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Abstract.  A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture 
parameters and double – K fracture parameters of concrete is carried out in this paper. For the study the 
standard bending specimen geometry loaded with four point bending test is used. For four point loading, the 
shear – span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for 
laboratory specimens having size range from 100 – 500 mm. The input parameters for determining the 
double – K fracture parameters are taken from the developed fictitious crack model. It is found that the 
cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture 
toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking 
toughness of the material is dependent on the shear-span/depth ratio. 
 

Keywords:  four-point bend test; shear-span depth ratio; cohesive crack fracture parameters; double-K 
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1. Introduction 

 

The principle of linear elastic fracture mechanics (LEFM) was first applied by Kaplan (1961) to 

notched concrete beam for determining the critical stress intensity factor of concrete. Thereafter, 

until early 1970s numerous experimental and numerical investigations using linear elastic fracture 

mechanics were carried out to study the fracture process and crack propagation of concrete. From 

the studies, it was understood that LEFM could be only applied to large-mass concrete structures 

and could not be applied to medium and small-scale concrete structures. The inapplicability of 

LEFM is attributed mainly to the nonlinear effects associated with crack propagation in concrete. 

It is well understood that before the development of unstable crack, due to the aggregate 

interlocking property, there exists a large fracture process zone ahead of initial crack tip, which is 

primarily responsible for the size effect behavior. Since late 1970s, many nonlinear fracture 

models incorporating the tension softening property of the material have been developed by 

various groups of researchers to study the behavior of crack propagation in quasibrittle materials 
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like concrete. The nonlinear fracture models applied to concrete structures are: cohesive crack 

model (CCM) or fictitious crack model (FCM) (Hillerborg et al. 1976), crack band model (CBM) 

(Bažant and Oh 1983), two parameter fracture model (TPFM) (Jenq and Shah 1985a), size effect 

model (SEM) (Bažant et al. 1986), effective crack model (ECM) (Nallathambi and Karihaloo 

1986), KR-curve method based on cohesive force distribution (Xu and Reinhardt 1998, 1999a), 

double-K fracture model (DKFM) (Xu and Reinhardt 1999a-c) and double-G fracture model 

(DGFM) (Xu and Zhang 2008). 

The cohesive crack model, based on numerical approach is a simplified nonlinear fracture 

model which can simulate satisfactorily the complex nonlinear phenomena in the fracture process 

zone of concrete and it predicts the localized real physical behavior in the vicinity of a crack and at 

the crack tip. Based on early stage of development of the fracture models (Barenblatt 1959, 

Dugdale 1960), Hillerborg and co-workers (Hillerborg et al. 1976) initially applied cohesive crack 

method (or fictitious crack model) as a suitable nonlinear model for mode I fracture to simulate the 

softening damage of concrete structures. The authors showed that analysis of crack formation, 

crack propagation and failure analysis can be done with cohesive crack model even if coarse finite 

element is used thereby eliminating the mesh sensitivity. A brief overview of the cohesive crack 

model, its numerical aspects, advantages, limitations and challenges can be seen elsewhere 

(Guinea 1995, Elices and Planas 1996, Bažant 2002, Elices et al. 2002, de Borst 2003, Planas et al. 

2003, Carpinteri et al. 2003, Carpinteri et al. 2006). Numerous experimental and numerical studies 

based on cohesive crack model have been carried out many researchers (Petersson 1981, 

Carpinteri 1989, Planas and Elices 1991, Zi and Bažant 2003, Kim et al. 2004, Roesler et al. 2007, 

Raghu Prasad and Renuka Devi 2007, Park et al. 2008, Zhao et al. 2008, Kwon et al. 2008, 

Cusatis and Schaffert 2009, Elices et al. 2009, Kumar and Barai 2008b-2009c). The authors 

(Kumar and Barai, 2008b, 2009c) presented numerical study on the fracture parameters of concrete 

using three point bend test (Kumar and Barai 2008b) and compact tension test (Kumar and Barai 

2009c) specimens of different sizes using cohesive crack model. In the study (Kumar and Barai 

2008b) it was observed that the values of peak load for three point bend test determined using 

numerical results were not greatly affected by refinement of finite element mesh however, the 

values of the peak load is influenced by choice of softening functions. Kumar and Barai (2009c) 

presented that the result of peak loads, the fracture process zones, crack-tip opening displacement 

at peak load and value of the tip stress transfer ratio at peak load obtained using compact tension 

test is influenced by specimen size and softening functions.  

The past experimental results show that the fracture process of concrete structures includes 

three main stages: (i) crack initiation, (ii) stable crack propagation, and (iii) unstable fracture and 

the double-K fracture model based on modified LEFM can describe the above three important 

stages of crack propagation in concrete without much difficulty in conducting the experiment as 

well as in computation of the fracture parameters. This method does not require closed loop testing 

system in the laboratory. The double-K fracture model is characterized by two material parameters: 

initial cracking toughness KIC
ini

 and unstable fracture toughness KIC
un

. The initiation toughness is 

defined as the inherent toughness of the materials, which holds for loading at crack initiation when 

material behaves elastically and micro cracking is concentrated to a small-scale in the absence of 

main crack growth.  It is directly calculated by knowing the initial cracking load and initial notch 

length using LEFM formula. The total toughness at the critical condition is known as unstable 

toughness KIC
un

 which is regarded as one of the material fracture parameters at the onset of the 

unstable crack propagation. This parameter can be obtained by knowing peak load and 

corresponding effective crack length using the same LEFM formula. In the past, extensive 
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numerical and experimental studies (Xu and Reinhardt 1999a-c, Xu and Reinhardt 2000, Zhao and 

Xu 2002, Zhang et al. 2007, Xu and Zhu 2009, Kumar and Barai 2008a, 2009a-b, 2010a-b, 2012, 

Zhang and Xu 2011, Kumar and Pandey 2012, Hu and Lu 2012, Murthy et al. 2012, Hu et al. 

2012, Yu and Lu 2013, Kumar et al. 2013) have been carried out for the study on fracture 

parameters of concrete using double – K model with different tests specimens. With respect to 

numerical studies in recent time, Zhao and Xu (2002) put forward numerical investigation of the 

effect of span/ depth ratio ranging from 3 to 8 with three point bend specimen on the double – K  

fracture parameters.  The numerical investigation showed that the unstable fracture toughness is 

independent of span/ depth ratio and depends only on the material property. While the initiation 

fracture toughness not only varies with the strength of material, but also presents size effects in 

terms of span/ depth ratio and the depth of specimens. The authors (Kumar and Barai 2008a, 

2009b, 2012) showed that the double-K fracture parameters are influenced by the specimen 

geometry, size-effect, relative size of initial crack length and softening function of concrete. It was 

further reported that the double-K fracture parameters marginally depend on the loading condition. 

Prediction of size-effect from double-K fracture parameters was also formulized in a study by 

Kumar and Barai (2010b).  

In continuation of previous studies, this paper presents a numerical study of the influence of 

shear-span/depth ratio on the cohesive crack fracture parameters and double – K fracture 

parameters of concrete using the standard bending specimen geometry loaded with four point 

bending test. For four point loading, the shear – span/depth ratio is varied from 0.4D, D and 1.75D 

and the ao/D ratio is varied from 0.2 to 0.4 for laboratory size specimen ranging from 100 mm to 

500 mm. To this end, a brief introduction of double – K fracture model and cohesive crack model 

is presented in the subsequent sections. 

 

 
2. Specimen geometry 
 

The standard notched beam specimen used for three-point bend test (TPBT) (RILEM Technical 

Committee 50-FMC 1985) with four-point loading is considered in the present study. Like three-

point bending test, the fracture parameters of the four-point bending test can be easily determined. 

The dimensions of the four point bending test (FPBT ) geometry are shown in Fig.1 in which, the 

symbols: B, D, S and L are the width, depth, support span and moment arm or shear – span 

respectively with S/D = 4. The shear – span/depth (L/D) ratio is varied as 0.4, 1 and 1.75 in the 

present work.  

 

 

 
Fig. 1 Dimensions and loading schemes of four-point bending test specimen 
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3. Determination of double-K fracture parameters 

 

The double-K fracture parameters can be determined using experimental test results in which 

the primary requirement is to measure the initial cracking load Pini, initial crack length ao, peak 

load Pu and crack mouth opening displacement at peak load CMODc from the tests. In order to 

apply LEFM equations for calculating the double-K fracture parameters, Xu and Reinhardt 

(1999b) introduced linear asymptotic superposition assumption. The hypotheses of the assumption 

are given below: 

1. the nonlinear characteristic of the load-crack mouth opening displacement (P-CMOD) curve 

is caused by fictitious crack extension in front of a stress-free crack, and 

2. an effective crack consists of an equivalent-elastic stress-free crack and equivalent-elastic 

fictitious crack extension. 

A detailed explanation of the hypotheses may be seen elsewhere (Xu and Reinhardt 1999b).  

 

3.1 Effective crack extension 
 

The values of Pu and CMODc from the four-point bend tests are obtained and then applying 

linear asymptotic superposition assumption the equivalent-elastic crack length ac at maximum load 

is be solved using LEFM formulae. For the pure bending case (four-point bending test with 

S/D=4), the following formulae (Tada et al. 2000) are used to calculate the equivalent crack 

extension. 

12

12
( )

PLa
CMOD V

BD E
                        (1) 

2

1 2

0.66
( ) 0.8 1.7 2.4

(1 )
V   


   


                 (2) 

where,  =(a+Ho)/(D+Ho) and Ho = thickness of the clip gauge holder. Eq. (2) has better than 1% 

accuracy for any value of . Similarly, the measured initial compliance Ci from the P-CMOD 

curve can be used to calculate the E as per the following formula. 

12

12
( )o

o

i

La
E V

C BD
                         (3) 

where, o = (ao+Ho)/(D+Ho) and ao = initial crack length. For the precise numerical investigation, 

the effect of self-weight in four-point bending test geometries can be accounted for at all 

computation stages. Hence, in addition to the external load P/2 acting on the four-point bending 

test, the influence due to a concentrated load equal to wg.S/2 and acting at the mid span, is also 

effective during all stages of the computations. The contribution of the concentrated load (wg.S/2) 

acting at mid span due to self weight of the beam in the crack mouth opening displacement 

(CMOD) due to TPBT action is taken into account while calculating the equivalent effective crack 

extension in case of four-point bending test specimen. For TPBT with S/D = 4 using LEFM 

formulae (Tada et al. 2000) the value of CMOD can be expressed as 

232



 

 

 

 

 

 

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete 

 
22

6 / 2
( )

gw S Sa
CMOD V

BD E
                      (4) 

            
2 3

2 2

0.66
( ) 0.76 2.28 3.87 2.04

(1 )
V    


    


           (5) 

The measured initial compliance Ci from the P-CMOD curve is used to calculate the Young’s 

modulus E as per the RILEM (1990) formula. 

 
22

6
( )o

o

i

Sa
E V

C BD
                         (6) 

Finally, considering the effect of self weight of the beam, the total CMOD for the four-point 

bending test specimen can be written as: 

 
2

1 22

3
4 ( ) ( )g

a
CMOD PLV w S V

BD E
                     (7) 

Eq.(7) accounts for the self weight for beam while calculating the CMOD for pure bending case 

specimen. At unstable fracture i.e., at peak load the values of CMOD = CMODc and a = ac. It was 

concluded (Karihaloo and Nallathambi 1991) that almost the same value of E might be obtained 

from P-CMOD curve, load-deflection curve and compressive cylinder test. Hence, in case initial 

compliance is not known the value of E determined using compressive cylinder tests may be used 

to obtain the critical crack length of the specimen. 

 

3.2 Computation of double-K fracture parameters 
 

The cohesive stress distribution in the fictitious crack zone which gives rise to cohesion 

toughness as a part of total toughness of the cracked body. Superposition method is used in order 

to calculate the stress intensity factor at the tip of effective crack length KI. According to this 

scheme, total stress intensity factor KI is equal to the summation of stress intensity factor caused 

due to external load KI
P
 and the stress intensity factor contributed by cohesive stress KI

C
 (Jenq and 

Shah 1985b, Xu and Reinhardt 1999b) as shown in Fig. 2. The value of KI is expressed in the 

following expression: 
P C

I I IK K K                       (8) 

After determining the critical effective crack extension at unstable condition of loading, the two 

parameters (KIC
ini

 and KIC
un

) of double-K fracture model is determined using LEFM formulae. The 

total stress intensity factor at the tip of fictitious crack in case of pure bending specimen can be 

determined due to the load on the beam which consists of two parts, the first is the external load 

and the second is the self weight of the beam. The external load is considered to act on four point 

bend test specimen where as the effective load equal to wgS/2 is considered to be acting on 

standard three point bend test specimen. This yields precise determination of the stress intensity 

factor accounting for the self weight of the specimen. The stress intensity factor for the four-point 

bending test, KI due to external load and self-weight of the beam at any loading stage can be 

calculated using the following procedures. The stress intensity factor due to external load p on the 

four-point bending test specimen KI
E
 (Murakami 1987) is expressed as: 
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Fig. 2 Calculation of stress intensity factor using superposition method 

 

 

1( )E

I NE IPK DF k                           (9) 

2

3
NE

PL

BD
                               (10) 

 2 3 4 5

1( ) 1.122 1.121 3.740 3.873 19.05 22.55k               (11) 

where, FIP in Eq.(9) is a coefficient which accounts for the difference between four point  

bending and pure bending cases. The value of FIP for shear-span depth ratios of 0.4 and 1 

converges to 1 (Murakami 1987). In the present study, the value of FIP is taken as unity for shear-

span depth ratios of 0.4 and 1, whereas, it is read from the graph given in Murakami (1987) for 

shear-span depth ratio 1.75. Eq. (11) has better than 1% accuracy for   0.7. The contribution of 

stress intensity factor due to self weight of the specimen KI
S
 (considering TPBT for S/D = 4) is 

expressed as (Tada et al. 2000): 

2( )S

I NSK Dk                         (12) 
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2

2

3

4

g

NS

w S

bD
                             (13) 

2

2 3/ 2

1.99 (1 )(2.15 3.93 2.7 )
( )

(1 2 )(1 )
k

   
 

 

   


 
          (14) 

in which,  is a/D, k2() is obtained using expression (14). The values of NE and NS are the 

nominal stresses in the beam due to external load P and self weight of the structure respectively. 

Hence effective stress intensity factor KI of the four-point bending test loading condition can be 

obtained as the summation of the values KI
E
 and KI

S
, which is given below: 

 1 2( ) ( )I NE IP NSK D F k k                          (15) 

 

The LEFM Eq. (15) can be used for calculation of unstable fracture toughness KIC
un

 at the tip of 

effective crack length ac, in which a = ac and P = maximum load Pu for four-point bending test  

specimen geometries. In case, when the crack initiation load from experimental is not available, an 

inverse analytical method is used to calculate the value of KIC
ini

 which is given below. 

ini un C

IC IC ICK K K                        (16) 

where KIC
C
 is the cohesive toughness of the material at peak load. 

 

3.3 Determination of cohesive toughness   

 

3.3.1 Cohesive stress distribution 
The cohesive stress acting in the fictitious fracture zone in four-point bending test  specimens 

is idealized as a series of pair normal forces subjected to single edge cracked specimen of finite 

width as shown in Fig. 3.  

Fig. 4 presents the linearly varying distribution of cohesive stress in the fracture zone at peak 

load. The value of cohesion toughness KIC
C
 is negative because of closing stress in fictitious crack 

zone. However, the absolute value of KIC
C
 is taken as a contribution of the total fracture toughness. 

The same computation method (Jenq and Shah 1985b) of KI
C
 has been also used in the analytical 

method (Xu and Reinhardt 1999b-c). 

The s (CTODc) denotes the value of cohesive stress at the tip of initial notch corresponding to 

crack tip opening displacement (CTODc) at peak load. Then the cohesive stress (x) in fracture 

zone as shown in Fig.4 is expressed by following expression. 

( ) ( ) [ ( )] 0  o

s c t s c c

o

x a
x CTOD f CTOD for CTOD CTOD

a a
  


     


  (17) 

The value of s(CTODc) is calculated  by using softening functions of concrete such as 

bilinear, quasi-exponential, nonlinear, etc. However, in the present work, the nonlinear softening 

function (Reinhardt et al. 1986) is used for all computations which can be expressed as: 
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   
3

31 2

1 2( ) 1 exp 1 expt

c c c

c w c w w
w f c c

w w w


      
         
               (18) 

The value of total fracture energy of concrete GF is written as: 

 
 

3
3

231 1

1 22 3

2 2 2 22 2

exp 11 3 6 6
1 6 1 1 exp

2
F c t

cc c
G w f c c

c c c cc c

           
                
           

 (19) 

Where, (w) is the cohesive stress at crack opening displacement w at the crack-tip and c1 and 

c2 are the material constants. wc is the maximum crack opening displacement at the crack-tip at 

which the cohesive stress becomes to be zero. The value of wc is determined using Eq. (19) for a 

given set of values c1, c2 and GF. Since, it is difficult to measure directly the values of CTODc, for 

practical purposes the value of crack mouth opening displacement is measured. At critical 

condition, for the known value of CMODc the crack opening displacement within the crack length 

COD(x) is computed using the following expression (Jenq and Shah 1985a).  

 
1/ 2

2 2( ) (1 / ) (1.081 1.149 / )[ / ( / ) ]cCOD x CMOD x a a D x a x a     (20) 

In Eq. (20), the COD (x) becomes CTODc for given value of x = ao and a = ac.  

 
3.3.2 Computation of KIC

C using weight function approach 
The use of universal form of weight function method (Glinka and Shen 1991) was presented by 

Kumar and Barai (2008a, 2009a, 2010a) for determining the cohesive toughness of concrete. 

According to this method universal form of weight function having five terms for a single edge 

cracked specimen of finite width is expressed as 

 
1/ 2 3/ 2 2

1 2 3 4

2
( , ) 1 (1 / ) (1 / ) (1 / ) (1 / )

2 ( )
m x a M x a M x a M x a M x a

a x
          


 (21) 

In Eq.(21), first of all four parameters M1, M2, M3 and M4 of five-term universal weight function 

is determined in which the values of M1, M2 M3 and M4 can be represented as a function of a/D 

ratio in the following form. 

2 3 4 5

3/ 2

1
/ ( / ) ( / ) ( / ) ( / )

(1 / )
i i i i i i iM a b a D c a D d a D e a D f a D

a D
       

 (22) 

for, i = 1 and 3 and 

 /i i iM a b a D   for i = 2 and 4.                    (23) 

The values of coefficients ai, bi, ci, . . ., fi are given in Table 1.  

Then the stress intensity factor using weight function method can be expressed as: 

0

( ). ( , ) 
a

K x m x a dx                        (24) 
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Table 1 Coefficients of five terms weight function parameters M1, M2, M3 and M4 

i ai bi ci di ei fi 

1 -0.000824975 0.6878602 0.4942668 -3.25418434 3.4426983 -1.3689673 

2 0.782308 -3.0488836     

3 -0.3049218 13.4186519 -23.31662697 35.51066606 -34.440981408 14.10339412 

4 0.28347699 -7.378355423     

 

 

 

The value of (x) in Eq. (24) is replaced by Eq. (17), hence a closed form expression for KIC
C
 

can be obtained as 

1/ 2 3/ 2 2 5/ 23
1 1 2 4

2 2 2
2

3 2 52

C

IC

M
K A a s M s M s s M s

a

  
       

 
 

 2 3/ 2 2 5/ 2 7 / 2 331
2 2 4

4 4 4
1 ( / ) 3 /

3 2 15 35 6
o o

MM
A a s s M s M s a a sa a

 
       

 
 (25) 

where, 
1 2

( )
( ), t s c

s c

o

f CTOD
A CTOD A

a a





 


 and (1 / )os a a  . At the critical effective 

crack extension, a is equal to ac in Eq. (25).  After determining the value of KIC
C
, the value of 

KIC
ini

 can be evaluated using Eq.(16). 

 

 

4. Fictitious crack model 
 

For development of cohesive crack model (CCM) or fictitious crack model (FCM) (Petersson 

1981, Carpinteri 1989, Planas and Elices 1991, Zi and Bažant 2003, Kumar and Barai 2008b-

2009c) three material parameters i.e., modulus of elasticity E, uniaxial tensile strength ft, and 

fracture energy GF are required. The concrete mix with material properties: ν = 0.18, ft = 3.21MPa, 

E = 30 GPa, and GF = 103N/m along with nonlinear stress-displacement softening relation with 

constants c1 = 3 and c2 = 7 are used as the input parameters in the present study. In this method, the 

governing equation of crack opening displacement (COD) along the potential fracture line is 

written. The influence coefficients of the COD equation are determined using linear elastic finite 

element method. Four noded isoparametric plane elements are used in finite element calculation. 

The COD vector is partitioned according to the enhanced algorithm introduced by Planas and 

Elices (1991). Finally, the system of nonlinear simultaneous equation is developed and solved 

using Newton-Raphson method. For pure bending test specimens with B = 100 mm having size 

range D = 100-500 mm, the finite element analysis is carried out for which the half of the 

specimens are discretized due to symmetry considering 80 numbers of equal isoparametric plane 

elements along the dimension D.  The descritization of pure bending specimens  at L = 0.4D, L= 

D and L = 1.75D is shown in Fig. 5. 

Two more fracture parameters such as brittleness number (B) and critical value of stress 

intensity factor (KC) are also used in present study for the comparison of the results. For 
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geometrically similar structures, the non-dimensional parameter brittleness number of concrete is 

mathematically expressed as: 

B

ch

D

l
                                 (26) 

Neglecting the effect of Poisson’s ratio as negligible effect in concrete, the critical value of 

stress intensity factor is evaluated using following relation. 

C ICK G E                             (27) 

 

 

 

 

(a) Finite element mesh for half of the 

FPBT specimen at L = 0.4D 

(b) Finite element mesh for half of the 

FPBT specimen at L = D 

 
(c) Finite element mesh for half of the FPBT specimen at L = 1.75D 

Fig. 5 Finite element discretization of FPBT at different values of shear-span 
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5. Results and discussion 
 

In the study, pure bending specimens having L = 0.4D, L= D and L = 1.75D and size range 

100-500 mm, with varying ao/D ratios of 0.2, 0.3 and 0.4, are considered. The material constants of 

concrete are ft = 3.21MPa, E = 30GPa, GF = 103 N/m and ν = 0.18 with non-linear softening 

functions having material constants of c1=3 and c2=7 are taken for simulating the FCM. The P-

CMOD curves for the various specimens are presented in Figs. 6-9. Peak load and the 

corresponding CMODc obtained from the FCM are used to determine the double-K fracture 

parameters using inverse analytical method. The same nonlinear softening function is used to 

determine the double-K fracture parameters. For precise numerical investigation, the effect of self 

weight of the pure bending beam is considered at all stages of computations. The effect of shear-

span/depth ratio on cohesive crack and double-K fracture parameters is presented in the following 

sections. 

 

 

 
Fig. 6 P-CMOD Curve for specimen size 100mm at different shear-spans/depth ratios 

and a0/D ratios 

 

 
Fig. 7 P-CMOD Curves at shear-spans/depth ratios of 0.4 and different specimen sizes 
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Fig. 8 P-CMOD Curves at shear-spans/depth ratios of 1 and different specimen sizes 

 

 
Fig. 9 P-CMOD Curves at shear-spans/depth ratios of 1.75D and different 

specimen sizes 

 

 

5.1 Effect of shear –span/depth ratio on cohesive crack fracture parameters 
 
In Figs. 6-9, the legends are presented as specimen size, shear-span/depth ratio and ao/D ratio. 

From Fig.6, it is observed that the stiffness and load carrying capacity increases with decrease in 

the value of ao/D ratio for a given value of specimen size and shear-span/depth ratio. Also the 

slope of softening branch increases by decreasing the ao/D ratio, for a given specimen size and 

shear-span/depth ratio. As the shear-span/depth ratio increases, the load carrying capacity of the 

beam specimen decreases at given value of ao/D ratio and specimen size. The terminal branches of 

P-CMOD curves appears to be converging and are independent of ao/D ratio for a given value of  
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Fig. 10 Size sale transition towards LEFM at different shear-spans/depth ratios and 

a0/D ratios 

 

 
Fig. 11 Size-effect curves for CCM at different shear spans and a0/D ratios 

 

 
Fig. 12 Variation of fictitious crack length or CCM with the specimen size at different 

shear-spans/depth ratios and a0/D ratios 
 

241



 

 

 

 

 

 

Rajendra Kumar Choubey, Shailendra Kumar and M.C. Rao 

 
Fig. 13 Relationship between CTODc obtained for CCM and specimen size at different 

shear-spans/depth ratios and a0/D ratios 

 

 
Fig. 14 Relationship between crack tip stress at peak load and specimen size at 

different shear-spans/depth ratios and a0/D ratios 

 

 

shear-span, however these branches follow different paths for different shear-span/depth ratio for a 

given ao/D ratio. From Figs.7-9, it can be seen that the load carrying capacity of the specimen, the 

slope of the softening branch increases with increase in specimen size for a given value of ao/D 

ratio and shear –span/depth ratio. 

The value of nominal stress intensity factor KINu is determined using the peak load yielded by 

FCM and the ao/D ratio. The ratio of KINu / Kc versus brittleness number B is plotted in Fig.10 to 

show the deviation from LEFM for geometrical concrete structures at various values of shear-

span/depth ratio and ao/D ratio. The legend in the figure such as SPD-0.4-0.2 represents the shear-

span/depth ratio of value 0.4 and ao/D ratio of 0.2 respectively. It can be observed from the figure 

that these non-dimensional curves are independent of shear-span/depth ratio and slightly depended 

on ao/D ratio for a given specimen size. The cohesive crack size-effect curves obtained at different 

ao/D ratios and shear-span/depth ratios are plotted in Fig.11. The figure shows that the size-effect 
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is also independent of shear span/depth ratio and slightly depended on the ao/D ratio. 

Fictitious crack length/depth (af /D) ratio at peak load obtained from FCM at different ao/D 

ratio and shear span/depth ratio is plotted versus D/lch as shown in Fig.12. This relationship 

indicates that the fictitious crack length at peak load is covered in almost whole ligament for low 

brittleness of concrete. It is interesting to observe from the figure that af /D ratio is independent of 

shear span/depth ratio for a given value of ao/D ratio, whereas it depends on ao/D ratio for a given 

value of shear-span/depth ratio. The values of af /D ratio is obtained as 0.538, 0.613 and 0.675 for 

ao/D ratio of 0.2, 0.3 and 0.4 respectively for specimen size of 100mm and these values are 0.375, 

0.475 and 0.563 for ao/D ratio of 0.2, 0.3 and 0.4 respectively for specimen size of 500mm. The 

values of CTODc at peak load are obtained from the simulation of cohesive crack model and these 

values versus specimen size are plotted in Fig.13. Also the notch-tip stresses σtip at peak load are 

obtained from fictitious crack model and the non-dimensional parameter (ft-σtip)/ ft versus D/lch  

are plotted in Fig.14. From Figs.13 and 14 it can be observed that the non-dimensional values of 

lch/ CTODc and (ft-σtip)/ ft are almost independent of  shear span/depth ratio for a given value of 

ao/D ratio whereas these values slightly depend on the ao/D ratio at constant shear-span/depth. 

 

5.2 Effect of shear-span/depth ratio on double-K fracture parameters 
 
Double-K fracture parameters such as KIC

un
, KIC

C
 and KIC

ini
 as obtained are plotted with respect 

to specimen size in non-dimensional form in Figs. 15, 16 and 17 respectively. From Fig.15 it can 

be seen that the value of KIC
un

 increases with increase in the specimen size and almost independent 

of shear span/depth ratios. However, it slightly depends on ao/D ratio. 

From Fig.16 it can be observed that the value of KIC
C
 increases with increase in specimen size. 

It also slightly depends on ao/D ratio and the variation in the value of KIC
C
 is up to 7% for ao/D 

ratio range 0.2 to 0.4. However, the influence of shear-span/depth ratio on KIC
C
 is not appreciable 

and the variation of KIC
C
 is up to 1% for the shear-span/depth ratio ranging from 0.4 to 1.75. The 

values of initial cracking toughness for all the specimen can be seen in Fig. 17. It can be seen from 

the figure that the value of KIC
ini

 decreases with increase in specimen size. The value of KIC
ini

 

 

 

 
Fig. 15 Relationship between unstable fracture toughness and specimen size at different 

shear-spans/depth ratios and a0/D ratios 
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Fig. 16 Relationship between cohesive toughness and specimen size at different shear-

spans/depth ratios and a0/D ratios 

 

 
Fig. 17 Relationship between initial cracking toughness and specimen size at different 

shear-spans/depth ratios and a0/D ratios 

 
 
depends on the ao/D ratio as well as the shear-span/depth ratio. For a given specimen size and 

shear-span/depth ratio value, the variation in the value of KIC
ini

 is up to 7% for ao/D ratio ranging 

from 0.2 to 0.4, whereas, the value of KIC
ini

 varies up to 10% for the shear-span/depth ratio ranging 

for 0.4 to 1.75 for given specimen size and the ao/D ratio. 

 

6. Concluding remarks 

 

In present investigation, influence of a shear-span/depth ratio ranging from 0.4 to 1.75 on 

cohesive crack fracture parameters and double-K fracture parameters of concrete using four point 

bend test of laboratory size specimen ranging 100-500mm is studied. From the study the following 

concluding remarks can be mentioned. 

• The cohesive crack fracture parameters such as size-effect curves, fictitious crack length at 

peak load, critical crack tip opening displacement at peak load and crack-tip cohesive stress at 

peak load are independent of shear-span/depth ratio. 
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• In double-K fracture model, the value of unstable fracture toughness is independent of shear-

span/depth ratio whereas, the value of cohesive toughness of the material is slightly dependent on 

the shear-span/depth ratio. Moreover, the initial cracking toughness is appreciably influenced by 

shear-span/depth ratio and the variation in initial cracking toughness goes up to 10% when shear-

span/depth ratio is varied from 0.4 to 1.75. 
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