msg}_y, m)
\]

Eq. (9) represents \(x\), sending a directive command to all actors.

\[
\text{Directiveactor}_x(\text{msg}_y, b)
\]

3.4 Implementing a directive

The example of a common command directive is \textit{drive forward then stop and retrieve apple}. This directive is compound as there are three commands here to drive, stop and retrieve. Also, two directives have a sub-directive, forward and apple, respectively. For example, we can send this directive to a single actor, a group of actors or all actors, in a system.

For a single directive, the robot in question will be named George from the source actor Bob. The message sequence will be:

\[
\text{Directiveactor}_\text{Bob}(\text{actorGeorge}, \text{msgdriveforward}, u)
\]

then

\[
\text{Directiveactor}_\text{Bob}(\text{actorGeorge}, \text{msgstop}, u)
\]

and finally

\[
\text{Directiveactor}_\text{Bob}(\text{actorGeorge}, \text{msgretrieveapple}, u)
\]

The assumption is the configuration and capability on-board any HARMS actor allows correct execution of the directive.

4. Realization

The ultimate goal is to pick up all of the fruits (balls), which simulate agricultural products and move them to a collection point, typically near a human. In a real scenario, the fruit would be loaded onto a transport and moved to a cleaning and preparation facility for final packing and storage, prior to being shipped to a retail outlet. This realization only looks at the field picking operation with a set of robots acting as pickers and movers to the collection point. The focus on picking and collection is due to those tasks being the most labor-intensive.

This experiment is not appropriate for all picking and collection scenarios in agriculture, such as harvesting grain crops, as that is already highly mechanized. This work focuses on high value crops such as field-based or orchard-based fruit picking. Specific examples area an apple orchard, ground fruit and low plant fruit fields. This would be such fruits as picking apples off low trees, picking strawberries from low plants or picking blueberries from small bushes. While the robots in this experiment are too small to necessarily adapt to all three scenarios, the basic concept for the work can be realized.

To realize this HARMS oriented project, with heterogeneous robots working together, we constructed a field with different-colored balls to represent fruits on the ground. The robots gathered the balls as substitutes for the fruits, as the complexity of just picking a fruit without
crushing it is beyond the scope of this work. The focus of this work is the logistics of picking and collection. The human is the initiating actor in this experiment.

In this section the human and non-human actors are defined, followed by a description of the system goals. Finally, the process and control of the system are described.

4.1 Actors

In this experiment, three heterogeneous robots and a human are utilized. The human actor Human is the originator of commands. The DARwIn humanoid robot $\text{actor}_{\text{DARwIn}}$ is used as the fruit picker and collector, as it has both capabilities. An iRobot Create (iRobot 2014) with a basket on the top is used as a collector $\text{actor}_{\text{Collector}}$. Another iRobot Create is configured a specialized bulldozer $\text{actor}_{\text{Bulldozer}}$, robot, to gather fruit already on the ground by pushing it to the collection point.

Each actor will utilize the lower two layers of HARMS, networking and communication, as shown in Fig. 5. For all communication, a combination of Zigbee connection and IEEE 802.11 wifi protocols were used to connect the robots.

4.2 Goals

Our first goal is to enable $\text{actor}_{\text{DARwIn}}$ find the fruit and pick them up as in Fig. 6. And drop the ball into a basket on top of $\text{actor}_{\text{Collector}}$, shown in Fig. 8 which is the transporter, or the basket, which is located at designated collection point. Where the $\text{actor}_{\text{DARwIn}}$ will drop fruit depends on the proximity to each point.

The picking capability of the $\text{actor}_{\text{DARwIn}}$ with a prehensile gripping hand, as shown in Fig. 6, could only collect 1 fruit per pick, so the hands were rebuilt with custom scoop boxes on each arm as shown in Fig. 7. This forms a box that allows scooping the fruit and ease of picking without damaging the fruit.

The second goal is autonomous control the $\text{actor}_{\text{Collector}}$ in order to carry balls from $\text{actor}_{\text{DARwIn}}$ to a human-based collection point. The final goal is to enable the $\text{actor}_{\text{Bulldozer}}$ to gather and assemble balls at the designated spot and go back to the original starting location. This is similar to gathering fruit on the ground as shown in Fig. 2. As the robots go through these steps to goal completion they will network together and communicate using a HARMS model instance in each robot to enable the cooperative work. Fig. 9 shows the operational flow chart of activities for the fruit picking system as it goes through completion of the system goals.
A HARMS-based heterogeneous human-robot team for gathering and collecting

Fig. 7 Ball picking actor\textsubscript{DARwIn}

Fig. 8 Collector actor\textsubscript{Collector}

Fig. 9 HARMS Flow chart for the ball picking system
4.3 Process and control

As bootstrapping a completely autonomous system has some intrinsic complexities, the actor\textsubscript{Human} will initiate this process. To start the system, actor\textsubscript{Human} gives 2 commands to the robot team to collect all fruits, Directive\textsubscript{actor\textsubscript{Human}}(actor\textsubscript{∗}, msg\textsubscript{collect}, m) and bring the fruits to the collection point, Directive\textsubscript{actor\textsubscript{Human}}(actor\textsubscript{∗}, msg\textsubscript{destination}, m). These commands are structured in the format as previously described. The actor\textsubscript{Bulldozer} begins to assemble all of balls at the destination coordinates. When the task is completed, the actor\textsubscript{Bulldozer} sends a message, “task complete” to all others. Then, actor\textsubscript{Bulldozer} returns to the point of origin. A diagram of the interaction is shown in Fig. 12.

Then, the actor\textsubscript{DARwIn} initiates motion and uses color-based vision to find the fruit as shown as Fig. 10. Once actor\textsubscript{DARwIn} finds a ball, he sends a message to the actor\textsubscript{Collector} to “follow me” to let the actor\textsubscript{Collector} receive the fruit from actor\textsubscript{DARwIn}. When actor\textsubscript{DARwIn} retrieves the fruit, he then locates the actor\textsubscript{Collector} to drop it into the moving basket of actor\textsubscript{Collector}. If there is no basket in actor\textsubscript{DARwIn} range of view, actor\textsubscript{DARwIn} will rotate until it finds the actor\textsubscript{Collector}.

Then, actor\textsubscript{DARwIn} conveys the ball to a ball basket installed on the actor\textsubscript{Collector}. To do this step, the actor\textsubscript{DARwIn} sends a message to actor\textsubscript{Collector} to call and position next to actor\textsubscript{DARwIn}. actor\textsubscript{Collector} will receive that message “follow me” from actor\textsubscript{DARwIn} and then he will start to move to find the actor\textsubscript{DARwIn} and calculate the distance and angle between actor\textsubscript{DARwIn} and iRobot to go near actor\textsubscript{DARwIn} as shown in Fig. 11. When the actor\textsubscript{DARwIn} approaches to place the ball, the moving basket of actor\textsubscript{Collector} will wait the ball is fully dropped off into his basket. When the set number of balls have been collected, the actor\textsubscript{Collector} will move to the initial collection point, co-located with the actor\textsubscript{Human}.

By using this approach, the fruits, randomly distributed on the floor, can be collected quickly and efficiently.
A HARMS-based heterogeneous human-robot team for gathering and collecting

5. Experiments and evaluation

Testing was conducted in a controlled lab environment for this initial experiment. The test range was an indoor smooth floor with varying size. There were 4 sets of experiments starting with the same initial state but differing in the constitution of the robot team. Every experiment has same initial state as shown Fig. 13. Each experiment has red balls in a row and a yellow basket in the corner. The goal of the experiments is to put all balls to the yellow basket.

In the test environment, there are a total 4 agents; \textit{actor} \textsubscript{Human}, \textit{actor} \textsubscript{DARwIn}, \textit{actor} \textsubscript{Collector} and \textit{actor} \textsubscript{Bulldozer}. Each robot has its positives and negative attributes and capabilities, as shown in Table 1. These varying capabilities and the ability to communicate to solve a goal through the HARMS implementation, drives the results, and affects to HARMS multi-actor system. It enables the

<table>
<thead>
<tr>
<th>Robot</th>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{actor} \textsubscript{DARwIn}</td>
<td>Can pick up the ball</td>
<td>Slow movement</td>
</tr>
<tr>
<td></td>
<td>Find the basket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drop the ball into the basket</td>
<td></td>
</tr>
<tr>
<td>\textit{actor} \textsubscript{Bulldozer}</td>
<td>Control multiple balls</td>
<td>Cannot pick up a ball</td>
</tr>
<tr>
<td>\textit{actor} \textsubscript{Collector}</td>
<td>Fast movement</td>
<td>Cannot pick up a ball</td>
</tr>
</tbody>
</table>

Fig. 12 Interaction of all actors in the system

Fig. 13 Initial test environment
Table 2 Total elapsed time of ball picking as a result of differential actor combinations

<table>
<thead>
<tr>
<th>Robot</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
<th>Experiment 3</th>
<th>Experiment 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
<td>124 sec</td>
<td>103 sec</td>
<td>114 sec</td>
<td>92 sec</td>
</tr>
<tr>
<td>Trial 2</td>
<td>124 sec</td>
<td>112 sec</td>
<td>110 sec</td>
<td>92 sec</td>
</tr>
<tr>
<td>Trial 3</td>
<td>113 sec</td>
<td>110 sec</td>
<td>101 sec</td>
<td>92 sec</td>
</tr>
<tr>
<td>Trial 4</td>
<td>119 sec</td>
<td>104 sec</td>
<td>101 sec</td>
<td>92 sec</td>
</tr>
<tr>
<td>Trial 5</td>
<td>119 sec</td>
<td>102 sec</td>
<td>98 sec</td>
<td>92 sec</td>
</tr>
<tr>
<td>Average</td>
<td>119.8 sec</td>
<td>106.2 sec</td>
<td>104.8 sec</td>
<td>92 sec</td>
</tr>
</tbody>
</table>

Table 3 Task and participation of each actor

<table>
<thead>
<tr>
<th>Actors</th>
<th>Interaction</th>
<th>Experiment*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human, DARwIn</td>
<td>DARwIn moves only when human sends a signal to start</td>
<td>OOOO</td>
</tr>
<tr>
<td>DARwIn, Bulldozer</td>
<td>Bulldozer moves 2 secs after DARwIn has started to move</td>
<td>XOXO</td>
</tr>
<tr>
<td>DARwIn, Collector</td>
<td>Collector moves only when DARwIn has noticed a ball</td>
<td>XXOO</td>
</tr>
<tr>
<td>Human, Collector</td>
<td>Human controls iRobot</td>
<td>XXOO</td>
</tr>
</tbody>
</table>

*Experiment: O represents actors participated in the corresponding experiments, while X represents actors did not participate in the experiments.

HARMS system efficiency by providing suitable positions for each robot. We attached the yellow basket to iRobot in order to enable a moving basket because of consistent movement. In each experiment, Darwin picks a set of balls, the actor_Bulldozer collects the balls to the end point, the actor_Human controls the iRobot, and the actor_Collector waits for actor_DARwIn until it drops a ball. The experiment initiates when the actor_DARwIn receives the initial input signal. Experiments are shown in Table 2.

5.1 Results

There are 4 different experiments performed; only actor_DARwIn, actor_DARwIn with actor_Bulldozer, actor_DARwIn with actor_Collector and actor_DARwIn with actor_Bulldozer and actor_Collector. So, overall system shows that the closer organization robots, the faster the work can be done, relieving the human of labor.

Experiment 1 took 119.8 seconds in average to carry 3 balls, and it showed that with only the actor_DARwIn, it is hard to achieve great performance because of slow walking and inaccurate vision processing. In experiment 2, we added the actor_Bulldozer to complement the actor_DARwIn. According to Table 2, it communicates with the actor_DARwIn and it collects the three balls to one place, so it reduces the total elapsed time to shorten the actor_DARwIn walking distance. Therefore, experiment 2 took 106.2 second in average which is a better result than experiment 1.

In experiment 3, we used actor_DARwIn and actor_Collector. The actor_Collector initiates movement after actor_DARwIn has noticed a ball. It follows the actor_DARwIn with a ball with the basket, so actor_DARwIn can shorten the travel to the basket and overcome its weakened capability. The actor_Collector
following function saves actor\textsubscript{DARwIn} walking travel time, so experiment 3 also has better result (104.8 sec) than experiment 1.

In experiment 4, we used all robotic agent actors to maximize the efficiency of the HARMS team, even though it is the most complex system, requiring the most communication. The actor\textsubscript{Human} initiates by sending a signal to actor\textsubscript{DARwIn}, then actor\textsubscript{DARwIn} starts to move. The actor\textsubscript{Bulldozer} starts to collect all balls after 2 seconds. When actor\textsubscript{DARwIn} sees the ball, the actor\textsubscript{Collector} starts to follow the actor\textsubscript{DARwIn}. In this scenario, the HARMS system minimizes actor\textsubscript{DARwIn} slow walking time, so it maximizes the efficiency. The result of experiment 4, taking the shortest time, shows the best use and capability of this system (Table 3). Each robot has somewhat maximized their advantages and minimized their shortcomings, and it finally maximizes the relative efficiency. This shows the ability to capture capability to minimize time, maximize efficiently and utilize specialization of labor.

6. Conclusions

Production agriculture is a critical human survival and growth effort, but also an intensive human task which takes place in all parts of the world. The investment, time and process to grow and harvest fruit cops is expensive partly due to the nature of intense human labor involvement. Much of the human involvement is due to the lack of automation and advanced technology. These difficult, dangerous and dirty crop production tasks can and should be automated with intelligent and robotic platforms, for labor, economic, security and sustainability reasons. We propose an intelligent, agent-oriented robotic team, which can enable the process of harvesting, gathering and collecting crops and fruits, of many types, from agricultural fields. The goal of this research is to create a HARMS prototype to demonstrate a multi-actor system integrated to act in an agricultural task domain and save labor, in that function, to show that capability-based robots can be employed in intensive human labor tasks to reduce involvement in dirty, dangerous and dull activities. Thereby, saving economic labor costs and spurring financial savings through capability-based robotic specialization of labor and application of specific picking and collecting capability.

Overall, while it is a small implementation and test, it shows the basic capability of the system to enable a team to perform a function. Given the results, it also shows that the time can be decreased as the actors’ capabilities are more efficiently utilized. Showing a trend to greatly utilize the capability of non-human actors in an agricultural collection, validates further investment and basic economic promise to employ robots, in this function.

The next steps are to transition this basic infrastructure to field projects in a realistic agricultural setting. The HARMS team will be developed to go into an apple orchard, ground fruit and low plant fruit fields and work to pick fruit, in an actual setting. This test will include more capable robots and more heterogeneous types of robots. The development of the interaction and organization layers of HARMS will be included to further the efficiency of the research effort.

Acknowledgements

This work was funded by the Institute for Information and Communications Technology Promotion (IITP) a South Korean government institution that manages ICT research and development under the Ministry of Science, ICT and Future Planning.
References

A HARMS-based heterogeneous human-robot team for gathering and collecting

HM