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1. Introduction 

 
Civil structures may sustain mechanical damage during 

operation due to various dynamic and environmental loads, 
including traffic, wind, and natural disasters, which result in 
structural weakening, cracks caused by fatigue, loosened 
joints, and residual deformation due to yielding. These 
damages significantly delay the dynamic response, increase 
large displacements locally or globally, and magnify the 
catastrophic effects of disaster events. The Emergency 
Events Database (EM-DAT 2023) recorded over 26,000 
mass disasters worldwide from 1900 to 2023, of which 
about two-thirds were related to natural hazards. These 
disasters inevitably affect the serviceability of civil 
structures, adversely impacting their safety. In the past few 
decades, structural health monitoring (SHM) has attracted 
much research attention for evaluating mechanical damages 
on existing structures, with various methods proposed. Most 
of these methods fall into two categories: local and global 
damage evaluations (Frigui et al. 2018). Since local damage 
evaluation methods chiefly focus on local and small specific 
damages, they also fall under nondestructive evaluation 
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(NDE) methods (such as the ultrasonic method). The global 
damage evaluation methods use the global response of a 
structure, with the predominant method based on structural 
vibrations. The fundamental idea of vibration-based damage 
evaluation methods is that structural damages cause 
changes in the system properties (mass, damping, and 
stiffness), possibly leading to detectable changes in the 
modal properties (resonant frequencies, mode shapes, and 
modal damping) (Fan and Qiao 2011). 

One issue in global vibration-based damage evaluation 
methods is finding features sensitive to structural damage 
but not to operational and environmental effects (Ren and 
Roeck 2002a, b). Some damage features that have 
demonstrated various degrees of success include natural 
frequencies (Hou et al. 2018, Sarrafi et al. 2018, Sha et al. 
2019, Kordestani and Zhang 2020), mode shape curvatures 
(Shokrani et al. 2018, Altunışık et al. 2019), modal 
flexibility (Wickramasinghe et al. 2020), and modal strain 
energy (Khatir et al. 2019). In addition, the vibration-based 
damage evaluation methods usually begin from time-
domain data and then conduct the modal analysis, raising 
the standard for the signal acquisition procedure. For 
example, response signals must be collected in a quiet 
environment, containing as little noise as possible. The 
time-domain signals should comprise the characteristic 
segments, with the sampling frequency adhering to the 
Shannon-Nyquist sampling theorem (Nyquist 1928). 
Although modal analysis techniques play a dominant role in 
damage evaluation, they have various limitations. For 
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instance, the Fourier transform (FT) is a popular 
conventional method applicable for extracting modal 
properties by converting the time-domain data into the 
frequency domain. However, it cannot predict when or 
where the damage event occurs due to the complete loss of 
time-domain information by the transform. Consequently, 
several signal processing methods, especially time-
frequency representations, were developed to address this 
issue. A short-time Fourier transform (STFT) was proposed 
to improve this deficiency. However, a higher resolution in 
both the time and frequency domains could not be achieved 
simultaneously using STFT once the window size was fixed 
(Kwok and Jones 2000). Another improved approach for 
vibration-based damage detection is the wavelet transform 
(WT). Unlike the STFT, the WT reveals “hidden” aspects of 
the measured response signal owing to its flexibility in 
window-length selection (Serra and Lopez 2017). 
Numerous investigators have applied the WT to detect 
structural cracks or damage (Abdulkareem et al. 2018, 
Mousavi et al. 2021, Chen et al. 2021, Fallahian et al. 
2022). For instance, Pnevmatikos and Hatzigeorgiou (2017) 
and Wang et al. (2019) employed a discrete wavelet 
transform (DWT) to detect the damage to a frame structure 
and a shear structure, respectively. The DWT could be used 
as a damage alarm by engineers when the response signal 
spikes appear, as they can visually inspect the appropriate 
region of the structures. 

Another approach based on vibration-based damage 
evaluation involves the detection of nonlinear structural 
behaviors caused by damage. Most damage scenarios may 
result in a previously linear structure exhibiting nonlinear 
behavior (Farrar et al. 2007); therefore, extracting such 
nonlinear behavior is an effective strategy for detecting 
structural damage. The main challenges in structural 
damage detection are distinguishing between 1) linear and 
nonlinear types of damage and 2) nonlinear damage and 
inherent nonlinearities in a “healthy” structure. An initial 
linear structural system can generate various nonlinear 
behaviors because of external and environmental loads. 
Cracks are a common type of damage that can cause 
nonlinear behavior (Zhang et al. 2018, Smyl et al. 2018, 
Agathos et al. 2018). However, not all cracks generate a 
nonlinear response; they can only be recognized as 
nonlinear when the cracks subsequently open and close 
under operational loadings. Otherwise, cracks only change 
the structural geometry, with the structure continuing to 
respond as a linear system with different configurations 
(Farrar et al. 2007). Other nonlinear behaviors in 
engineering structures include crushing, sliding, yielding, 
fracturing, and boundary-condition nonlinearity (Chiu et al. 
2015, Swaminathan et al. 2015, Chen et al. 2019, Shakeel 
et al. 2020, Grotto et al. 2022). Identifying and extracting 
these structural nonlinear dynamic behaviors provide a 
novel perspective for vibration-based damage detection, 
having the potential for broad application in SHM. 
Structural nonlinearity occurs more often during disasters. 
Disasters like earthquakes, floods, and tsunamis usually 
involve extreme loads, with most civil structures exhibiting 
nonlinear behaviors. The technological identification of 
these nonlinear behaviors is highly promising for detecting 

structural degradation. 
Nonlinear behaviors frequently occur in specific 

locations of a structural system, such as discontinuous parts 
with stress concentrations, structural member joints, and 
bearings used for applying boundary conditions, resulting in 
a high locality. Nonlinear system identification (SI) can be 
classified into four stages: nonlinearity detection, 
localization, classification, and nonlinear parameter 
identification. Among these, nonlinear parameter 
identification has been extensively researched as the basis 
for determining the existence of nonlinearity. The basis for 
judgment frequently includes the superposition principle, 
anisotropy, harmonic distortion (HD), frequency response 
function distortion (Simon and Tomlinson 1984, Feldman 
1994a, b, Verboven et al. 2006, Feldman 2014a, b). 
Nonlinearity localization, the most complex stage in 
nonlinear SI, aims to determine the degrees of freedom (in a 
structure) directly affected by the local nonlinearity. 
Although certain degrees of freedom in a structure are 
directly affected by local nonlinearity, all degrees of 
freedom are influenced indirectly by nonlinearity, making it 
more challenging to localize the local nonlinearity. 
Currently, the most prevalent methods are based on the 
frequency response function (FRF) (Peng et al. 2007, 
Cheng et al. 2014) and model updating techniques 
(Asgarieh et al. 2014, Simoen et al. 2015). The main goal 
of nonlinearity classification is to determine the specific 
form of each nonlinearity in a system, including its type and 
descriptive form. Determining the nonlinearity type 
primarily involves identifying its properties, such as 
hardening or softening characteristics, smooth or non-
smooth nonlinearities, symmetric or asymmetric 
nonlinearities, and whether the nonlinearity belongs to 
stiffness or damping nonlinearity. Commonly used 
nonlinearity classification methods are similar to those used 
for nonlinearity detection. Nonlinear parameter 
identification, the last stage of nonlinear SI, estimates the 
unknown properties according to the nonlinear functions 
determined in the previous three stages. Restoring the force 
surface (RFS) (Masri and Caughey 1979, Masri et al. 1982), 
reverse path (RP) (Rice and Fitzpatrick 1988, 1991), 
recurrence plot (RP) (Eckmann et al. 1987, Chen et al. 
2018), nonlinear subspace identification (NSI) (Lacy and 
Bernstein 2005, Marchesiello and Garibaldi 2008) and 
model updating are often employed for this purpose. 
However, most of these nonlinear parameter identification 
methods have only been evaluated through numerical 
studies. The application of these methods to actual 
structures in nonlinearity evaluations during disaster events 
has not yet been sufficiently studied. 

Although these vibration-based methods have achieved 
great success in damage localization, their recognition 
accuracy is highly dependent on the quality of the acquired 
signals. Sensor systems with high precision, resolution, and 
multipoint synchronization are required for vibration-based 
damage evaluation approaches (Lee et al. 2012, Magalhães 
et al. 2012, Avci et al. 2021). However, for large-scale civil 
structures, vast and intense deployment of sensor networks 
and data acquisition (DAQ) systems on actual structures is 
difficult to achieve because of the installation and 
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maintenance costs. Researchers have considered and 
applied noncontact measurement methods including video 
stream (Zaurin and Necati 2011), laser vibrometers 
(Staszewski et al. 2012, Tashakori et al. 2016) Unmanned 
aerial vehicles (UAVs) (Kang and Cha 2018), remote 
sensing technologies (Alamdari et al. 2019) and computer 
vision (CV) techniques (Yuan et al. 2020, Dong and Catbas 
2021) to address these difficulties in recent SHM studies. 
Ribeiro et al. (2014) employed a high-speed video camera 
system to achieve the displacement measurement of a 
railway bridge deck with a high accuracy of less than 0.1 
mm (the distance from the camera to the target being up to 
15 m). Video data are expected as applicable to damage 
evaluation with exceptional advantages, such as low-cost 
and noncontact data acquisition, high spatial resolution, and 
multipoint dynamic measurement (Yang et al. 2017b). 
Notably, ideal environments, including good weather 
conditions during video recording, are required to ensure 
data effectiveness and accuracy. The scientific quality of 
video data is sometimes unguaranteed because of non-
standardized acquisition and use. The structural vibration 
data acquired by video cameras are widely unaccepted as a 
substitute for accelerometers used in laboratory tests. 
However, video cameras can be regarded as a noncontact 
SHM strategy in various situations, such as a lack of 
enough cameras in ideal places to allow for proper 
visualization (with the captured images not subject to data 
protection) (Oliveira and Ferreira 2021). The vibration-
based damage identification method based on video data is 
broadly recognized because it is convenient to obtain, and a 
high identification accuracy for some realistic structures is 
unnecessary. 

In recent decades, when a disaster occurs, people like to 
share all kinds of video data, i.e., public and personal data 
on the Internet or other media. These video data contain 
various pieces of information, not only on the target of the 
videographer but also on the scene background. It may 
include the dynamic behaviors of structures during an 
earthquake and information on the moving properties of 
media, such as tsunamis, landslides, and water sloshing. 
These video data have potential usage for damage 
evaluation during disasters. One benefit is that most video 
data contain a clock that controls the shooting speed; 
therefore, no errors occur if researchers try to speed up or 
slow down the scene. Some studies have demonstrated the 
potential of using the video data on the Internet to analyze 
disaster events from a professional perspective. For 
instance, Ngo and Robertson (2012) used video technology 
and Google Earth to analyze the flow characteristics in 
several coastal cities in Japan hit by the 2011 tsunami. Zhai 
and Peng (2020) employed Google Street View (GSV) 
images to provide insights into damage assessments 
following disaster events. In addition, considering the 
monthly and yearly updating of GSV images, this approach 
could be utilized by decision-makers to evaluate the 
recovery progress of a community over time. It is worth 
considering the use of these shared video data for the 
damage and condition evaluation of civil structures from the 
viewpoint of structural dynamics. There is a significant 
advantage of the data containing information in both the 

spatial and time domains. Therefore, it is possible to 
measure dynamic displacements if our sight can easily 
discriminate small movements at a distance and in 
situations where a line is visible, such as in a visual image 
that includes a corner building. Detection of nonlinearity in 
structural dynamic behaviors can also help detect damage 
occurrences and their evaluations owing to disaster events. 

This paper reviews previous studies and recent 
directions in video-based structural dynamics analysis to 
demonstrate the effectiveness of using video data to 
investigate the nonlinearity of structural vibrations, 
especially in disaster events. Notably, this study emphasizes 
video data analysis; therefore, the methods or algorithms of 
signal processing and the related analysis methods are not 
comprehensively mentioned and reviewed. The contents are 
organized as follows. Section 2 introduces the method of 
video data acquisition and preprocessing, and then video-
based linear and nonlinear SIs in laboratory-based studies 
are reviewed. Section 3 classifies linear and nonlinear 
dynamic behaviors of civil structures during disaster events 
by reviewing related studies. Prevalent video data-based 
damage detection technologies have also been introduced. 
Section 4 discusses the potential research directions for our 
future work on structural nonlinearity extraction and 
visualization based on video data for structural damage 
evaluation in disaster events. 

 
 

2. Video-based structural dynamics analysis 
 
A dynamic analysis of civil structures was conducted to 

evaluate the effects on the design of critical dynamic loads, 
such as traffic, wind, and earthquake. Several signal 
processing and analysis methods for vibration data acquired 
in actual structures have been developed to validate designs 
against dynamic loads, evolving into structural condition 
evaluation methods in SHM. Structural vibration data 
analysis methods fall under two approaches: time domain 
and frequency domain. Numerous methods and algorithms 
wherein the two approaches were successfully applied 
showed structural SI and structural condition evaluation, 
including damage detection. Video data containing temporal 
and spatial information are also applicable to structural 
dynamic analyses. This section reviews the data acquisition 
and preprocessing of video data and their applications in 
identifying linear and nonlinear structural systems. 

 
2.1 Data acquisition and preprocessing 
 
The data acquisition should be designed suitably for 

analytical purposes. For structural dynamic analysis, the 
specifications of the video data, such as frames per second 
(FPS), resolution, and the amount of data, are factors to be 
addressed. At present, a variety of large-scale annotated 
visual datasets are available, from image to video data. For 
instance, it already has well-known video datasets that 
contain various video categories, such as persons, street 
signs, cars, animals, food, and windows. However, only a 
few databases include the information on disaster-related 
and structural damage, such as the Federal Emergency 

265



 
Sifan Wang and Mayuko Nishio 

 
 

Table 2 Number of projects publishing experimental data 
sets from ASEBI 

Types Total data sets Open data sets Ratio (%)
NIED 37 26 70.3 
Joint 32 30 93.8 

Rental/Private 44 18 40.9 
Total 113 74 65.5 

 

 
 

Management Agency website (Tian and Chen 2017) in 
Table 1. Therefore, just a few datasets are currently 
available for structural dynamic analyses. Some possible 
methods for obtaining video data adopted in previous 
studies (Chung et al. 2010, Abu-El-Haija et al. 2016, Li et 
al. 2019, Aoi et al. 2020) are also introduced. 

(i) Video data officially shared by institutes: In recent 
years, there has been an increase in the amount of data 
obtained by research institutes and government offices 
being made public. For instance, many earthquake records 
and experimental data are available on the repository of the 
National Research Institute for Earthquake Science and 
Disaster Resilience (NIED). Regarding the structural 
dynamics against earthquake loads, the Hyogo Earthquake 
Engineering Research Center of NIED provides the data 
acquired in some experiments conducted in the 3-D Full-
Scale Earthquake Testing Facility called “E-defense”. The 
system operated by NIED is called as “Archives of E-
Defense of Shakingtable Experimentation dataBase and 
Information (ASEBI)” (ASEBI 2023). The available dataset 
encompasses digitized measurements, video and 
photographic imagery, as well as supplementary 
experimental details, including excitation conditions, sensor 
specifications and placements, and specimen designs. To 
date, this website has uploaded over 100 videos of shaking 
table tests on full-scale structures, including reinforced 
concrete structures (buildings and bridge piers), wooden 
houses, steel buildings, and soil-pile foundations, from 
multiple perspectives, as listed in Table 2 (Horiuchi et al. 
2022). These data are applicable in analyzing the 
earthquake response of structures and contribute to the 
development of seismic design and structural risk analysis. 

(ii) Video-sharing platforms on the Internet: Currently, 
numerous video-sharing platforms exist, and valuable 
information resources are constantly uploaded. YouTube is 
one of the most popular video-sharing platforms. A wide 
variety of video data shot by various people using 
smartphones or video camera devices is shared on these 
platforms, including disaster occurrence. These videos, 

 
 

captured during disaster events, may contain information on 
damage or failure occurrence events in actual structures, 
and are expected to evaluate these structural conditions by 
dynamic analysis. Although these video data cannot provide 
structural vibration data as precise as those available in 
laboratory tests, they are applicable for observing and 
understanding the vibrations of structures and structural 
members under various events. 

As mentioned above, while few databases provide 
videos of structural seismic responses, a vast number of 
sources may apply to understanding the structural dynamic 
behaviors under actual disaster events. Many video data 
applications are expected usage in structural dynamic 
analysis by adopting appropriate video-processing methods. 
For instance, the entire collapse process of a structure can 
be observed, with the mechanism clarified by combining 
verification with numerical simulations or experiments. In 
addition, the outcome of actual disaster input loads on 
structures can be more intuitively recognized, and studies 
will be conducted to improve structural performance. Data 
sharing among research institutes through appropriate 
databases is a promising direction for future progress in this 
field. Furthermore, video data shared on Internet platforms 
can help evaluate structural conditions after disaster events. 

When using video data for structural vibration analysis, 
preprocessing is critical to apply a purposeful algorithm 
appropriately. Although video data shared on the Internet 
have the potential to extract meaningful information about 
the conditions of structures, these data may be subject to 
inconsistency, redundancy, noise, and loss because they are 
in large amounts and come from a variety of sources. Data 
preprocessing is applied to solve these issues and comprises 
four steps: data cleaning, integration, transformation, and 
reduction (Al-Taie et al. 2019). These steps are not separate 
from one another; instead, they are integral components of 
data preprocessing. Multiple studies have been conducted 
on the preprocessing of video data. For instance, Cheng 
(2021) designed a digital video image preprocessing device 
using an improved median filtering algorithm and wavelet 
image denoising. Luengo et al. (2020) comprehensively 
reviewed big data preprocessing techniques, including data 
reduction methods, imperfect data approaches, 
discretization techniques, and imbalanced data 
preprocessing solutions applicable to video data. Big-data 
processing is a challenging and time-consuming task that 
requires an extensive computational infrastructure to ensure 
successful data processing and analysis. For video data, 
each frame is composed of a three-dimensional (3D) matrix. 
With the development of high-speed cameras in recent 

Table 1 Video datasets containing disaster information 
Dataset Size of dataset Types of disaster data 

Federal Emergency Management Agency 
(Tian and Chen 2017) More than 200 videos Hurricanes, floods, earthquakes, etc. 

20BN-something-something-v2 
(Goyal et al. 2017, Mahdisoltani et al. 2018) 

220,847 trimmed videos, 
174 action categories 

No disaster data, but contain nonlinear events clips,
e.g., hitting, dropping down. 

YouTube-8M 
(Abu-El-Haija et al. 2016, Lee et al. 2019) 

More than 1.9 billion video frames,
8 million videos Fire, building collapse, flood, etc. 
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years, video data frequently contain high frame rates, 
resulting in being viewed as big data and allowing the 
application of standard big-data preprocessing methods to 
the video data. Although preprocessing is essential for 
appropriately analyzing data, most techniques require long 
processing times. The development of video data 
preprocessing methods with high precision and low 
computational cost is still a direction worthy of further 
investigation. 

In addition, video camera technology is experiencing 
significant development in numerous specifications, such as 
pixel number, focal length, and zoom function. Especially 
for dynamic analysis, the specification of FPS, that is, 
sampling frequency, should be noted from the viewpoint of 
sampling theory. High-speed cameras have advanced 
significantly in recent years, reaching specifications higher 
than 4,000 fps. However, the rise in FPS will unavoidably 
increase the cost and volume of analytical data. It is crucial 
to select a camera with an appropriate FPS based on the 
assumption that the sampling rate is satisfied. Digital 
imaging sensors capture light at discrete pixel sites. The 
Moiré pattern (Oster and Nishijima 1963, Oster et al. 1964) 
occurs when the camera lens reduces the scene detail to a 
lower level than the pixel sites, which leads to an error in 
target point tracking, thus affecting the dynamic response 
measurement of structures. To address this phenomenon, the 
selection of the angle, position, and lens length of the 
camera is crucial. 

 
2.2 Linear system identification using video data 
 
SI is the process of estimating the unknown properties 

of a system based on input-output data. Particularly in 
structural engineering, a system is represented by the 
equation of motion or the state-space model. The model 
properties are identified based on resonant properties, such 
as natural frequencies, mode shapes, and damping ratios. In 
recent decades, extensive SI investigations in civil 
engineering were conducted to determine the dynamic 
structure under the effects of dynamic loads, including 
vehicle traffic, earthquakes, wind, and collision (Lee and 
Park 2011, Sirca and Adeli 2012, Salehi and Burgueño 
2018, Kuok et al. 2022). Furthermore, the steel and 
concrete elements of structures, such as concrete and steel 
bridges, suspended bridges, and concrete columns, have 
also been identified using SI technologies. This research 
includes the health monitoring of different types of 
traditional structures and the investigation and control of 
smart structures, which have become increasingly popular 
in recent years. Traditional SI methods require data 
acquisition, such as acceleration, velocity, and 
displacement. However, when the structure is small 
compared with the sensor, the additional mass from the 
sensors may disturb the identification result. By contrast, 
video data-based technology does not require traditional 
sensor systems and has recently been employed in SI. The 
application of video technology to linear SI has been 
reviewed herein. 

Modal parameter identification is required for an 
accurate condition assessment of the structure. For instance, 
the natural frequency can be utilized to reflect changes in 

the cable tension in a cable bridge and achieve model 
updating by combining mode shape information, which can 
also be used in nonlinear SI (Xu et al. 2018). Phase 
information is sensitive to some changes, such as the scale 
and speed of the input image, and is usable for video motion 
processing, as first proposed by Fleet and Jepson (1990) in 
1990. This index is widely used and is continuously being 
developed. Wadhwa et al. (2013) utilized phase-based 
video-processing technology to achieve small motion 
magnification, which belongs to output-only modal 
identification without the need for installing markers or 
speckle paints on a structural surface, such as digital image 
correlation (DIC) technology. 

Furthermore, the phase-based video motion processing 
method has been demonstrated to be computationally 
efficient in extracting local motions that correlate with 
structural vibrations (Yang et al. 2017a). In addition, the 
proposed method in the research takes advantage of 
automated, unsupervised, and efficient extraction of the 
output-only structural modal frequencies, damping ratios, 
and full-field (as many points as the pixel number of the 
video frame) mode shapes. In these methods, a video of a 
vibrating structure is processed in an Eulerian framework, 
which generates individual videos of the structural vibration 
at different modal frequencies. Conversely, the phase-based 
optical flow provides an Eulerian representation of the 
motion at every pixel of the image space, which does not 
acquire the full-field spatiotemporal Lagrangian 
displacement trajectory of the structure (Bhowmick and 
Nagarajaiah 2020). Hence, Bhowmick et al. (2020a, b) 
proposed a vibrating continuous-edge-based full-field 
displacement response measurement method. In this 
technology, Hankel dynamic mode decomposition (Rowley 
et al. 2009, Proctor et al. 2016, Arbabi and Mezić 2017) is 
used to decompose the obtained high-dimensional full-field 
continuous displacement measurement matrix into inherent 
sparse low-dimensional linear vibration modes and extract 
the full-field modal parameters of the structure. The 
objective of the full-field imaging method is to separate an 
independent model from a family of unsupervised machine-
learning models (Dasari et al. 2018). Related research has 
established that there is a one-to-one mapping between the 
modal superposition model and the linear mixture model of 
blind source separation (BSS) techniques, which can 
perform very efficient output-only modal identification 
(Yang and Nagarajaiah 2013, Antoni and Chauhan 2013, 
Brewick and Smyth 2014). 

Other techniques based on video data for linear SI have 
also been developed. A high-speed camera can help achieve 
the modal identification of simple structures with high 
accuracy owing to its high frame rate (Chen et al. 2015). 
Furthermore, Zhang et al. (2016a) employed a high-speed 
video and integrated two efficient subpixel-level motion 
extraction algorithms (the modified Taylor approximation 
refinement and the localization refinement algorithms) to 
realize the extraction of the structural vibration signal in 
real-time. However, high-speed cameras for higher-
frequency vibration measurements are extremely expensive, 
and the sampling frequency of the most affordable digital 
cameras is limited to 30-60 Hz, which is lower than the 
requirement of the Shannon-Nyquist sampling theorem for 
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modal analysis. To address this drawback, Yang et al. 
(2017b) proposed a method that exploited the properties of 
signal aliasing for feasible output-only modal identification 
with potentially temporally aliased vibration-response 
measurements. In addition, it is possible to generate a non-
ideal field deployment owing to the tiny objective structure, 
which limits the application of traditional DIC technology. 
Frame-to-frame keypoint-based technology (Dasari et al. 
2018) and target-less vision-based displacement sensors 
(Choi et al. 2016) have been proposed to identify full-field 
structural dynamics in non-ideal operating conditions. The 
mode shapes and natural frequency identification accuracy 
reached 0.12 mm displacement and over 99%, respectively. 

 
2.3 Nonlinear system identification using video 

data 
 
SI for nonlinear structural dynamic systems is the 

modeling of nonlinear behaviors in system responses 
originating from time or displacement dependencies. 
Because the vibration response of a nonlinear structural 
system exhibits nonstationary properties, various SI 
methods for linear structural systems are no longer 
applicable. It is well known that the ability of any nonlinear 
SI scheme to describe a vast class of structural systems, 
including various nonlinearities in stiffness or damping 
(Nelles 2020). The dynamic responses of structures 
governed by nonlinearities complicate the analytical 
investigations. This is mainly because the uniqueness and 
superposition of solutions, which are characteristics of 
problems governed by linear differential equations, do not 
exist in the issues governed by nonlinear governing 
differential equations (Oppenheim 1965, Sathyamoorthy 
2017). Owing to their complex internal structures and 
various nonlinear forms, there is no universal mathematical 
model for characterizing all nonlinear systems. 
Consequently, identifying structural nonlinearity is more 
complicated and crucial than damage detection. Most 
existing nonlinear SI methods achieve nonlinear 
localization and nonlinear parameter prediction from the 
measurement data. The localization of nonlinearities can 
achieve feature extraction relevant to certain structural 
damages, such as cracks (Rubio and Fernández-Sáez 2012) 
in SHM. In addition, it can improve the validity and 
accuracy of mathematical models of nonlinear systems, 
realize efficient nonlinear parameter estimation, and reduce 
the uncertainties of nonlinearities (Zhang et al. 2016b). 

Despite the difficulties of nonlinear SI, video-data-based 
SI technology for nonlinear structural systems has great 
potential because of its noncontact nature, low cost, and 
high spatial resolution. One method was based on the 
traditional camera method. For example, Jiao et al. (2021) 
achieved camera motion estimation and vision-based 
displacement measurement using a newly proposed tracking 
algorithm that combined the Random Sample Consensus 
algorithm and Efficient Second-order Minimization 
technique. Furthermore, an unscented Kalman filter (UKF) 
(Xie and Feng 2012, Astroza et al. 2019, Wu and Chen 
2020) was employed to identify the nonlinear SI and 
demonstrated good results in updating the physical 
parameters of the nonlinear structure system. In addition, 

considering that the UKF uses displacement data derived 
from video data, it demonstrates the accuracy of using video 
data to quantify the displacement of a nonlinear structural 
system. 

Another aspect involves the utilization of UAVs for 
image and video data acquisition. Compared with cameras 
that need to be fixed to a stationary reference, UAVs can be 
utilized in a broader range, such as bridges built over 
mountains, rivers, and high-rise buildings, making it 
difficult to find an appropriate camera installation location. 
Additionally, the rapid expansion of the commercial UAVs 
industry has resulted in enhanced performance in terms of 
stability and mobility. Commercial-grade off-the-shelf 
UAVs now include 4K resolution cameras. The use of 
UAVs to capture aerial images and videos of civil 
infrastructure offers the possibility of resolving concerns 
regarding traditional fixed-reference vision-based structural 
monitoring. Recently, researchers have employed UAVs to 
measure the displacements of real structures with high 
accuracy (Yoon et al. 2018, Ribeiro et al. 2021). The ability 
of UAVs to detect structural displacement highlights their 
potential for structural SI. Yoon et al. (2017) utilized video 
data from UAVs and combined the Natural Excitation 
Technique (NExT) with the eigensystem realization 
algorithm (ERA) to estimate the natural frequency and 
mode shapes of a linear system, with a maximum error of 
only 1% when compared to fixed camera measurements. It 
is possible to achieve nonlinear SI based on UAVs’ video 
data by utilizing an applicable nonlinear parameter 
identification technique, such as the nonlinear subspace 
method, because the displacement recognition accuracy of 
UAVs is sufficiently high. However, because numerous 
uncontrollable circumstances, such as strong winds, impair 
the accuracy of UAV usage in real structures, the viability 
of its application in real structural nonlinear SI needs to be 
further verified. 

It can be concluded that there are challenges in 
addressing nonlinear structural systems in video data, 
although many studies have focused on linear systems. 
During actual disaster events, large displacements occur in 
structures, producing various nonlinear events. The 
emergence of nonlinearity indicated the occurrence of 
structural damage. The following section discusses the 
implementation of video-data-based technologies on the 
actual structure, with a particular focus on damage-
detection applications in disaster events. 

At the end of this section, the structural SI using the 
vision-based methods are summarized in Table 3 based on 
the subset of SI, core technologies, applied excitations, 
types of source data, and whether the method was used only 
for experiments or for both experiments and real-life 
structures. 

 
 

3. Video data-based structural damage evaluation 
in disaster event 
 
The application of video data can incorporate these two 

forms of information because the appearance of 
nonlinearity encompasses both the occurrence time (time 
domain) and location (spatial domain). Although the study 
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of video data- based structural damage evaluation in 
disaster events is still at an early stage, video data-based 
techniques have been considered in some studies because of 
the low cost and flexibility of data acquisition. Herein, a 
review of the classification of common nonlinear events in 
disasters and prevalent damage detection technologies from 
video data is presented. 

 
3.1 Classification of structural nonlinearities 

occurred in disaster events 
 
When structural damage occurs in a disaster event, the 

structural system changes from a linear state to a system 
with local nonlinearities, which may eventually lead to the 
instability and collapse of the structure. However, not all 
types of damage result in a nonlinear response of the 
system, and some common structural nonlinearity events 
during disasters are summarized here. The video data 
obtained from the publicly available YouTube platform 
contained the dynamic responses of structural and non-
structural members in the exterior and interior of various 
structures during disaster events. 

 
3.1.1 Material nonlinearity 
Material nonlinearity is widely observed in disaster 

event structures because of the inelastic behavior of 
constituent materials such as concrete and steel when 
strained beyond their proportional limit, resulting in cracks, 
crushing, sliding, yielding, and fractures. Reportedly, the 
2011 earthquake and tsunami on the Pacific coast of Tohoku 
that occurred on March 11, 2011, caused 190 thousand 
buildings to be damaged, among which 45,700 had collapsed 

 
 

as of April 3 that year (Norio et al. 2011). Upon searching 
for the keyword “2011 Japan earthquake” on YouTube, 
there is a huge amount of video data, mostly from 
surveillance cameras and mobile phones. Cracks are one of 
the most common structural damages caused by material 
nonlinearity and frequently occur during earthquakes. Even 
if a magnitude 9.0 earthquake struck, several houses would 
have cracks and not collapse, owing to the Japanese 
buildings’ high seismic fortification intensity. Figs. 1 and 2 
show the wall cracks of a structure in Murata Town, Miyagi 
Prefecture, which is only 120 km from its epicenter. As 
mentioned in the Introduction, if the wall is not subjected to 
external loads after cracking, the structural system will not 
produce a nonlinear response but only result in a change in 
the geometry of the structure, and the structure will 
continue to respond as a linear system with a different 
configuration. Consequently, the cracks in Fig. 1 were not 
continuously affected by external forces and exhibited 
opening and closing, with only a linear response generated. 
In comparison, the cracks shown in Fig. 2 have open and 
closed forms, resulting in a nonlinear response and 
exhibiting structural material nonlinearity. For reinforced 
concrete structures, it may be challenging to observe tiny 
cracks; however, spalling will occur and finally separate 
from the steel as the cracks increase. At this point, material 
nonlinearity in a video can be easily observed. Fig. 3 
depicts the damage to a tower in the Turkey-Syria 
earthquakes in 2023, as evidenced by the spalling of brick 
in the shear walls; [Video #2] clearly shows the scale of 
devastation in Turkey-Syria following earthquake. 
Moreover, once a high-level earthquake continues for an 
extended period, the cracks in the structure gradually 

Table 3 Review of structural SI using vision-based method, “E” indicates that the study was conducted Experimentally, while
“R” indicates that the study was conducted to Real-life structures 

References Subset of SI Technologies Excitation Types of source data E/R

Wadhwa et al. 2013 Motion identification Phase-based Impact hammer/ 
Loudspeaker video E 

Chen et al. 2015 Modal identification Phase-based Impact hammer video E 
Zhang et al. 2016a Motion identification Maximum cross-correlation algorithm Driving handle video E&R

Choi et al. 2016 Motion/ 
Modal identification 

Target-less vision-based 
displacement sensor Shaking table video E 

Yang et al. 2017a Modal identification Phase-based/ 
Blind source separation Impact hammer video E 

Yoon et al. 2017 Motion/ 
Modal identification 

Eigensystem realization algorithm/
UAVs 

Band-limited 
white noise video E 

Yoon et al. 2017 Motion identification Unmanned aerial system Traffic loads video R 

Dasari et al. 2018 Motion/ 
Modal identification 

Consensus-based matching and 
tracking of keypoints Impact hammer image E 

Xu et al. 2018 Motion/ 
Modal identification Correlation-based template matching Moving load video E&R

Bhowmick and 
Nagarajaiah 2020 Modal identification Optical flow/ 

Dynamic mode decomposition Impact hammer video E&R

Jiao et al. 2021 Motion identification Homography estimation/ 
Unscented Kalman filter Shaking table video E 

Ribeiro et al. 2021 Motion identification Linear variable differential 
transformer/UAVs 

Environmental 
loads video E&R
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Fig. 1 Cracks in the wall due to the seismic wave (only 
linear response is generated because the crack is 
static) [Video #1] 

 
 

 
Fig. 2 Cracks in the wall that open and close under the 

action of the earthquake (containing nonlinear 
response due to the opening and closing of the 
cracks) [Video #1] 

 
 

expand until a partial and overall collapse occurs. Fig. 4 
presents the collapse process of a couple of shear-wall-
building with an overturn, which contains material 
nonlinearity and strong geometric nonlinearity. 

 
3.1.2 Geometric nonlinearity 
Geometric nonlinearities are associated with large-

amplitude vibrations of thin structures such as beams, 
cables, plates, and shells because of their relatively low 
bending stiffness (Kaewunruen et al. 2020, Colin et al. 
2020). In recent years, the number of applications in real-
world engineering challenges has increased owing to the 
more prevalent usage of lightweight and thinner structures 
(Touzé et al. 2021). Linear structural analysis requires both 
material and geometric linearity and assumes linear-elastic 
constitutive behavior and minor displacements. 

In contrast, the most common form of structural 
geometric nonlinearity in engineering is the change in 
structural stiffness owing to a change in the shape or 
reconfiguration of loads. 

In addition, it should be noted that when geometric 
nonlinearity arises in the structure, material nonlinearity 
often occurs simultaneously because the large structural 
deformation usually causes the material to enter a plastic 
stage. Material nonlinearities associated with excessive 
deformation (geometric nonlinearity), such as steel yielding, 
can cause structures to behave nonlinearly under dynamic 
loads. Because yielding does not affect the stiffness or mass 
distribution of a structure in general, once the force has 
been removed, this type of damage is difficult to identify. 
When a structure is dynamically loaded, yielding is 

Fig. 3 Spalling of the brick shear walls (containing the 
material nonlinearity) [Video #2] 

 
 

Fig. 4 Collapse with overturning (containing both material 
nonlinearity and geometric nonlinearity) [Video #3]

 
 

accompanied by permanent deformation, possibly leading 
to a nonlinear system response if it has a subsequent impact 
on neighboring components (Farrar et al. 2007). Below, 
three real-world structural geometric nonlinear events from 
YouTube during disasters are presented. 

Fig. 5 shows the buckling of a timber-framed house 
support column owing to seismic loads. This large 
deformation causes geometric nonlinearity because the 
stress distribution in the column changes. In the video 
analysis, it is observed that the mainshock induced residual 
deformation in the timber columns, resulting in structural 
damage. Furthermore, the aftershock led to structural 
vibrations characterized by geometric nonlinearity. 

To gain insight into the manifestation of geometric 
nonlinearity in structural vibration during powerful 
earthquakes, an in-depth analysis of [Video #4] reveals 
compelling observations from a shaking table experiment 
conducted by NIED. The video prominently illustrates the 
behavior of an 18-story steel frame building, particularly 
emphasizing geometric nonlinearity as it emerges following 
column yielding. The opening video of such phenomena is 
crucial for enhancing the understanding of earthquake-
induced structural behavior and informing resilient design 
practices for earthquake-prone regions. 

 
3.1.3 Boundary-condition nonlinearity 
Structural nonlinearities also arise owing to nonlinear 

boundary conditions, such as the presence of nonlinear 
springs and partial slipping. Boundary-condition 
nonlinearities mainly emerge from two phenomena. First, 
the contact between two separate surfaces, such that they 
are mutually tangential. Second, a single component is split 
into two or more separate components by an external force. 
Nonlinear analysis with nonlinear boundary conditions is 
more complex than nonlinear analysis, which considers 
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Fig. 5 Buckling of a timber-framed house support column 

(containing geometric nonlinearity due to the 
continuous upper structural gravity) [Video #1]

 
 

Fig. 6 Yielding and collapse of an 18-story steel frame 
building (containing geometric nonlinearity due to 
the large deformation) [Video #4] 

 
 

only geometric nonlinearity. Ye et al. (2020) demonstrated 
the necessity of considering the nonlinearity of the 
boundary conditions in the vibration analysis of curved 
beams and, for the first time, in studying transverse 
vibration. 

Moreover, changes in the boundary conditions are 
typical in real-world engineering structures when large 
external loads are applied. When the boundary conditions 
change, the structure typically exhibits strong nonlinearities 
in terms of the stiffness and load redistribution. 
Furthermore, material nonlinearity often emerges 
simultaneously with boundary-condition nonlinearity 
because the failure of constraints causes a high-stress 
concentration with yielding. 

Here, the occurrence of nonlinearity in the boundary 
condition is shown in videos that captured the vibrations of 
building structures in the 2011 earthquake off the Pacific 
coast of Tohoku. Fig. 7 shows the failure of the foot of the 
support column of the building, resulting in a change in the 
constraints and nonlinear boundary conditions. The building 
is separated from the ground, as shown in Fig. 8, due to the 
seismic wave effect. At this time, the boundary conditions 
of the building were changed because the constraints in the 
horizontal direction were released, and nonlinear boundary 
conditions occurred. In addition, the obvious relative sliding 
of the two boundaries under the action of aftershocks can 
also be clearly observed in [Video #5]. Although the 
emergence of nonlinear boundary conditions generally 
requires large seismic loads, once they occur, the structural 
conditions become severe, possibly leading to the collapse 

Fig. 7 Damages of the support column (containing 
boundary-condition nonlinearity. At the same time, 
the change of boundary conditions will lead to the 
redistribution of the internal forces of the upper 
structure. Therefore, it will also cause nonlinear 
behavior in the upper structure) [Video #5]

 
 

Fig. 8 Separation of the building boundary and ground 
(containing the boundary-condition nonlinearity) 
[Video #5]

 
 

of the entire structure. To evaluate the occurrence of 
boundary-condition nonlinearity, analysis techniques based 
on video data exhibit exceptional advantages because the 
entire occurrence process can be observed based on video 
data. 

 
3.2 Damage detection from video data 
 
Most existing vibration-based damage detection 

methods are post-processing techniques in which the 
damage is detected by applying an algorithm to the already 
acquired vibration data. However, these methods cannot 
detect damage in real-time. In particular, with the use of 
video data, it becomes difficult to achieve real-time 
detection owing to the limitations of the computational cost 
and complexity of the algorithm. Many video-data-based 
damage detection methods sacrifice the analysis speed to 
achieve higher detection accuracy, even though high-speed 
analysis is often required in structural condition evaluations. 
In addition, because most recent video cameras realize the 
specification of a high FPS and generate a large amount of 
image data, data storage and processing time must also be 
considered (Khuc and Catbas 2017). Several methods for 
structural dynamic analysis based on video data have been 
proposed in recent SHM studies (Feng et al. 2015, Pan et al. 
2016, Feng and Feng 2016). However, video data-based 
algorithms for real-time analysis require higher 
computational efficiency to process large amounts of data. 

Therefore, many recent studies have adopted deep 
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learning, which enables classification and regression tasks 
with feature extraction from high-dimensional data to 
prevent manual extraction and classification of features 
from video images (Wang et al. 2020). Among these, 
convolutional neural networks (CNN) have been widely 
used for video-based real-time damage detection because 
they are suitable deep learning methods for dealing with 
high-dimensional matrix data. For instance, Huynh et al. 
(2019) employed a regional convolutional neural network 
(R-CNN) and Hough line transform (HLT) to achieve bolt-
loosening detection and demonstrated the potential to 
achieve quasi-real-time bolt-loosening monitoring of 
massive, bolted connections through an experiment on a 
box girder bridge. In another study by Yuan et al. (2021), a 
mask region-based convolution neural network (Mask R-
CNN) was adopted to detect bolt looseness having 8 fps 
processing frame rate. Although the processing speed could 
not be achieved in real time owing to the high 
computational cost of deep learning, quasi-real-time 
monitoring with an accuracy of up to 97% or even 100% 
was achieved in some specific cases. A faster R-CNN was 
also used to detect concrete cracks, bolt corrosion, paint 
peeling in steel structures; and corrosion in steel members 
(Cha et al. 2018). YOLO (Redmon et al. 2016) has also 
been widely used in damage detection because it is a well-
known algorithm for the localization and classification of 
objects within an image. Although YOLO is still optimized 
and updated annually and has been updated to YOLO-v7, 
YOLO-v3 (Redmon and Farhadi 2018) is still the most 
widely used version based on Google Scholar data and has 
been used to detect structural damage. The network uses 
image data as input and returns the outputs of the bounding 
box parameters and class probabilities. Kumar et al. (2021) 
used YOLO-v3 to detect cracks and spalls in concrete 
structures in real-time with an accuracy of approximately 
94% and an execution speed of 30 fps. However, the use of 
deep learning techniques for video data-based damage 
detection is affected by several factors of data quality and 
network parameters, such as video resolution and the size of 
the region of interest (ROI). When the resolution of a video 
image is excessively high, it is difficult to achieve real-time 

 
 

detection because of the large amount of computation 
required. 

From the viewpoint of damage detection, a competitive 
advantage of the video data-based method is that it contains 
both damage location information (spatial domain) and 
damage time information (time domain). In addition, 
because of the popularity of video data and the 
diversification of access channels, research on real-time 
damage detection based on computer vision and deep 
learning has developed rapidly. 

At the end of this section, the structural damage 
detection using the vision-based methods are summarized in 
Table 4 based on damage types, core technologies, and 
whether the method was used only for damage detection or 
for both damage detection and damage degree detection. 

 
 

4. Discussions for structural nonlinearity 
evaluation from video data 
 
Studies on nonlinear structural dynamics based on video 

data are still in the early stages, as reviewed in the previous 
sections. Moreover, most existing studies have focused on 
the identification of nonlinear systems, and the approach to 
structural nonlinearity detection and its application to 
evaluate the structural condition after disaster events, which 
cause large displacements of structures, have not been 
extensively studied. Here, some potential directions and a 
discussion in the research on structural nonlinear extraction 
based on video data and visualization are proposed based on 
existing technologies. 

 
4.1 Potential approaches for nonlinearity event 

detections 
 
In the research on structural nonlinear feature extraction 

based on acceleration time-history data, much research 
based on uni-dimensional time series has been performed 
(Farrar et al. 2016). Methods for direct feature extraction 
from image data are relatively limited, and only methods 
based on deep learning (DL) are mostly applied. In machine 

Table 4 Review of structural damage detection using vision-based method, “E” indicates that the study was conducted
Experimentally, while “R” indicates that the study was conducted to Real-life structures. In the last column, “I”
indicahpgtes that the method was used for damage Identification and “D” indicates that it was used for damage
Degree identification 

References Damage types Technologies Accuracy (%) E/R I/D

Cha et al. 2018 Concrete cracks/Medium steel corrosion/ 
High steel corrosion/Bolt corrosion/ Steel delamination 

Fast-RCNN/ 
Blind source separation 84.7-90.6 R I 

Huynh et al. 2019 Bolt-loosening RCNN/ 
Hough line transform 30-100 E&R I&D

Zhai and Peng 2020 Building-level damage/Location-level damage Google street view/ 
Deep learning 72.3 R I&D

Wang et al. 2020 Glazed tiles damage Mask-RCNN 97.5 R I&D
Yuan et al. 2021 Bolt-loosening Mask-RCNN/UAV 93.9 R I 

Kumar et al. 2021 Concrete cracks and spalling YOLO-v3 94.2 E I 

Dunphy et al. 2022 Construction joint/Cracks/Pitting Generative adversarial 
networks/CNN 76.9 R I 

 

272



 
Review for vision-based structural damage evaluation in disasters focusing on nonlinearity 

learning, the task of detecting certain targets from video or 
image data is referred to as objective detection. CNN-based 
methods are also frequently developed for recognition tasks 
in SHM. (Dunphy et al. 2022). Generally, the most 
important phase in machine learning is the training process, 
which typically requires a large amount of appropriate data. 
If we could acquire sufficient video data on structural 
nonlinearity events, it would become possible to develop a 
machine-learning model for nonlinearity event detection 
and classification. However, there is insufficient training 
data regarding events of structural nonlinearity occurrences 
because such events that cause structural nonlinearities, 
such as disaster events, are rare. Therefore, feature 
extraction based on computer vision and signal processing 
methods is important for detecting and evaluating structural 
nonlinearity events from video data. 

The first involves judging nonlinearity events and 
determining their location. Popular nonlinear processing 
methods (e.g., force surface restoration and nonlinear 
subspace identification) are also applicable for nonlinear 
damage identification based on video data. Such methods 
usually require dynamic physical parameters of the system, 
such as acceleration, velocity, displacement. These 
parameters can be obtained by analyzing image data (many 
researchers have realized the identification of dynamic 
physical parameters based on video data) can be used as 
input. Then, nonlinear identification technologies can be 
employed to achieve nonlinearity identification. Notably, 
such methods usually achieve only nonlinear discrimination 
and order identification in the system. However, it is 
difficult to determine the nonlinear order of nonlinear 
damage that occurs in real-world structures. Therefore, the 
mutual verification of multiple techniques is necessary to 
demonstrate the feasibility of this idea. These ideas are 
based on uni-dimensional time-series data analysis. 
However, this procedure is complex and time-consuming, 
and the data collection and calculation accuracy heavily 
influence the final recognition result. In recent years, 
researchers have promoted nonlinear recognition 
technology to a higher dimension, implying that 
multidimensional image data, such as weighted recurrence 
networks, can be directly analyzed and processed (Brandes 
2001, Newman 2005, Yang and Chen 2014). Technology 
based on computer vision has developed rapidly in recent 
years. 

Among these, the optical flow method has significant 
advantages for feature extraction. Optical flow is an 
algorithm used to identify target motion characteristics 
(Chaudhry et al. 2009, Khaloo and Lattanzi 2017). In SHM, 
the motion characteristics (displacement, velocity, or 
acceleration) of the damaged area, compared to those of the 
undamaged area, usually show an apparent change. The 
optical flow method is expected to directly identify these 
changes based on video data to achieve feature extraction. 
The current study is still in its early stages and deserves 
further investigation because the direct processing of spatial 
data places greater demands on the algorithm. 

Not only nonlinear damage identification and 
localization but also the identification of the occurrence 
time of nonlinearity events has great engineering 

significance because it can more accurately reflect the entire 
damage process. However, most nonlinear SI methods do 
not contain time-domain information. To address this issue, 
two ideas are presented to identify the occurrence times of 
nonlinear events. The first idea is a sliding window (Chen 
and Yang 2016) which is a self-defined window that can 
show the center point data at each time point by sliding the 
window along the time axis, thereby making the time 
domain visible. The second idea is that using damage 
indices to determine singularity points is a widely used 
approach, such as the wavelet packet energy change rate 
(Liu et al. 2021) and singular value entropy. This has a good 
recognition effect in the identification of the occurrence 
time of nonlinearity events. However, the application of 
these indicators requires the conversion of image data into 
uni-dimensional sequence data. The direct analysis of a 2D 
image or 3D video data must be further considered. 

 
4.2 Discussions to feature extraction in the use of 

video data by optical flow method 
 
To discuss the potential applicability of the optical flow 

method to the nonlinear feature extraction in time and 
spatial domains, one case study was conducted to finalize 
this review study by using video data of the seismic 
response of a building structure. The video data was 
acquired in a shake-table test conducted in the E-defense 
facility, which is a large-scale 3D shake table in Japan, and 
the data was opened by the NIED, Japan [Video #6]. The 
structure for testing was a full-scale 4-story steel building, 
and it oscillated on a shake table until it collapsed by 
applying the Takatori waveform, one of the recorded 
earthquake waveforms in the Kobe earthquake that occurred 
in 1995. The length of the video data was 175 seconds, and 
the resolution and FPS of the video data were 320 × 240 
pixels and 30 fps, respectively. In this test, the seismic 
excitation caused cracks and collapse of the building’s 
external wall when the intensity of the earthquake input 
reached a maximum of approximately 800 gal. The 
occurrence of cracks is a nonlinearity event that must be 
extracted, and it belongs to material nonlinearity. 

The authors are working on a study that focuses on 
extracting nonlinearity in structural vibration in video data 
by the optical flow method. There are several algorithms for 
deriving the displacements of objects in the optical flow 
methods; here, we apply the Farneback method for 
discussion (Farnebäck 2003). The Farneback method is one 
of dense optical flow algorithms that exhibits accurate 
estimations both in magnitude and direction of 
displacement vectors, as well as computational cost 
efficiency. The displacement vector per time that normally 
depends on frames per second are derived for every pixel in 
a whole image. 

Fig. 9 demonstrates an application of the Farneback 
optical flow to a video data of E-defense shaking table test 
of a steel frame building. There are events of cracking wall 
board, and they cause phenomena of their open and close 
responses during the excitation. The output of Farneback 
optical flow is a contour figure in a whole frame, where 
saturation and hue in HSV colormap indicate magnitude 
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and direction of the vector, respectively (Smith 1978, Lee et 
al. 2021). The RGB color space represents colors as 
combinations of red, green, and blue channels, where each 
channel can have values in the range [0, 1]. Here, we used 
MATLAB function of “estimateFlow” to calculate the 
Farneback optical flow. Even in oscillation of the building 
under seismic excitation, there is no significant disturbance 
in vector field during no event of significant cracking on the 
wall board, as shown in Fig. 9(a). On the other hand, in the 
time of large crack occurrence in wall board at the lower 
right of image, the adjacent area of red and light blue, 
opposite hue in color, emerged as shown in the red 
rectangle region of Fig. 9(b). This indicates that the vector 
field of displacement is disturbed by the crack occurrence 
event. This might be applicable for detecting nonlinearity 
event extraction in the video data. However, video and 
image data obtained during disaster events often contain a 
large amount of irrelevant information, such as non-
damaged parts, window areas in the NIED video, and non-
structural parts. As a result, even after the realization of the 
nonlinear existence identification of image data, further 
precise localization of nonlinear events and classification of 
nonlinear types remain essential directions for future 
studies. 

 
 

5. Conclusions 
 
This paper presents a comprehensive review of the study 

of structural nonlinearity extraction based on video data. 
Video data applications to SI and damage evaluation during 
disaster events were reviewed. Many studies have 
demonstrated that video data-based technologies have been 
widely used for parameter identification (e.g., frequency, 
mode shape, damping ratio) of dynamic systems and have 
shown high accuracy compared to traditional sensor 

 

 
 

measurements. However, the application of this technology 
in the field of nonlinear SI is still relatively limited and is in 
its infancy. At present, the commonly used methods for 
nonlinear SI based on video data start from the obtained 
system’s physical or modal parameters, which are then 
combined with nonlinear processing methods (e.g., the 
unscented Kalman filter and nonlinear subspace method) to 
achieve a nonlinear SI. 

Furthermore, structural nonlinear events occur 
frequently during disasters. In this study, we reviewed and 
categorized the most prevalent nonlinearity events that 
occur in structures during earthquake disasters from videos 
shared on an Internet platform. In addition, studies on video 
data-based damage detection applications were reviewed. A 
competitive advantage of the video data-based method is 
that it contains damage location information (spatial 
domain) and damage time information (time domain). The 
direct analysis of video data can provide rich damage 
information. 

Finally, potential research directions in the nonlinearity 
extraction of structures, damage detection, and visualization 
were discussed based on existing technologies, such as 
video data processing and deep learning. According to the 
NIED shake-table test video data analysis example, feature 
extraction based on the optical flow method has potential 
applicability, although some disturbing detection areas 
should be improved. Notably, several influential factors 
affect the output accuracy of video data-based nonlinearity 
evaluation if appropriate concerns are not considered in 
video data collection and processing. Nevertheless, 
technology based on video data still has great potential for 
development because the access channels of video data 
have diversified, and the data's richness provides a good 
foundation for the proposal of more advanced analysis 
technology. 

 
 

  
(a) The frame before crack occurrence events at the wall board

 

 

(b) The frame in a significant crack occurrence event at the wall board 

Fig. 9 The visualization results based on the optical flow algorithm 
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