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1. Introduction 

 
An earthquake is one of the most devastating natural 

disasters which can cause an enormous amount of structural 
damages, economic losses, and casualties. Risk assessment 
is essential to mitigate and manage such seismic hazard, and 
fragility curves have been recognized as a key component 
of seismic risk analysis (Yoon et al. 2018). For example, 
software packages of seismic risk assessment such as 
HAZUS (FEMA 2013) and Ergo-EQ (Steelman et al. 2007) 
estimate post-earthquake losses using seismic fragility 
curves of various infrastructures. As the loss estimates are 
directly used for decision-makers to set up mitigation plans 
to alleviate the disastrous impact of earthquakes (Kircher et 
al. 2006), the derivation of accurate seismic fragility curves 
is crucial for effective seismic risk assessment and 
mitigation. 

Seismic fragility curves represent the relationship 
between earthquake ground motion intensity and probability 
of exceeding certain damage levels, which have been 
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broadly used for describing fragility analysis results of 
various structures (Liu and Zhang 2017, Li et al. 2018, 
Moradloo et al. 2018, Razzaghi et al. 2018). Four different 
types of fragility curves are known to be available based on 
how to derive them, namely empirical, judgmental, 
analytical, and hybrid methods (Rossetto and Elnashai 
2003). Empirical (Rosti et al. 2020, Giordano et al. 2021), 
judgmental (Mosleh and Apostolakis 1986, Jaiswal et al. 
2012), and analytical fragility curves (Silva et al. 2014, 
Martínez et al. 2017) can be obtained from actual damage 
data, expert opinions, and numerical simulations with 
analytical models, respectively, but they have their own 
strengths and weaknesses. Empirical fragility curves would 
be the most realistic, but it is hard to acquire enough 
structural damage field data. Judgmental curves can be 
easily derived on the basis of expert opinions, but they 
would be highly subjective depending on the experience 
and judgement of the selected expert team. Analytical 
fragility curves are most widely used as they can be 
numerically developed for a variety of structural systems 
with their representative analytical models employing 
different simulation approaches, but the derived fragility 
curves may be not that accurate with the choice of 
simulation models and techniques (Rossetto and Elnashai 
2003). 

To compensate the shortcomings of empirical, 
judgmental, or analytical fragility curves, hybrid fragility 
curves can be developed by means of different 
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combinations of at least two types of data (Pitilakis et al. 
2014). For instance, empirical data is frequently used in 
combination with numerical analysis results from structural 
analysis models (e.g., FE models) to get more realistic 
fragility curves. However, the derivation of these hybrid 
fragility curves is still a challenging task because it is not 
always possible to collect sufficient field damage 
information and how to integrate lacking empirical data 
with an FE analysis effectively is always in question. 
Furthermore, the derivation of a hybrid seismic fragility 
curve may require solving an optimization problem with 
repetitive seismic fragility analysis, which can be 
computationally expensive. Owing to these difficulties, few 
studies have attempted to derive hybrid fragility curves. 
Singhal and Kiremidjian (1998) conducted hybrid fragility 
assessment of RC buildings located in earthquake-prone 
areas. Park and Ang (1985) selected a damage index to 
quantify the level of building damage, and empirical data 
were used to adjust lognormal distribution parameters of the 
median damage index through Bayesian updating. In their 
studies, failure probabilities were initially estimated using 
analytical building models; subsequently, the obtained 
analytical probabilities were modified with the updated 
median damage index. The update was performed at six 
ground motion intensities where the empirical data were 
available. They adopted Monte Carlo simulation (MCS), 
which is a sampling-based method, to calculate failure 
probabilities. Another hybrid fragility study was conducted 
by Kappos et al. (2006). They investigated seismic fragility 
assessment of RC and unreinforced masonry structures. A 
loss index, proposed by Kappos et al. (1998), was scaled by 
the ratio of the actual loss (estimated from empirical data 
collected at a single ground motion intensity) to the 
analytical loss (computed from structural analysis results). 
Then, the ratio was equally applied to alter loss indices for 
all damage states with varying ground motion intensities. 
They adopted a simple mathematical form to derive their 
seismic fragility curves. 

In fragility analysis where seismic supply (or capacity) 
from a structure and seismic demand from earthquakes are 
compared, there is a need to pay a special attention to 
seismic capacity thresholds of the given structure since the 
uncertainty in threshold values may differ depending on 
damage level states, the so-called limit states. The capacity 
threshold often has considerable uncertainty as it is 
associated with many structural parameters. Accordingly, 
the selection of capacity thresholds should be carefully 
considered for defined limit states. Deterministic capacity 
thresholds have been implemented in many studies (Kwon 
and Elnashai 2006, Güneyisi and Altay 2008, Ji et al. 2009, 
Moon et al. 2018). Alternatively, the uncertainty of capacity 
thresholds has been assumed based on engineering 
experience and judgment in some cases (Wen et al. 2004, 
Ramamoorthy et al. 2006, Hueste and Bai 2007, 
Ellingwood et al. 2007). Yu et al. (2016) studied the 
capacity uncertainty for RC frame structures. Considering 
structural parameters, such as material properties and 
gravity loads, as random variables, they generated random 
samples and performed nonlinear pushover analyses using 
the generated samples. The results indicated that the extent 

of capacity uncertainty varied depending on damage states, 
and it tended to increase as the damage state level risen. A 
similar trend of capacity uncertainty variation can be found 
in the study by Dolšek (2012). The seismic risk of an RC 
building was assessed considering various uncertainties in 
structural parameters and ground motions. Incremental 
dynamic analyses (Vamvatsikos and Cornell 2002) were 
performed with given ground motions and structural 
parameters to evaluate the median and logarithmic standard 
deviation values of selected limit states. It was identified 
that the logarithmic standard deviation values increased 
with the severity of limit states. Montiel and Ruiz (2007) 
explored the influence of structural capacity uncertainty on 
seismic reliability of three RC buildings. They analyzed 
lognormal distribution parameters of the structural capacity 
in the yielding drift and near-collapse limit states. The 
results showed that the logarithmic standard deviation of the 
yielding drift limit state was smaller than that of the near-
collapse limit state. In addition, the logarithmic standard 
deviation varied with structures; thus, the structural capacity 
uncertainty should be prudently determined depending on 
structural types as well as limit states. 

To overcome the limitations of previous studies on 
seismic fragility analysis and derive more realistic seismic 
fragility curves using empirical and analytical data, this 
study proposes a new hybrid method which consists of four 
steps: 1) the derivation of analytical fragility curves; 2) the 
identification of probabilistic distribution parameters of 
capacity thresholds through optimization; 3) the updates of 
the distribution parameters using the Bayesian updating; 
and 4) the derivation of hybrid fragility curves with the 
updated distribution parameters. In the proposed method, 
the distribution parameters of capacity thresholds are 
identified more carefully, based on the empirical fragility 
estimates obtained from post-earthquake reconnaissance 
data because the uncertainty of a capacity threshold may 
vary depending on damage states as mentioned above. To 
find out distribution parameters of capacity thresholds and 
derive hybrid fragility curves using the acquired parameters 
efficiently, in the proposed method, an efficient 
computational platform of seismic fragility analysis is also 
introduced. The proposed hybrid method can be applied to 
any types of structural systems when empirical data are 
available, and more detailed explanations of the proposed 
method and its application are presented in the subsequent 
sections. 

 
 

2. Proposed method for deriving hybrid fragility 
curves 
 
2.1 Introduct on of eff c ent computat onal platform 
 
As aforementioned, the proposed method in this study 

tries to determine the probabilistic distribution parameters 
of capacity thresholds for various damage states. 
Mathematically, this is an optimization problem, and it 
requires performing seismic fragility analyses repetitively to 
obtain various distribution parameters of capacity 
thresholds. A seismic fragility curve is a probabilistic 
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indicator of structural safety against earthquakes, which 
presents failure probabilities at various ground motion 
intensities; there are two different approaches available to 
derive the curve (Lee and Moon 2014, Moon et al. 2018): 
sampling-based methods such as MCS and non-sampling-
based methods such as the first order reliability method 
(FORM) (Der Kiureghian 2005). Sampling-based methods 
have been used extensively because they are conceptually 
straightforward. However, these methods are often costly 
because they commonly require a large number of structural 
analyses for reliable fragility estimates. On the other hand, 
the FORM is one of the representative non-sampling-based 
methods for reliability analysis (Der Kiureghian 2005) and 
it has been widely used to compute failure probabilities of a 
given limit-state function in several previous studies due to 
its computational efficiency (Lee and Song 2012, Lee and 
Moon 2014, Lee et al. 2016, Moon et al. 2018). In 
reliability analysis, a limit-state function defines a failure 
criterion and it is expressed by either random or 
deterministic variables. The FORM performs iterative 
computation to estimate a failure probability when variable 
uncertainties are considered. If structural model parameters 
are selected as random variables to consider uncertainty, 
repeated structural analyses are required in the FORM. 

An efficient computational platform was recently 
developed to handle repetitive structural analyses needed in 
the FORM (Lee and Moon 2014, Kim et al. 2017). This 
computational platform, referred to as FERUM-ZEUS, links 
two software packages, FERUM and ZEUS-NL. FERUM is 
a reliability analysis software package developed by the 
University of California, Berkeley, and it provides a variety 
of reliability methods, including the FORM (Haukaas 2003, 
Lee et al. 2008). ZEUS-NL is a fiber element-based 
nonlinear finite element analysis program developed by the 
Mid-America Earthquake Center (Elnashai et al. 2010), and 
it is an advanced structural analysis tool specialized for 
earthquake engineering simulation applications (Lee and 
Moon 2014). Fig. 1 shows the overall data flow in the 
FERUM-ZEUS computational platform. Under the 
established platform, repeating structural analysis can 
reflect the uncertainty in structural model parameters, and 
input and output data for reliability or structural analysis 
can be exchanged automatically, which enables cost-
efficient computation using FORM. Lee and Moon (2014) 
and Moon et al. (2018) proved the cost efficiency of their 
proposed FERUM-ZEUS framework by comparing it with 
the MCS under the same numerical simulation, and its 
application was also demonstrated by deriving seismic 
fragility curves of space RC frame structures with plan 
irregularities (Moon et al. 2018). This study employs the 
FERUM-ZEUS platform to determine probabilistic 

 
 

Fig. 2 Framework of the proposed hybrid method
 
 

distribution parameters of capacity thresholds and to 
develop seismic fragility curves based on the parameters 
efficiently. 

 
2.2 Proposed hybr d method 
 
This study proposes a new hybrid method combining 

empirical and analytical methods of fragility analysis, 
which can compensate for the deficiency of analytical 
models and the insufficiency of empirical data. Particularly, 
empirical data is utilized to estimate probabilistic 
distribution parameters of capacity thresholds that best 
describe the empirical failure probability in a target area; 
thus, it contributes to derive more accurate and realistic 
fragility curves. Four steps are identified to derive hybrid 
fragility curves using the proposed method, and Fig. 2 
presents the overall framework. 

The first step in the proposed method is the derivation of 
analytical fragility curves using FERUM-ZEUS. In this 
step, a representative FE model is constructed, and the 
distribution parameters of capacity thresholds are assumed 
identically for all selected damage states (Wen et al. 2004). 
The assumed distribution parameters of the capacity 
thresholds are considered as prior parameters. The second 
step starts from the collection of post-earthquake 
reconnaissance data in the target area. From the post-
earthquake reconnaissance data, the empirical failure 
probabilities, which can be defined as the ratio of the 
number of buildings that belong to or exceed a given 
damage state to the total number of buildings in the 
interested area (Askan and Yucemen 2010), are evaluated 
for each damage state. Subsequently, the distribution 

 
Fig. 1 Data flow in FERUM-ZEUS (Lee and Moon 2014)
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parameter of the capacity threshold optimized to the 
empirical failure probability is computed. To accomplish 
this, an optimization algorithm in MATLAB is linked to the 
code of FERUM-ZEUS. Fig. 3 shows the flowchart of the 
optimization analysis. 

The optimization analysis is conducted with repetitive 
fragility analyses to find a solution for minimizing a given 
objective function; FERUM-ZEUS works continuously to 
compute failure probabilities at every iteration in the 
optimization analysis. The optimization problem is 
expressed by the following equation 

 𝑥∗ ൌ argmin൛𝑓ሺ𝑥ሻൟ (1)
 

where “argmin” represents the argument of the minimum of 
the objective function (fobj(x)) that denotes the absolute 
difference between the empirical failure probability and 
analytical failure probability, and x* is the optimized 
distribution parameter of a capacity threshold. Once the 
optimized distribution parameter is determined, it is 
considered as the likelihood observed in the target area. 

In the third step, the initially assumed distribution 
parameter of the capacity threshold (i.e., prior) is updated 
with the optimized parameter (i.e., likelihood) through 
Bayesian updating (Ang and Tang 2007). The following 
equation presents the formula for Bayesian updating for the 
parameter x 

 𝑓’’ሺ𝑥ሻ ൌ 𝑘𝐿ሺ𝑥ሻ𝑓’ሺ𝑥ሻ (2)
 

where f′(x) is the prior distribution, L(x) is the likelihood 
function, f″(x) is the posterior distribution of x, and 𝑘 ൌൣ 𝐿ሺ𝑥ሻ𝑓′ሺ𝑥ሻ𝑑𝑥ஶିஶ ൧ିଵ is the normalizing constant. This is 
also called the Bayesian parameter estimation, and the more 

 
 
details can be found in a study of Ang and Tang (2007). In 
this study, the probabilistic distribution of x is assumed to 
be lognormal. The updated distribution parameter of a 
capacity threshold denotes the posterior, and it is applied to 
derive the hybrid fragility curves using FERUM-ZEUS, 
which is the last step of the proposed method. 

 
 

3. Illustrative example 
 
3.1 FE model construct on 
 
To illustrate the proposed method, it is applied to the 

seismic fragility analysis of piloti-type RC buildings in 
South Korea. On November 15, 2017, an earthquake with a 
local magnitude (ML) of 5.4 hit the southeastern Korean 
Peninsula. Many structures were subjected to this 
earthquake, and several piloti-type RC buildings, in 
particular, were severely damaged (Kang et al. 2019, Kim 
et al. 2020a). Accordingly, this study focuses on the 
structural damage and seismic fragility of piloti-type RC 
buildings. 

For the seismic analysis using the proposed method, an 
FE model is constructed in ZEUS-NL. The FE model is 
benchmarked from a previous study (Kim et al. 2018), and 
it represents a typical mid-story piloti-type RC building that 
can be often found in the actual damaged area; it consists of 
a moment frame in the first story and a structural wall 
system in the upper stories. The height of the first story is 
3.2 m, while other stories is 3.0 m in height. The first story 
includes thirteen columns supporting the upper stories that 
are composed of structural walls, and there is a staircase in 
the middle of one side. Fig. 4 shows the plan view of the 
first story and the created FE model. All columns have the 
same cross-section (400 mm × 600 mm) with sixteen D19 

 
Fig. 3 Flowchart for optimization analysis
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Table 1 Dead and live loads in the FE model 
Section Dead load (kN/m2) Live load (kN/m2) 
Typical 5.2 2.0 

Staircase 2.0 2.0 
Rooftop 5.0 1.0 

 

 
 

reinforcing steel bars. The walls have a thickness of 180 
mm with vertical reinforcing steel (D10@300). The 
compressive strength of concrete and the yielding strength 
of reinforcing steel are defined as 21 MPa and 400 MPa, 
respectively. Material nonlinear behaviors for both concrete 
and steel, as shown in Fig. 5, are considered in FE analysis. 
The gravity load is assumed to be 1.0DL + 0.25LL, where 
DL and LL denote the dead and live loads, respectively. 
Table 1 presents the gravity load information defined in the 
analytical model. The natural period of the first mode of the 
ZEUS-NL model was found to be 0.251 second. 

 
3.2 Def n t on of damage states and uncerta nt es 
 
Three damage states are considered, which are light, 

moderate, and severe damage states. To define capacity 
thresholds for the three damage states quantitatively, a 
conventional nonlinear pushover analysis was performed 
using inverted-triangle load, and inter-story drift (ISD) ratio 
was selected as the engineering demand parameter. Because 
the first story of the piloti-type analytical model is weaker 
in terms of the lateral force resistance or more flexible than 

 
 

 
 
 

Fig. 6 Nonlinear pushover curve with ISD thresholds
 
 

the upper stories, this study focuses on ISD responses of the 
first story (or soft story). In fact, it was observed that first 
stories of many piloti-type RC buildings were significantly 
affected by the 2017 Pohang earthquake (Sim et al. 2018). 
From the adaptive pushover analysis, a nonlinear pushover 
curve of total base shear versus first-story ISD ratio was 
obtained as shown in Fig. 6. 

Based on the pushover curve, the capacity thresholds for 
the three damage states were determined, as presented in 
Table 2. The capacity threshold for light damage was 
defined at the first yielding of reinforcing steel in any 
column members, and that for moderate damage was 
determined at the maximum element strength in the column 
members, as suggested in previous studies (Kwon and 

(a) Plan view of the first story (b) FE model constructed for ZEUS-NL

Fig. 4 Plan view of the first story and the FE model constructed for ZEUS-NL 

  
(a) Concrete (b) Steel 

Fig. 5 Stress-strain curves
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Table 2 ISD thresholds for three damage states 

Damage state ISD ratio (%) 
Light 0.24 

Moderate 0.33 
Severe 0.39 

 

 
 

Elnashai 2006, Moon et al. 2018). The capacity threshold 
for severe damage was defined at the point where confined 
concrete reached about 15 percent strength degradation 
beyond the peak point on the pushover curve (Lee et al. 
2018). 

Uncertainties inherent in material properties, capacity 
thresholds, and earthquake ground motions were 
considered, and the material properties and capacity 
thresholds were introduced as random variables in the 
FORM analysis to consider their uncertainty. All random 
variables were assumed to follow lognormal distributions, 
and Table 3 gives the lognormal distribution parameters of 
the selected random variables. In the table, λ and ζ denote 
the logarithmic mean and logarithmic standard deviation, 
respectively. The coefficients of variation (c.o.v.s) of the 
random variables were determined according to previous 
studies (Barbato et al. 2010, Paik et al. 2011). The mean 
values of capacity thresholds for three damage states were 
estimated from the nonlinear pushover analysis, as 
mentioned above, and their logarithmic standard deviations 
were assumed to be the same for all three damage states 
(Wen et al. 2004). The proposed hybrid method can be 
applied to determine both of the logarithmic mean and the 
logarithmic standard deviation of a capacity threshold if 
sufficient amount of post-earthquake reconnaissance data is 
available. However, only one set of data is available in this 
illustrative example, so the c.o.v. was chosen as the target 
distribution parameter in the following analysis. The 
initially assumed c.o.v. of the capacity threshold is 
considered as the prior c.o.v., and it is used to derive 
analytical fragility curves. Then, the prior c.o.v. of the 
capacity threshold is updated based on the post-earthquake 
reconnaissance data as described in Section 2.2, and the 
updated c.o.v. (i.e., posterior c.o.v.) value is applied for 
hybrid fragility assessment. 

To consider the uncertainty of earthquake ground 
motions, seven input ground motions recorded at the 
Pohang Seismological Observatory are used for the 

 
 

nonlinear time-history analysis. The input earthquake 
records were obtained from the National Earthquake 
Comprehensive Information System database, which is 
operated by the Korea Meteorological Administration. The 
peak ground acceleration (PGA) was adopted as the ground 
motion intensity measure. Table 4 shows the information 
related to the selected earthquake ground motions, and Fig. 
7 shows the acceleration time-history records of the input 
ground motions. Both translational components (i.e., East-
West (EW) and North-South (NS)) of the input motions 
were applied simultaneously in nonlinear time-history 
analysis. The original ground records were scaled up and 
down in order to ensure that a broad range of ground 
motion intensities were included. In addition, the damping 
ratio of the structural model was considered as 5% in the 
nonlinear time-history analysis. 

 
3.3 Der vat on of analyt cal frag l ty curves 
 
As the first step of the proposed method, analytical 

fragility curves of the studied structure were derived with 
FERUM-ZEUS. The FORM was used to calculate failure 
probabilities for a given limit-state function (g(x)). The 
limit-state condition of the structural damage state is 
assumed to be achieved when the maximum ISD demand 
values of any first-story column members reaches to the 
specified ISD threshold; thus, the limit-state function, g(x), 
is defined as follows 

 𝑔ሺ𝒙ሻ ൌ ISDDS െ 𝑚𝑎𝑥 ISDେଵሺ𝒙ሻ,     ISDେଶሺ𝒙ሻ,⋅⋅⋅,ISDC13ሺ𝒙ሻ                 ൨ (3)

 
where ISDDS is the ISD threshold value for each damage 

 
 

Table 4 Selected earthquake ground motions 

No. Date ML PGA (g) of EW PGA (g) of NS
1 09/12/2016 5.8 0.0284 0.0261 
2 11/15/2017 5.4 0.2441 0.2726 
3 09/12/2016 5.1 0.0127 0.0106 
4 07/05/2016 5.0 0.0023 0.0025 
5 09/19/2016 4.5 0.0051 0.0056 
6 11/15/2017 4.3 0.0453 0.0688 
7 09/25/2014 3.8 0.0001 0.0001 

 
 

Table 3 Lognormal distribution parameters of random variables 
(Barbato et al. 2010, Paik et al. 2011, Wen et al. 2004) 

Random variable Distribution type Mean c.o.v. λ ζ 
Concrete compressive strength Lognormal 21 MPa 0.0630 3.0425 0.0629

Concrete strain at compressive strength Lognormal 0.002 0.2000 −6.2342 0.1980
Steel yield strength Lognormal 400 MPa 0.1000 5.9865 0.0998

Elastic modulus Lognormal 200,000 MPa 0.0330 12.2055 0.0330
ISD threshold for light damage Lognormal 0.0024 0.3070 −6.0773 0.3000

ISD threshold for moderate damage Lognormal 0.0033 0.3070 −5.7588 0.3000
ISD threshold for severe damage Lognormal 0.0039 0.3070 −5.5918 0.3000
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state presented in Table 2; ISDC01, ISDC02, …, ISDC13 denote 
the ISD demand values of the thirteen columns (C01–C13) 
on the first story; and x is the vector of random variables 
which are presented in Table 3. 

Fig. 8 depicts analytical fragility curves obtained using 
the FERUM-ZEUS platform about the studied piloti-type 
structure for different damage limit states. The fragility 
curves were plotted with the seven input ground motions; 

 
 

 
 

furthermore, the average fragility curves representing mean 
failure probabilities over all input motions at each ground 
motion intensity were plotted. As expected, the failure 
probabilities decreased as the level of damage states moved 
from light to severe damage. The structural responses 
varied considerably along with the input ground motions, as 
shown in the figures. If seismic fragility curves are derived 
only using certain input ground motion, they can produce 
 
 

 

(a) Light damage (b) Moderate damage 

Fig. 7 Acceleration time history records of the selected input ground motions 

(a) EW (b) NS 
 

(c) Severe damage (d) Average fragility curves 

Fig. 8 Analytical fragility curves
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biased outcomes. Hence, the average curves are more 
reasonable representations of seismic vulnerability of the 
structures in the target area. Table 5 summarizes the average 
failure probabilities of derived seismic fragility curves with 
varying ground motion intensities for each damage state. 

 
3.4 Post-earthquake reconna ssance data 
 
As aforementioned, reconnaissance data about actual 

damaged structures can be valuable resources for 
understanding the seismic fragility of structures in a target 
area. Many structures were affected and damaged during 
the 2017 Pohang earthquake of magnitude 5.4; among them 
a number of piloti-type RC buildings located in the northern 
Pohang city were significantly damaged. Fig. 9 shows the 
epicenter of the Pohang earthquake with the location of the 
target area where piloti-type RC buildings are densely 
distributed. The epicentral distance from the earthquake 
source to the target area was approximately 3.8 km. To 
collect damaged building data, post-earthquake 
reconnaissance was intensively performed with the lead of 
American Concrete Institute (ACI) from December 8 to 13, 
2017 (Sim et al. 2018). The reconnaissance group worked 
in three teams, and each team consisted of three to four 
experts and graduate students. The collected data for 
inspected structures includes damage levels, structural 
and/or architectural drawings, dimensions, global 
positioning system coordinates, and photographs. 

In the survey, damaged structures were classified into 
three damage categories: light, moderate, and severe 

 
 

 
 

damage states (Sim et al. 2018). Fig. 10 displays some 
photos of actual damaged buildings for three damage states 
collected from post-earthquake survey. 

The reconnaissance teams originally focused on the 
inspection of various types of damaged building structures 
including piloti-type buildings. To obtain more accurate 
fragility estimates for four-story piloti-type RC buildings in 
the target area, an additional on-site survey was performed 
for eight days in January 2019 by the Structural Reliability 
and Disaster Risk research group of Ulsan National Institute 
of Science and Technology (UNIST). The on-site survey 
data includes building address, number of stories, and 
photographs of all selected piloti-type buildings in the target 
area. Additionally, detailed building information such as 
building use, height, floor area, and structural type was 
collected from the database operated by the Ministry of 
Land, Infrastructure and Transport in Korea which is open 
to the public through the website of Electronic Architectural 
administration Information System (E-AIS). Based on the 
comprehensive data collected from reconnaissance, on-site 
survey, and E-AIS database, empirical failure probabilities 
were estimated for the damage states considered in this 
study. A total of 538 four-story piloti-type RC buildings 
were considered in this example, and Fig. 11 reveals their 
locations. Among them, damaged buildings were marked 
with different colors, such as blue (for light damage), black 
(for moderate damage), and red (for severe damage). A total 
of 18, 9, and 25 buildings were identified as lightly, 
moderately, and severely damaged, respectively, and Table 
6 gives empirical failure probabilities for the three damage 

 
 

 

Table 5 Average failure probabilities of the analytical fragility curves for each damage state 

Damage state 
PGA (g) 

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Light 0.133 0.457 0.689 0.804 0.950 0.987 0.998 1 1 1 1 

Moderate 0.033 0.248 0.509 0.716 0.867 0.942 0.982 0.994 1 1 1 
Severe 0.012 0.150 0.396 0.670 0.819 0.899 0.961 1 1 1 1 

 

 
Fig. 9 Location of the occurrence of the Pohang earthquake epicenter and the target area 
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states. It is noteworthy that the failure probabilities in the 
table are cumulative probabilities according to the 
definition of seismic fragility curves. 

 
3.5 Der vat on of hybr d frag l ty curves 
 
After evaluating empirical failure probabilities 

(presented in Table 6), the c.o.v.s of capacity thresholds for 
the damage limit states were updated, being optimized to 
the empirical failure probabilities. An optimization 
algorithm in MATLAB was linked to the FERUM-ZEUS, 
whose flowchart can be found in Fig. 3. The c.o.v.s were 
considered as the likelihood of the c.o.v. being observed in 
the target area, and the initially assumed (prior) c.o.v.s were 
revised via Bayesian updating, as given in Eq. (2). The 
updated (posterior) c.o.v.s were then applied to derive 
hybrid fragility curves. Table 7 shows the variations in the 
prior, likelihood, and posterior c.o.v.s for the three damage 
limit states. The prior c.o.v.s of capacity thresholds were 

 
 

Table 6 Empirical failure probabilities for three damage 
states 

Damage state Empirical failure probability 
Light 0.0967 

Moderate 0.0632 
Severe 0.0465 

 
 
 
Table 7 Variations in the prior, likelihood, and posterior 

c.o.v. values for each damage state 

Damage state Prior Likelihood Posterior 
Light 0.307 0.233 0.265 

Moderate 0.307 0.379 0.338 
Severe 0.307 0.433 0.362 

 

    
(a) Light damage

 

  
(b) Moderate damage

 

    
(c) Severe damage

Fig. 10 Pictures of damaged buildings (Sim et al. 2018)
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assumed to be 0.307 for all limit states. However, the 
posterior c.o.v.s, updated to reflect the empirical damage 
likelihood, were changed to 0.265 (for light damage), 0.338 
(for moderate), and 0.362 (for severe damage), and it was 
found that the posterior c.o.v. increased as the damage level 
increased. The posterior c.o.v. variation trend, which 

 
 

 
 
depends on the damage state, consistently conformed to the 
finding of previous studies that the level of capacity 
uncertainty tends to increase as the damage level increases 
(Yu et al. 2016, Dolšek 2012). 

Using the posterior c.o.v.s with the FERUM-ZEUS 
platform, fragility analysis was performed again to draw 

 
Fig. 11 Locations of piloti-type RC buildings in the target area 

(a) Light damage (b) Moderate damage 
 

(c) Severe damage (d) Average fragility curves 

Fig. 12 Hybrid fragility curves
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Table 9 Comparison of the analytical, hybrid, and empirical 
failure probabilities at 0.27 g PGA 

Damage 
state 

Analytical failure 
probability 

Hybrid failure 
probability 

Empirical failure 
probability 

Light 0.1774 0.1342 0.0967 
Moderate 0.0235 0.0405 0.0632 

Severe 0.0055 0.0204 0.0465 
 

 
 

hybrid seismic fragility curves. Fig. 12 demonstrates the 
updated fragility curves for the three damage states. As 
done for analytical fragility assessment, hybrid fragility 
curves were plotted for all selected earthquake motions and 
the average fragility curves were presented at the same 
time. Table 8 offers the average failure probabilities of the 
hybrid fragility curves with varying ground motion 
intensities. When the 2017 Pohang earthquake occurred, the 
PGA of the actual ground motion in the target area was 
estimated to be approximately 0.27 g (Kim et al. 2020b). 
Table 9 reveals the analytical, hybrid, and empirical failure 
probabilities at the PGA of 0.27 g, and it is observed that 
the hybrid fragility estimates were updated closer to the 
empirical probabilities than the analytical fragility 
estimates. This implies that the updated (posterior) c.o.v.s of 
the capacity threshold better reflect the empirical failure 
likelihoods of the structure in the target area. 

 
 

4. Verification of the proposed method 
 
4.1 Problem descr pt on w th hypothet cal 

reconna ssance data sets 
 
In the previous illustration example, seismic fragility 

curves were updated once because only one set of empirical 
data was available in the target area, as presented in Table 6. 
However, if sufficient empirical datasets are gathered from 
the same area, the c.o.v. of the capacity threshold can be 
updated further and is expected to converge to the true 
value. To verify this, series of c.o.v. updates were conducted 
exploring hypothetical reconnaissance data sets created 
based on assumed c.o.v.s. 

To determine the true c.o.v.s of capacity thresholds for 
the target piloti-type structure, 1,000 samples were 
generated considering the same random variables and their 
statistical properties presented in Table 3. Then, nonlinear 
pushover analyses were performed using the 1000 sample 
models using ZEUS-NL, and the c.o.v. values were 
estimated to be 0.1099 (for light damage), 0.1494 (for 

 
 

Fig. 13 Nonlinear pushover curves for 1,000 sample sets
 
 

moderate damage), and 0.3026 (for severe damage). Fig. 13 
demonstrates the nonlinear pushover curves of the 1,000 
analytical models. 

Failure probabilities were computed with the true c.o.v.s 
using FERUM-ZEUS. Based on the computed failure 
probabilities, the hypothetical empirical fragilities were 
generated after assigning some degree of errors to the 
failure probabilities to mimic the judgmental errors that 
might arise from post-earthquake reconnaissance. For 
comparison, 10% and 1% errors were assigned separately. 
With each level of errors, seven sets of artificial 
reconnaissance data were generated about various input 
ground motions and PGAs. 

 
4.2 Analys s results and d scuss ons 
 
By making use of the artificially-generated failure 

probabilities, an optimization analysis (in Fig. 3) was 
performed with each input ground motion and for each 
damage state to obtain the c.o.v.s corresponding to the 
hypothetical failure probabilities. Table 10 presents the the 
c.o.v.s obtained from the optimization analyses based on the 
artificial reconnaissance data. 

Finally, the c.o.v.s were updated sequentially through 
Bayesian updating, where the prior c.o.v.s of 0.307 were 
employed as in the illustrative example. Table 11 gives 
Bayesian updating results using the artificial c.o.v.s with 
10% and 1% errors; Fig. 14 shows the difference between 
the updated c.o.v.s (in Table 11) and true c.o.v.s (i.e., 0.1099 
for light damage, 0.1494 for moderate damage, and 0.3026 
for severe damage). For the light damage state, the results 
show that the c.o.v. consistently converges to the true c.o.v. 
as the updating continues in both cases of 10% and 1% 
errors. For the moderate damage state, the results accurately 
verify the decreasing trend as the number of updates 

Table 8 Average failure probabilities of the hybrid fragility curves for each damage state 

Damage state 
PGA (g) 

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Light 0.116 0.459 0.684 0.792 0.953 0.990 0.999 1 1 1 1 

Moderate 0.042 0.258 0.510 0.714 0.871 0.944 0.981 0.993 1 1 1 
Severe 0.022 0.172 0.403 0.666 0.831 0.899 0.960 0.981 0.994 1 1 
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Fig. 14 Difference between the updated c.o.v. and true c.o.v.
 
 

increases for both error cases. In particular, the c.o.v. 
converges to the true c.o.v. very quickly for the case of 1% 
error. For the severe damage state, the difference between 
the prior c.o.v. (i.e., 0.307) and true c.o.v. (i.e., 0.3026) was 
small from the beginning of the update, and the small 
difference continues. The 1% error case shows better 
convergence than the 10% error case for all damage states. 
That is, if careful damage inspection is conducted during 
post-earthquake survey, the c.o.v. of the capacity threshold 
is expected to converge to the specific value after few 
updating as desired by the hybrid method. The logic of the 
proposed hybrid method was fully verified through a series 
of updates using the artificial reconnaissance data. From 
this analysis results, it was confirmed that the proposed 
method could provide more reliable and accurate fragility 
curves if sufficient empirical data is accessible in a target 
area. 

 
 

 
 

 
 

5. Conclusions 
 
This study proposed a new hybrid method to derive 

fragility curves using post-earthquake reconnaissance data 
and numerical analysis results from an FE model. For cost-
efficient fragility assessment and optimization, this study 
introduces a computational platform of FERUM-ZEUS. 
The proposed method consists of four steps, which are 1) 
the derivation of analytical fragility curves; 2) the 
identification of probabilistic distribution parameters of 
capacity thresholds through optimization; 3) the updates of 
the distribution parameters using the Bayesian updating; 
and 4) the derivation of hybrid fragility curves with the 
updated distribution parameters. 

To illustrate the proposed method, it was applied to an 
example of an actual earthquake event (i.e., 2017 Pohang 
earthquake). Analytical fragility curves were first derived 
based on the FE model constructed to represent piloti-type 
RC buildings in the damaged area with the assumed (prior) 
c.o.v.s of capacity thresholds. After the prior c.o.v.s were 
updated based on the empirical failure probabilities 
estimated from post-earthquake reconnaissance data, the 
updated (posterior) c.o.v.s that best describe the empirical 
failure probabilities were used to develop the hybrid 
fragility curves. The results showed that the seismic 
fragility estimates approached to the empirical failure 
probabilities at 0.27 g PGA, corresponding to the ground 
motion intensity of the Pohang earthquake. 

In addition, it was confirmed that the proposed method 
could provide more realistic fragility curves as well as 
converged distribution parameters of capacity thresholds, if 
empirical data is sufficient. In the verification example, 
seven artificial sets of reconnaissance data were generated, 
and errors of 10% and 1% were assigned to the failure 
probabilities obtained using the true c.o.v. The artificial 

Table 10 The c.o.v. values obtained based on artificial reconnaissance data 

Damage 
state Error ML3.8 

(0.14 g PGA) 
ML5.0 

(0.19 g PGA) 
ML5.1 

(0.20 g PGA)
ML5.8 

(0.14 g PGA)
ML4.5 

(0.18 g PGA) 
ML5.4 

(0.36 g PGA) 
ML4.3 

(0.48 g PGA)

Light 
10% 0.1331 0.1118 0.1444 0.1387 0.1444 0.1537 0.1297 
1% 0.1061 0.1118 0.1186 0.1176 0.1354 0.1427 0.1264 

Moderate 
10% 0.1618 0.1764 0.1764 0.1944 0.1056 0.1852 0.1964 
1% 0.1236 0.1764 0.1416 0.1504 0.1315 0.1397 0.1382 

Severe 
10% 0.2646 0.2882 0.2646 0.2849 0.2703 0.2837 0.2736 
1% 0.2736 0.2736 0.2971 0.3001 0.2846 0.2988 0.3028 

 

Table 11 Results of Bayesian updating on the artificial c.o.v.s 
Damage state Error 0 (prior) 1 2 3 4 5 6 

Light 
10% 0.307 0.2006 0.1643 0.1585 0.1538 0.1519 0.1518 
1% 0.307 0.1791 0.1523 0.1426 0.1368 0.1362 0.1368 

Moderate 
10% 0.307 0.2212 0.2041 0.1961 0.1952 0.1757 0.1767 
1% 0.307 0.1933 0.1866 0.1735 0.1681 0.1610 0.1574 

Severe 
10% 0.307 0.2829 0.2832 0.2774 0.2781 0.2761 0.2766 
1% 0.307 0.2877 0.2815 0.2843 0.2865 0.2855 0.2867 

 

564



 
Hybrid fragility curve derivation of buildings based on post-earthquake reconnaissance data 

c.o.v.s were updated sequentially, and it was identified that 
the c.o.v.s accurately converged to the true c.o.v.s. It was 
also found that the case of 1% error had better convergence 
than that of 10% error, which means the accuracy of seismic 
fragility assessment would increase with better 
reconnaissance data. The analysis results show that the 
proposed hybrid method could provide more robust and 
accurate fragility curves when enough empirical data is 
provided in a target area. 
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