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Abstract.  In this study, the impact of assigned pixel labels on the accuracy of crack image identification of steel 
structures is examined by using an atrous separable convolution neural network (ASCNN). Firstly, images containing 
fatigue cracks collected from steel structures are classified into four datasets by assigning different pixel labels based 
on image features. Secondly, the DeepLab v3+ algorithm is used to determine optimal parameters of the ASCNN 
model by maximizing the average mean-intersection-over-union (mIoU) metric of the datasets. Thirdly, the ASCNN 
model is trained for various image sizes and hyper-parameters, such as the learning rule, learning rate, and epoch. 
The optimal parameters of the ASCNN model are determined based on the average mIoU metric. Finally, the trained 
ASCNN model is evaluated by using 10% untrained images. The result shows that the ASCNN model can segment 
cracks and other objects in the captured images with an average mIoU of 0.716. 
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1. Introduction 

 
During long-term services of steel bridges, fatigue cracks can be occurred at the connection 

details due to repeated vehicle loads and material flaws. Welding has been preferred for steel 
structures to form a structural unit which combines bridge deck, splice, and diaphragm. Due to 
intrinsic defects and repeated cyclic loadings, fatigue cracks are occurred at welded joints of the 
steel bridges (Battista and Pfeil 1999, Wang et al. 2019). The crack formation in the welded 
connection jeopardizes the structural safety, so it should be monitored periodically using reliable 
inspection techniques (Zhu et al. 2010, Lee et al. 2014, Mutlib et al. 2016, Wang et al. 2019). 

Visual inspection is commonly used to monitor fatigue cracks in steel bridges. The inspection 
results mainly depend on the experiences of inspectors (Gallwey 1998a, b, See 2012, Campbell et 
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al. 2021). Moreover, the method is time-consuming and cost-expensive to cover the details of a 
long-span bridge. To overcome the issue, vision-based artificial intelligent methods have been 
developed using advanced vision sensing techniques and deep learning algorithms. The technique 
can provide efficient monitoring by acquiring structural information of many local points using 
digital images captured by cameras. The advantages of the approach include low-cost, non-contact 
sensing, and time-saving thanks to advances in cloud-based computation, transfer learning, and 
computer hardware (i.e., GPU) and software (i.e., Matlab, Python, cloud-based platforms). 

Many researchers have worked on image-based methods to detect existing fatigue cracks (Dung 
et al. 2019, Dong et al. 2021, Ye et al. 2019). For the application of the image-based methods to 
steel bridges, image features of cracks and other non-damage features should be distinctly 
segmented from the captured raw images. Also, pre-trained computer algorithms should be 
implemented to minimize collections of training datasets (Cha et al. 2017, Dung et al. 2019). For 
orthotropic steel bridges, captured images possibly consist of complex backgrounds such as 
handwritings, marks, and others (ruler, contour) for periodic visual inspections. An issue is to 
distinguish cracks from other background features in captured images. Compared with published 
datasets of concrete or pavement cracks (Dung and Anh 2019, Yao et al. 2020), the fatigue-crack 
images had more complex backgrounds. The obstacles could affect a crack detection result using 
computer vision algorithms. Thus, the segment of obstacle background (marks, ruler, contour) is to 
minimize the error in crack identification. 

The effect of complex backgrounds (e.g., ruler and handwriting) on the accuracy of crack 
detection has not been examined comprehensively so far. Although recent research efforts yielded 
better fatigue-crack detection results, the crack segmentation by atrous convolution-based 
Deeplabv3+ network (ACDN) should overcome the following issues: (1) the effect of obstacles 
(e.g., ruler, handwriting, and weld line), and (2) the optimal parameters for training the ASCNN 
model. 

Recent research efforts show that advanced deep learning techniques could yield better crack 
detection results. The accuracy of vision-based damage detection mainly relies on both training 
datasets and deep learning algorithms (Spencer et al. 2019, Barbedo 2018, Bailly et al. 2022). In 
this study, the atrous separable convolution neural network (ASCNN) is examined for crack 
identification in steel bridges by considering the effect of non-damage features (e.g., handwriting 
and odd marks) and the impact of assigned pixel labels for the ASCNN. Firstly, images containing 
fatigue cracks collected from steel structures are classified into four datasets by assigning different 
pixel labels based on image features. Secondly, the DeepLab v3+ algorithm is used to determine 
optimal parameters of the ASCNN model by maximizing the average mean-intersection-over-
union (mIoU) metric of the datasets. Thirdly, ASCNN models are trained for various image sizes 
and hyper-parameters such as learning rule, learning rate, and epoch. The optimal parameters for 
the ASCNN model are determined based on the average mIoU metric. Finally, the performance 
model is evaluated by using 10% untrained images. 

 
 

2. Training datasets for ASCNN 
 
2.1 Raw images captured from steel bridge 
 
The dataset includes 200 RGB images captured with various perspective angles and distances 

by different bridge inspectors (Bao et al. 2021). The images have two different resolutions of 
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Fig. 1 Captured raw image of steel bridge deck

 
 

Table 1 Description of four datasets from labeling crack and other non-damage features 
Dataset Number of classes Features 

D1 2 Crack and Background (BG) 
D2 4 Crack, Black Mark (BM), Ruler (R), and BG 
D3 5 Crack, BM, Contour (C), R, and BG 
D4 4 Crack, Full Mark (FM), R, and BG 

 
 

height × width × channels pixel: 3264 × 4928 × 3 and 3864 × 5152 × 3. Each image contains cracks, 
contour (welding lines), handwriting with different colors, and background, and it could also have 
a ruler. As shown in Fig. 1, image features are classified as ‘crack’, ‘black mark (BM)’, ‘blue 
mark’, ‘red mark’, ‘ruler’, ‘contour’, and ‘background’. 

To examine the accuracy of image-based crack identification using ASCNN, the image features 
were classified by labeling crack and other non-damage features. Based on their distinct 
characteristics, they were sorted into four different datasets D1-D4 (see Table 1). In the dataset D1, 
the features were labeled into two classes: crack and background (BG). In the dataset D2, the 
features were labeled into four classes: crack, black mark (BM), ruler (R), and background (BG). 
In the dataset D3, the features were labeled into five classes: crack, BM, contour, R, and BG. In 
the dataset D4, the features were labeled into four classes, which were crack, full mark (FM), ruler 
and BG. All datasets commonly had ‘crack’ and ‘background’ classes. Also, other classes such as 
marks, contour, and ruler were parametrically examined in the datasets D1-D4. 

 
2.2 Labeling images of four datasets 
 
The Image Labeler application in Matlab 2020a was utilized to assign pixel labels to each class 

and to generate databanks for the datasets D1-D4. As shown in Fig. 2, four datasets of the 
annotated ground truth of an image (e.g., image number 178) were built as follows: two classes for 
dataset D1 (see Fig. 2(a)), four classes for dataset D2 (see Fig. 2(b)) and D4 (see Fig. 2(d)), and 
five classes for dataset D3 (Fig. 2(c)). It is noted that colored class-labels represent class-domains. 
As shown in Fig. 1, the color pixels represent the corresponding learning areas in the original 
images. 

Crack

Blue mark

Red markBlack mark

Contour
(weld line)

Background

Ruler
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(a) Dataset D1 (b) Dataset D2 

 

 

(c) Dataset D3 (d) Dataset D4 

Fig. 2 Labeled images of four datasets D1-D4
 
 
The 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020) 

released a total of 200 images of steel bridges which included 120 and 80 real images in sizes of 
3264 × 4928 × 3 and 3864 × 5152 × 3, respectively. In this study, 180 images (90%) were randomly 
selected for training datasets, and the remaining 20 images (10%) were allocated for evaluating the 
trained datasets. By adopting data argumentation techniques, the horizontal reflection with 50% 
probability and the image translation randomly up to 10 pixels were utilized to increase the 
number of training samples and also to reduce the over-fitting issue. 

It is noted that the selected features (Crack, BG) in D1 have been used to train the ASCNN 
model for deeply concentrating on crack identification. The datasets D2 and D3 were established 
to train the ASCNN models for observing the error levels in crack identification. Besides, the 
dataset D4 was established for the purpose of indicating the effects of color marks on crack 
identification. 

 
 

3. Training datasets for ASCNN-based DeepLab v3+ 
 
3.1 ASCNN-based DeepLab v3+ 
 
The state-of-the-art architecture of DeepLab v3+ for the task of semantic segmentation was 

proposed by Chen et al. (2018). Compared to other deep-learning networks, such as fully 
convolutional network (Yang et al. 2018), U-net (Ronneberger et al. 2015), the Deeplabv3+ 
network (Chen et al. 2018) was constructed based on two encoder and decoder modules, which 
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Fig. 3 Architecture of DeepLab v3+ for semantic segmentation of crack and other features 

 
 

enable to recognize irregular distributions of tinny cracks and crack characteristics. Also, the 
atrous separable convolution makes the Deeplabv3+ faster (i.e., significant reduction of the 
computational complexity) and stronger in feature learning. 

 As shown in Fig. 3, an encoder-decoder architecture of ASCNN was designed for multi-class 
(e.g., crack and other features) semantic segmentation. For better performance, DeepLab v3+ 
adopted the spatial pyramid pooling module and the encoder-decoder architecture. The spatial 
pyramid pooling module can encode multi-scale object information through multiple ASCNNs 
with various rates. By the encoder-decoder architecture, the boundary of objects can be accurately 
estimated by gradually recovering spatial information. 

Within the encoder, features can be drawn from the deep convolutional neural network (DCNN) 
to any resolution through atrous convolution. By inserting Input Image into the encoder, accurate 
semantic segmentation can be made by using atrous spatial pyramid pooling (ASPP) techniques. 
Atrous convolution runs at different rates in parallel with the feature map and then re-mix them. 
Also, DeepLab v3+ adds a process of 1x1 convolution to the encoder’s final output and then bi-
linear up-sampling to the concatenate. This allows effective management of object segmentation 
by reducing the channel during the decoder process 

The encoder architecture robustly reduces image characteristics to capture higher semantic 
information. Meanwhile, the decoder part gradually recovers previous spatial image features. In 
order to segment a few features (e.g., crack, marks, ruler, and background), the ASCNN was fine-
tuned for DeepLab v3+ architecture with the resnet50-based convolutional neural network (CNN) 
backbone (reference). The hardware capacity of the ASCNN model includes a desktop computer 
with i9-9900 @ 3.6 GHz CPU, 64 GB of RAM, and an 11 GB memory NVIDIA RTX2080Ti 
graphics processing unit (GPU) using Matlab 2020a. 

The performance of the network was evaluated based on the average value of mIoU (mean-
intersection-over-union) on the whole testing dataset. As described in Eq. 1, the average mIoU 
score can be defined from the concept of true-positive (TP), false-positive (FP), false-negative (FN) 
predictions, n class, and the sum of testing images N. A true positive result is estimated by the 
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Fig. 4 Parameter optimization process for ASCNN model

 
 

Table 2 Selected parameters of ASCNN model for datasets D1-D4 

Parameters 
Sub-Parameters 

1 2 3 4 
Image size (P1) 360×480 (P11) 720×960 (P12) 1080×1440 (P13)  

Learning rule (P2) SGDM (P21) ADAM (P22) RMSPROP (P23)  
Learning rate (P3) 10-2 (P31) 10-3 (P32) 10-4 (P33) 10-5 (P34) 

Epoch (P4) 10 (P41) 20 (P42) 30 (P43) 40 (P44) 
 
 

intersection of false positive and false negative outputs. Here, the false positive (i.e., alarmed but 
not real) output is quantified based on the predicted pixels in class; meanwhile, the false negative 
(i.e., real but not alarmed) output is quantified based on the ground truth pixels in class. 

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑚𝐼𝑜𝑈 = 1𝑁൭1𝑛 𝑇𝑃𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
ୀଵ ൱ (1)

 
3.2 Optimal parameters for ASCNN model 
 
It is known that the input parameters for the architecture had significant effects on the accuracy 

of object detection (Zhao et al. 2019, Alzubaidi et al. 2021). The mIoU was selected as an 
objective function for the optimization process. As shown in Fig. 4, a workflow of parameter 
optimization was designed for ASCNN model to maximize mIoU values of the training datasets. 
The initial parameters for ASCNN model were selected as follows: epochs of 10, stochastic 
gradient descent method (SGDM) for learning rule, learning rate of 10-4, learning rate drop period 
of 10, momentum of 0.9, mini-batch size of 1, and image size of 720×960 pixels. The best hyper-
parameters for training datasets D1-D4 were examined from the selected parameters listed in Table 
2. 

 

Initial parameter for ASCNN
Image size of 720x960, 10 epoch, SGDM, 10-4 for learning rate
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The four examined parameters include image size (P1), learning rule (P2), learning rate (P3), 
and epoch (P4). The image size (P1) was tested for three sub-parameters P11-P13 (i.e., 360×480, 
720×960, and 1080×1440 pixels) to find the maximum of average mIoU (in scenario S1). The 
selected parameter S1 was updated to the ASCNN’s parameters and set as the basic parameter for 
the next step. The learning rule (P2) was examined for three sub-parameters P21-P23 (i.e., SGDM, 
ADAM, and RMSPROP) to search for the maximum of mIoU. The selected learning rule was 
updated into the ASCNN’s parameters. Then, the learning rate (P3) and the epoch (P4) were 
analyzed for four sub-parameters, P31-P34 and P41-P44, respectively. Additionally, the optimal 
parameters for the four parameters (P1-P4) were utilized to compute an average mIoU for all 
datasets (D1-D4). 

 
 

4. ASCNN-based crack identification 
 
4.1 Training results 
 
As illustrated in Fig. 5, training accuracies and loss values of the defined classes were 

estimated for the dataset D1-D4. The accuracy was defined as the proportion of the correct 
identification. The figure indicates that the loss decreased and the accuracy increased as the 
training iteration increased for all datasets. Also, insignificant changes in the accuracy were 
observed beyond the training iteration of 1200. The accuracies and loss values of the datasets D1-
D4 were observed as follows: (1) Dataset D1 had the highest accuracy (97%) and also the lowest 
loss value (0.04); (2) Datasets D2 and D4 had the relatively high accuracy (95%) and the relatively 
high loss value (0.09); and (3) Dataset D3 also had the relatively high accuracy (92%) but the 
highest loss value (0.18). 

As observed in Fig. 6, the overlapped bar chart and the line graph had a nonlinear correlation 
between the global accuracy (i.e., bar chart) and averages of mIoU (i.e., line graph). The global 
accuracy (gAcc) is defined as the ratio of the correctly classified pixels to the total number of 
pixels. The gAcc and mIoU are discordant, as follows: (1) Dataset D1 had the lowest mIoU (0.52), 
but the highest gAcc (98.7%); (2) Datasets D4 and D2 had similar gAcc values (i.e., 96.5% and 
96.2%, respectively), but the mIoU of the dataset D4 (0.615) is higher than that of the dataset D2 

 
 

 
Fig. 5 Accuracy and loss value of the labeled datasets D1-D4 during training process 
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Fig. 6 Global accuracy and average mIoU of datasets D1-D4
 
 

Fig. 7 Raw images and prediction results obtained from dataset D1 
 
 

(0.595), and (3) Dataset D3 had the relatively low accuracy (91.6%) and the insignificant mIoU 
(0.54). 

In the dataset D1, the mIoU value decreased significantly due to the unwanted recognition 
faults (i.e., false-positive errors) between the mark and the crack (see Fig. 7). Meanwhile, the 
mIoU obtained from the dataset D4 was the highest among the four datasets. The dataset D4 was 
selected to conduct optimization of ASCNN’s parameters for image-based crack identification. 

 
4.2 Optimal parameters for ASCNN-based crack identification 
 
The iterative process was performed for four parameters which included image size, learning 

rule, learning rate, and epoch (see Table 2). As shown in Fig. 5, mIoU values were maximized for 
dataset D4 with workflow. The overlapped bar chart and line graph were utilized to illustrate the 
relationship between the gAcc (bar chart) and mIoU (line graph). Fig. 8 shows the optimal 
ASCNN parameters for dataset D4. As shown in Fig. 8(a), both gAcc and mIoU values were 
increased as image size was increased. The image size of 1080×1440 pixel resolutions (P13 in 
Table 2) was selected as the optimal one. 

The difference in learning rules reflects the different behavior in the calculation and update 
weights and biases in the training process (Ruder 2016). As shown in Fig. 8(b), the SGDM method 
(P21 in Table 2) resulted in the highest mIoU. Then P21 was selected for the learning rules. 

0.460
0.480
0.500
0.520
0.540
0.560
0.580
0.600
0.620
0.640

50%

60%

70%

80%

90%

100%

D1 D2 D3 D4

m
Io

U
 V

al
ue

G
lo

ba
l A

cc
ur

ac
y

gAcc mIoU

296



 
 
 
 
 
 

Pixel-based crack image segmentation in steel structures using atrous … 

 
(a) Image size (b) Learning rule 

 

 
(c) Learning rate (Lr) (d) Epoch numbers 

Fig. 8 Effects of ASCNN parameters on global accuracy and mIoU values computed using dataset D4
 
 

Table 3 Average of mIoU with selected optimal parameters 
Parameter D1 D2 D3 D4 
Image size 0.540 0.626 0.566 0.641 

Learning rule 0.540 0.626 0.566 0.641 
Learning rate 0.553 0.675 0.604 0.663 

Epoch 0.596 0.708 0.642 0.716 
 
 

As shown in Fig. 8(c), the learning rate of 10-3 (P32 in Table 2) yielded the highest accuracy and 
highest mIoU among for examined parameters. Then P32 was selected and updated to ANCNN 
models. As shown in Fig. 8(d), the higher the mIoU was produced by the epoch of 30 (P43 in 
Table 2). Then P43 was selected for ASCNN models. It is observed that the mIoU value was 
decreased beyond the epoch of 30. It is also noted that the number of epochs had a significant 
effect on training time. 

As schematized in Fig. 4, the selected hyper-parameters (image size, learning rule, learning rate, 
and epoch) were utilized to compute the mIoU values for all datasets. The mIoU values are listed 
in Table 3. For the dataset D4, the maximum mIoU value (0.716) was produced by the optimal 
parameters of ASCNN model: image size of 1080×1440 pixel, SGDM for learning rule, 10-3 for 
learning rate, and 30 epoch. Among the four parameters, the number of epochs had the most 
sensitive effect on the mIoU metric. 

 
4.3 Crack segmentation results for four datasets 
 
As shown in Figs. 9-12, the cracks and the other objects in the unstrained images (e.g., image 

number 57) were estimated using the trained models. Each class-pixel color followed the 
corresponding color in sub-session training and testing data generation. For the dataset D1, the 
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labeling was made on two classes (crack and background), and the crack segmentation was 
estimated using the ASCNN model (see Fig. 9). The crack was detected with some false positives 
along the welding lines. For the dataset D2, the labeling was made on three classes (crack, black 
marks, and background), and the three objects were detected as shown in Fig. 10. All objects were 
detected, but the cracks were detected with lower accuracy as compared to the result of the dataset 
D1. For the dataset D3, the labeling was made on five classes (crack, black mark, contour, ruler, 

 
 

 
       (a) Class labeling (b) Crack segmentation 

Fig. 9 Crack estimation using untrained image from dataset D1 
 
 

 
       (a) Class labeling (b) Multi-class segmentations 

Fig. 10 Crack estimation using untrained image from dataset D2 
 
 

 
       (a) Class labeling (b) Multi-class segmentations 

Fig. 11 Crack estimation using untrained image from dataset D3 
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       (a) Class labeling (b) Multi-class segmentations 

Fig. 12 Crack estimation using untrained image from dataset D4 
 
 

(a) Dataset D1 (b) Dataset D2 
 

(c) Dataset D3 (d) Dataset D4 

Fig. 13 Confusion matrix obtained from scenario S4 for four datasets 
 
 

and background), and the five objects were detected as shown in Fig. 11. All five objects were 
detected with various accuracies. For the last dataset D4, the labeling was made on four classes 
(crack, full marks, ruler, and background), and the four objects were detected, as shown in Fig. 12. 
All four objects were also detected, but the crack was detected with lower accuracy than those of 

299



 
 
 
 
 
 

Quoc-Bao Ta, Quang-Quang Pham, Yoon-Chul Kim, Hyeon-Dong Kam and Jeong-Tae Kim 

other datasets. 
As shown in Fig. 13, the normalized confusion matrices (i.e., the error matrix) of the dataset 

D1-D4 were estimated by using 10% of untrained images in order to assess the performance of the 
classification models. For the dataset D1, the crack was identified with an accuracy of 88.62%, 
which is identical to the true positive (TP) (see Fig. 13(a)). Also, the accuracy of the dataset D1 
was the highest value among the four datasets. Meanwhile, the average of mIoU (0.596) was the 
smallest value. For the datasets D2-D4, the accuracies of the crack-pixel labels were 77.02%, 
72.13%, and 77.11%, respectively. Meanwhile, the average mIoU of dataset D4 (0.716) yielded 
the highest value. Conclusively, the dataset D4 produced the highest average mIoU (0.716). 

From the object detection results using the image-based ASCNN model, at least five 
observations were made as follows. Firstly, the result of object detection relied on the databank, 
especially labeling objects in the image. Secondly, each defined class in an image should be 
correctly and adequately labeled in order to improve the average mIoU. Thirdly, the global 
accuracy and the average of mIoU of the pixel-level crack classification model were improved by 
the high image resolution. The crack was thin as compared to other objects. The reduction of 
image resolution resulted in the loss of crack pixels, thus resulting in lower global accuracy or the 
mIoU metric. It is also noted that the increment of image resolution requires a stronger GPU and a 
longer computational time-consuming. Fourthly, the selection of training algorithms had little 
effect on image-based identification results. The different learning rules could produce slightly 
different mIoU values. Since each learning rule shows advantages for object detection algorithms, 
the learning rule should be tested and experienced by researchers. Finally, the increase in the 
training epochs could boost the model’s accuracy. 

 
 

5. Conclusions 
 
In this study, the fatigue cracks of the steel box girder were segmented using an image-based 

ASCNN technique. Firstly, the features of images were classified into four groups based on their 
characteristics, and labeling of these features was conducted to build databanks. Secondly, the 
state-of-the-art ASCNN was selected for object segmentation. The algorithm was proposed to 
determine optimal parameters of the ASCNN model by maximizing the average mIoU metric of 
training datasets. Thirdly, the ASCNN models were trained with the input of various image sizes 
and hyper-parameters, including learning rule, learning rate, and epoch. The optimal parameters 
for the ASCNN model were determined based on the average mIoU metric. Finally, the 
performance model was evaluated by using 10% untrained images. 

From the image-based object segmentation using ASCNN, the folowing concluding remarks 
can be drawn: (1) The ASCNN was successfully implemented for segmentation of the crack, ruler, 
handwriting, welding line, and background; (2) For a single computer (i9-9900, 11GB of GPU), 
the optimal parameters for the ASCNN model for object segmentation were selected as follows: 
image size of 1080×1440 pixel, SGDM for learning rule, 10-3 for learning rate and 30 epoch, and 
(3) The trained model with the labeling of crack, full mark, ruler and background yielded the 
highest average mIoU value. It is noted that the model trained in this study might give wrong 
predictions when the test image has a large difference from the training dataset (different surface 
texture, crack width, the human-made drawing, lighting conditions, etc. 

As compared to the recent frameworks developed for vision-based crack detection (Dong et al. 
2021), the ASCNN with trained D1 yielded 59.6 % of mIoU for 30 epochs. It was higher than that 
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of fully connected network-based framework (51.9% of mIoU for 45 epochs). Also, it was lower 
than the accuracy of Unet-based Framework (62.4% of mIoU for 45 epochs). 

Despite the promising result, the crack segmentation achieved lower 90% accuracy. In the 
future study, the performance of the ASCNN model (i.e., accuracy and computational cost) should 
be extensively examined as compared to other state-of-the-art methods. Furthermore, data 
argumentation techniques, including horizontal reflection and image translation for enlarging the 
diversity of the training dataset, should be employed to improve crack segmentation results. 
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