
 
 
 
 
 
 
 

Advances in Concrete Construction, Vol. 3, No. 2 (2015) 91-102 
DOI: http://dx.doi.org/10.12989/acc.2015.3.2.091                                              91 

Copyright © 2015 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=acc&subpage=7        ISSN: 2287-5301 (Print) 2287-531X (Online) 
 
 
 

 
 
 
 

Load-deflection analysis prediction  
of CFRP strengthened RC slab using RNN 

 

S.V. Razavi1, Mohad Zamin Jumaat2,  
Ahmed H. EI-Shafie3 and Hamid Reza Ronagh4 

 
1Jundi-Shapur University of Technology, Dezful, Iran 

2Civil Engineering Department, University Malaya(UM), Malaysia 
3Civil Engineering Department, Universiti Kebangsaan Malaysia(UKM), Malaysia 

4School of Civil Engineering, The University of Queensland, Australia 
 

(Received July 3, 2014, Revised June 25, 2015, Accepted June 26, 2016) 

 
Abstract.  In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) 
strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six 
reinforced concrete slabs having dimension 1800×400×120 mm with similar steel bar of 2T10 and 
strengthened using different length and width of CFRP were tested and compared with similar samples 
without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB 
software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as 
neuron in output layer. The network was generated using feed-forward network and a internal nonlinear 
condition space model to memorize the input data while training process. From 122 load-deflection data, 111 
data utilized for network generation and 11 data for the network testing. The results of model on the testing 
stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable 
technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and 
experimental output was in the range of 0.99 to 1.11. 
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1. Introduction 

 
Ttraditional analysis models for reinforced concrete (RC) structures are reliable and the 

behavior of structural elements can be successfully determined by solving several numerical 
equations. It is observed that the different available calculation methods produce different 
deflection results (Wium and Eigeaar 2010). Neural networks (NNs) model the impact of input 
parameters on a set of output conclusions. They apply the influential learn-by-example technique 
and generalization system to identify the hidden relationships linking the input to their outputs 
(Hegazy et al. 1996). The goal of ANNs is to emulate the human brain’s ability to adapt to 
changing circumstances based on past experiences and the knowledge acquired there from. 
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This depends entirely on the ability to learn, remember, and evaluate multipart data 
relationships (Medsker and Jain 2001). NNs have the capability to totally identify any complex 
nonlinear relationship between the dependent and independent variables (Hinton 1992 and White 
1989). The data could be from a market research effort in the form of questionnaires, an assembly 
procedure of variable working conditions and guidelines, or the result of experimental and 
observation works in various industries.  

The network connections are divided in static and dynamic network connection. In static or 
feed-forward connection, the information moves in only forward direction from input to output.  
In dynamic or feedback connection, the signal moves in both directions, forward and backward. 
The network with feedback connection, namely Dynamic Neural Network (DNN), is very 
powerful and can get extremely complicated. DNN is a kind of artificial neural network that can 
modify its own topology to acceptable and also changeable data. In the other word, learning 
process in DNN never finishes. The workflow generation of dynamic neural networks is similar to 
feed-forward neural networks. The major differentiation between dynamic neural network and 
static feed-forward neural network happen in the design development because of the defined input 
in dynamic networks as time sequences. In the other word, dynamic neural networks have memory 
and can be generated to learn time-varying or sequential prototypes.  

Previous researches of ANNs in Structural Engineering mainly focused on static neural network 
using Feed-forward Back-propagation Neural Network (FBNN). Mehmet (2007) tried to model 
FBNN to predict ultimate deformation capacity of RC columns. Different network architecture 
investigated on the 682 column tests in un-axial bending with or without axial force and the N 9-
12-1, N 9-14-1, N 9-16-1, N 9-18-1 and N 9-20-1 were the best five networks when MSE of 
testing data was considered. The results from the generated network presented the feasibility of 
using ANN models for deformation prediction of RC columns. Cevik and Guzelbey (2008) 
employed 101 data to generated FBNN to predict mechanical strength of cylindrical samples 
reinforced by CFRP. The training algorithm was quasi-Newton back propagation with 4–15–1 NN 
architecture and hyperbolic tangent sigmoid transfer function (tansig).  

Jamal et al. (2007) applied FBNN with different transfer functions to predict the shear 
resistance of rectangular RC beams. The sigmoid function was the last iteration to predict the shear 
strength of RC beam accurately. 

Generally, dynamics can be communicated by using an external, internal dynamics, and tapped-
delay line (Nelles 2001). External dynamics method applies the historical information of output to 
demonstrate dynamics and makes autoregressive type neural network. The internal dynamics type 
takes in a nonlinear condition space model without any information regarding the true process 
state (Ishak 2003 and Yasdi 1999). Tapped-delay line method employs a sequence of delay to state 
dynamics space within network generation (Lingras 2001 and Yun et al. 1998). 

In a research, the traditional neural network (TNN) and time delay neural network (TDNN) has 
been employed to detect damage in bridge structures (Barari and Pandey 1996). A multilayer 
perceptron with the back-propagation learning algorithm has been implemented to train TDNNs 
and TNNs. The architecture for TDNN and TNN was 345-(21-21)-21 and 69-(21-21)-21 with two 
hidden layers and 21 nodes in each hidden layer. It is found that the results of generated TDNN are 
more effective than TNN to detect damage in the bridge structure.  

Graf et al. (2010) showed a numerical prediction for future structural responses in dependency 
of uncertain load processes and environmental influences using ANN. The generated ANN was 
based on RNN trained by time-dependent measurement results. The approach presents a capability 
for prediction of the long-term structural behavior of a reinforced concrete plate strengthened by a 
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textile reinforced concrete layer.   
Abed et al. (2010) applied Focused Feed-forward Time Delay Neural Network (FFTDNN) to 

consider the time dependency of creep in masonry structures. The architecture of the generated 
network was 4-8-4-1. It means, the produced network consisted of an input layer with four neurons, 
two hidden layers with eight, four neurons respectively and an output layer with one neuron. They 
compared the capability of the created network for creep prediction with the other model which is 
employed Recurrent Neural Networks (RNNs) by El-Shafie et al. (2008). They presented that the 
crated model in FFTDNN has a comparatively small prediction error compared to the RNN model 
and other theoretical model. In this research, FTDNN and RNN are applied for load-deflection and 
crack width prediction of RC slab strengthened by CFRP. 

Freitag et al. (2011) introduced a model for prediction of time-dependent structural behaviour 
using RNN. The time-dependent data for RNN generation was obtained from measurements or 
numerical analysis. The RNN new approach was verified by a fuzzy fractional rheological material 
model to predict the long-term behaviour of a textile strengthened reinforced concrete structure  

The main objective of this research is to train RNN to predict load-deflection of CFRP 
strengthened RC slab using internal dynamic space to memorize the input data while in training 
process. It involves the prediction of load deflection of 7 CFRP strengthened RC one-way slabs 
under four point line loads. The results of experimental works were compared with finite element 
analysis.  

 
 

2. Methodology 

 
2.1 Experimental work 
 
Six reinforced concrete slabs having dimension 1800×400×120 mm with similar steel bar of 

2T10 and strengthened using different length and width of CFRP were tested and compared with 
similar samples without CFRP (Table 1 and Fig. 1). All the slabs were designed as under- 
reinforced section based on rectangular stress block of ISIS (Intelligent Sensing for Innovative 
Structures) Canada Research Network (2001).  

The slabs were simply supported and were loaded under four point bending load with line load. 
The loading and instrument setup are shown in Fig. 2. 

 
Table 1 The characteristics of samples for the CFRP strengthened RC one-way slab under four point loads 

No. Slab CFRP width (mm) CFRP length (mm) 

1 S512-700 50 700 

2 S512-1100 50 1100 

3 S512-1500 50 1500 

4 S812-700 80 700 

5 S812-1100 80 1100 

6 S812-1500 80 1500 

7 WCFRP* - - 

*Without CFRP 
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Table 2 The applied RNN properties 

The Number of Data 103 

Input Layer Loading, CFRP Length and Width 
The number of Neurons in Hidden Layer 11 

Output Layer Slab Deflection 
Net Architecture  (3-11-1) 
Network Type Feed-Forward 
Net Algorithm Back-Propagation 

Training Function Trainlm 
Learning Function LEARNGDM 

Output Transfer Function PURELIN 
Hidden Transfer Function Tansig- Purelin 

Performance Function MSE 
                

 
2.2 RNN modelling 
 
The load-deflection analysis of the CFRP strengthened RC one-way slab can be quantitatively 

modeled in a number of different methods. The philosophy of modeling using ANN is similar to a 
number of conventional statistical models in the sense that both are challenging characteristics to 
find the relationship between inputs and corresponding outputs. ANNs modeling do not need any 
prior knowledge between input and output data, which is one of the benefits that ANNs have 
compared with most empirical models. 

The data is loaded and normalized in MATLAB software. The properties of selected network 
during generation are shown in Table 2. 

The architecture of selected RNN is consisted of one hidden layer with 11 neurons as well as 
shown in Fig. 3. The transfer function in hidden layer and output were TANSIG and PURELIN 
respectively. 

The loading, CFRP length and width as three input layers (X1, X2, and X3) are multiplied by an 
(11×3) weight matrices. The results of combined input are then passed through the TANSIG 
transfer function in the hidden layer to produce the output of the hidden layer using PURELIN 
activation function. In the RNN, the neurons in hidden layer have feedback connection to neurons 
in input layer by context unit. The number of neurons in context unite is equal to neurons in hidden 
layer. The neurons in hidden layer feedback and then the activation vector of hidden layer is 
updated using following equation 

Y(t)) H(t) W1)X(t( hi

1

1
)1( backin WWae

tH



 

Where: 
H(t+1), is the updated hidden layer 
Win, is the input weight matrices 
X(t+a), is the input layer 
Whi , is the hidden layer weight matrix 
Wback , is the output feedback connection of 11 × 1 weight matrix 
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loading capacity improved by 13.2%, 26.7% and 40% for S812-700, S812-1100 and S812-1500 
respectively. 

The experimental results of load-deflection analysis of the CFRP strengthened RC slab were 
applied for RNN generation. 

 
 

Table 3 Experimental deflection at the first crack and ultimate load for the CFRP strengthened RC one-way 
slabs 

Slab  
Exp. First 
crack load 
(kN) 

Exp. 
Deflection at 
First Crack 
(mm) 

Predicted 
deflection (mm)
ISIS 

Span/ 
Def 

Exp. 
Ultimate 
load (kN) 

Exp. 
Deflection 
near ultimate 
load   
(mm) 

S512-700 7.5 0.62 1.11 2674 37 20.3 
S512-1100 10 1.22 1.11 1352 42 21.89 
S512-1500 10 1.25 1.11 1320 45.5 29.9 
S812-700 9.5 1.05 1.14 1571 37 17 
S812-1100 10.3 1.19 1.14 1387 45 31 
S812-1500 10.5 1.52 1.14 1086 54 45 
WCFRP 7 1.17 1.15 1404 33.3 12.14 

 
 

Fig. 5 Comparison of load-deflection analysis between CFRP strengthened one-way RC slab with 
different lengths of CFRP-S512 and non-strengthened slab
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Table 4 The RNN testing MSE for predicted mid-span deflection of slab S812-1100 

Neurons 
(n) 

Exp. Deflection 
∆Exp (mm) 

Network Deflection 
∆Net(mm) 

∆Net 
/ 

∆Exp 

E= 
∆Exp-∆Net 

E2 

Real Normalized Real Normalized 

1 0 0.1 -0.10 0.10 - 0.0017 0.000003 

2 1.32 0.12 1.45 0.13 1.19 -0.0102 0.000103 

3 1.83 0.13 2.03 0.14 1.16 -0.0100 0.000100 

4 3 0.15 3.61 0.16 1.05 -0.0115 0.000133 

5 4.2 0.17 4.76 0.18 0.96 -0.0111 0.000123 

6 5.8 0.19 6.19 0.21 0.88 -0.0153 0.000235 

7 9.1 0.25 10.06 0.27 0.87 -0.0213 0.000454 

8 15.1 0.35 15.56 0.36 0.91 -0.0149 0.000221 

9 20.3 0.44 21.59 0.47 1 -0.0275 0.000758 

10 31 0.63 30.06 0.61 0.92 0.0183 0.000336 

MSE=∑ E2/n 0.0018 

 
 
4. Conclusions 

 
In this study a DNN model using RNN has been developed to predict mid-span deflection of 

the CFRP Strengthened RC slabs. The following conclusions are obtained from current research 
1. The model capability for load-deflection analysis is illustrated by the coefficient of 

determination of 0.99 and performance function of 0.00081 in network training. The ratio between 
predicted deflection by RNN and experimental output in network testing for the sample S812-1100 
was varied in the range of 0.97 to 1.11. 

2. RNN predicted the load-deflection analysis with mean error 8.4. This results show that by 
creating DNNs using internal dynamic space give more accurate result in compare to SNN method. 
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