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Abstract.  In this paper, an innovative finite element updating method is presented based on the variation wavelet 
transform coefficients of Auto/cross-correlations function (WTCF). The Quasi-linear sensitivity of the wavelet 
coefficients of the WTCF concerning the structural parameters is evaluated based on incomplete measured structural 
responses. The proposed algorithm is used to estimate the structural parameters of truss and plate models. By the 
solution of the sensitivity equation through the least-squares method, the finite element model of the structure is updated 
for estimation of the location and severity of structural damages simultaneously. Several damage scenarios have been 
considered for the studied structure. The parameter estimation results prove the high accuracy of the method 
considering measurement and mass modeling errors. 
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1. Introduction 
 

Large structures such as offshore platforms, ships, bridges, etc are designed for long-time 

operation. Inadequate performance of these structures or failure may result in human casualties and 

economic losses, so identifying the structural threat factors is very important in their maintenance. 

In order to prevent these hazards, researchers are always looking for methods at the lowest cost to 

identify the structural damages and estimate the remaining structural lifetime. Therefore, health 

monitoring of the structures in various engineering fields is of great interest (Sohn et al. 2002, 

Dackermann et al. 2013). Vibration-based damage detection approaches are one of the most 

common methods to monitor the condition of structures. They could be based on the modal data 

such as natural frequency (Kim et al. 2003, Ercolani et al. 2018) and mode shape (Lee et al. 2018), 

which are intrinsic characteristics of a structure and provide valuable information about the state of 

the structure. Furthermore, mode shape curvature (Zhang et al. 2022, Ho and Ewins 2000, Zhang et 

al. 2012), strain mode shape (Lee et al. 2009, Wei et al. 2016), flexibility matrix (Doebling et al. 

1996), modal flexibility (Seyedpoor and Montazer 2016), static response (Ren et al. 2019) and 

mechanical impedances (Providakis et al. 2015, Huynh et al. 2017) are structural stiffness, mass 
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,and damping parameters. The accuracy of the modal methods decreases when a few modes are 

available. Hence, innovative and combinatorial methods is essential to increase the accuracy of  

structural model updating and detecting structural damages based on structural responses (Modak et 

al. 2002). Mousavi et al. (2020) evaluated the performance of Hilbert-Huang Transform (HHT) for 

damage detection of a scaled steel-truss bridge model. They were able to estimate the severity and 

location of the damage with acceptable accuracy. Kordestani et al. (2021) proposed an algorithm for 

decomposing the structural response signal using the Savitzky-Golay filter and isolating the 

accompanying signal noise to reconstruct the original signal. They evaluated their proposed 

algorithm for damage detection of a bridge with free supports and moving load. They showed that 

the proposed method is able to detect the damage with appropriate accuracy . 

The frequency-domain presentation structural responses provides more comprehensive 

information about the structure than the mode shapes and natural frequency. Low sensitivity to 

measurement errors and high sensitivity to structural parameter variations are the other advantages 

of the frequency response function (FRF) and transformations of the correlation function. Based on 

these features, various studies have been proposed for damage detection based on FRF and 

transformations of correlation function (Garcia-Palencia et al. 2015, Li et al. 2016). Dackermann et 

al. (2013) proposed a damage detection method based on FRF and Artifical Neural network (ANN) 

to identify the location and severity of notch-type damage. Nandakumar and Shankar (2016)used 

experimental transfer function data to identify defects of beam models. Another feature based on 

structural response is Power Spectral Density (PSD). PSD is more sensitive to damage as compared 

to FRF and modal data and, it embraces both auto and cross-spectral terms, hence providing more 

data for model updating (Kammer and Nimityongskul 2009). Bayissa and Haritos (2007) employed 

spectral strain energy (SSE) for damage diagnosis. They compared their results with the modal strain 

energy indicator and discussed the merits of spectral analysis over modal approaches for damage 

detection. Li et al. (2015) used the forward finite difference method for calculation of the sensitivity 

equation of power spectral density transmissibility (PSDT). Despite the simplicity of the 

calculation,the quality of the sensitivity equation highly depends on the assumed increments for 

change in structural parameter. 

A group of the SHM methods minimizes the differences of a numerical and experimental feature 

to update the finite element model. These methods use response sensitivity concerning to unknown 

variables to update structural parameters at the element level for identification of the location and 

severity of structural damages. By the sensitivity-based methods, changes of structural responses 

with respect to structural parameters are computed using the gradient, or formulated based on 

innovative approaches applied on the governing equation. Zheng et al. (2015) proposed a sensitivity-

based method based on power spectral density of acceleration response. Acceleration responses and 

power spectral density data are extracted under stationary and random excitations using the pseudo 

excitation method. Razavi and Hadidi (2020) presented a sensitivity-based FEM updating technique 

for damage detection in large space structures. Pedram et al. (2016) used sensitivity of power 

spectral density (PSD) of strain data to identify of structural damages. They extracted the exact 

sensitivity equation of PSD of strain data. The impact of essential factors such as incompleteness is 

investigated. The advances show that much of the valuable information is hidden in the vibration 

signal. Therefore, different types of domain transformation is necessary to obtain essential and non-

extractable information (Granlund and Knutsson 2013). One of these tools is the wavelet transform 

function. A wavelet transform is an efficient tool in the time-frequency analysis of a signal. The 

wavelet transform enables shorter time properties in areas where more frequency information is 

desirable. The signifcant advantage of wavelets compared to other signal processing methods, such 
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as Fourier transform, is locally analyzing a particular area of a more signifcant signal. The wavelet 

transform-based methods were used to detect the structural damages due to the high sensitivity of 

wavelet transform coefficients to the changes of vibrational signals structural parameter (Rioul and 

Vetterli 1991, Huang and Nagarajaiah 2021). 

In order to model the asymmetric behavior of opening and closing cracks, Valente and Spina 

(1997) utilized the wavelet transform. Douka et al. (2003) used continuous wavelet transform of the 

first mode shape of the beam to identify the crack location based on the changes of the wavelet 

transform coefficients. Chang and Chen (2004) have proposed a method for detecting structural 

damages using the wavelet transform. In this research, the finite element modeling of a plate has 

been used. The proposed method is highly sensitive to damage and by observing the distribution of 

wavelet transform coefficients, the location of the damage can also be identified. Law and Li (2007) 

used the wavelet transform to provide sensitivity functions and indicated that the extracted wavelet 

coefficients are highly sensitive to local changes of structural parameters and less sensitive to noise 

and errors. Rucka and Wilde (2006) as well as Fan and Qiao (2009) proposed a damage detection 

algorithm based on continuous wavelet transform for structures consisting of plates. In these studies, 

it has been shown that the two-dimensional continuous wavelet transform method is very effective 

for detecting structural damages including plates and shells damages. Zhong and Oyadiji (2011) 

identified the damage in reinforced plates based on the finite element model and discrete wavelet 

transform analysis. Lam and Yin (2012) used the two-dimensional spatial wavelet transform 

coefficients in order to identify the damage in plate-type structures. They showed that the proposed 

scheme is able to detect the location, length and depth of crack in the considered model. Asgarian et 

al. (2016) calculated the energy rate of the vibrational response signals using the wavelet transform. 

Their results indicated that any sensor that detects a more significant rate of changes of energy is 

closer to the damage location.  

In this paper, a new sensitivity equation of the wavelet transform coefficients of the correlation 

function is developed for the finite element model updating. This WTCF sensitivity is more sensitive 

to local structural changes than the wavelet transform function response sensitivity. The proposed 

sensitivity equation presents a quasi-linear relation for the change of the wavelet coefficient 

concerning the change of structural parameters. The robustness of the method against modeling and 

mass measurement errors is investigated by adding random errors to the mass parameters of the truss 

and plate model. 

 

 

2. Theory 
 

The wavelet transform decomposes a function 𝑓(𝑡)  into a superposition of the elementary 

function 𝜓(𝑎.𝑏) obtained from a mother wavelet 𝜓(𝑡) by scaling and translation as 

𝜓(𝑎.𝑏)(𝑡) =
1

√𝑎
𝜓 (

𝑡 − 𝑏

𝑎
) (1) 

and the wavelet transform of a function f(t) is defined as 

𝑊(𝑎.𝑏)
𝑓

=
1

√𝑎
∫ 𝑓(𝑡)𝜓∗(

𝑡 − 𝑏

𝑎

∞

−∞

)𝑑𝑡 (2) 

Where 𝜓∗(𝑡) is the complex conjugate of the mother wavelet function, a and b are the time 

159



 

 

 

 

 

 

Mohsen Sadeghian, Akbar Esfandiari and Manochehr Fadavie 

scale and the time shift of the function 𝜓(𝑡), respectively. The defined integral will be the wavelet 

transform coefficients, which present a correlation between the wavelet function and the 𝑓(𝑡) 
(Rioul and Vetterli 1991). In this study, a binary discrete wavelet transform is used for improvement 

and more straightforward implementation of wavelet transformation. In this transformation, the 

scale parameter a and the time shift b are sampled in a binary grid  as 𝑎 = 2𝑗 and 𝑏 = 𝑘2𝑗 )𝑗𝜖𝑁, 

𝑘𝜖𝑍( and j and k are the time scale and time shift in the discrete wavelet transform. The equation of 

motion of multi degrees of freedom structure, under an external force, is 

[𝑀]{𝑥̈ (𝑡)} + [𝐶]{𝑥̈ (𝑡)} + [𝐾]{𝑥̈(𝑡)} = {𝐹(𝑡)} (3) 

where x(t), ẋ(t), ẍ(t), and 𝐹(𝑡) are displacement, velocity, acceleration and external force vectors, 

respectively, and [M], [K] and [C] are the mass, stiffness, and damping matrices of the system, 

respectively. The wavelet transform of structures response can be defined as follows 

𝑥̈(𝑡) = ∫ 𝑥̈𝑗.𝑘𝜓𝑗.𝑘(𝑡)dt
∞

−∞

 (4) 

By applying the discrete wavelet transforms to the vectors x(t), ẋ(t), ẍ(t), and F(t) (Law and Li 

2007) 

{𝑥̈(𝑡)} =∑{𝑥̈𝑗.𝑘}

𝑗.𝑘

𝜓𝑗.𝑘(𝑡) (5) 

{𝑥̈ (𝑡)} =∑{𝑥̈𝑗.𝑘}

𝑗.𝑘

𝜓 𝑗.𝑘(𝑡) (6) 

{𝑥̈ (𝑡)} =∑{𝑥̈𝑗.𝑘}

𝑗.𝑘

𝜓 𝑗.𝑘(𝑡) (7) 

{𝐹(𝑡)} =∑{𝑥̈𝑗.𝑘
𝐹 }

𝑗.𝑘

𝜓𝑗.𝑘(𝑡) (8) 

Substituting Eqs. (5) to (8) into the equation of motion of the structure and considering the 

orthogonality of the wavelets, yields (Law and Li 2007) 

[𝑀∫𝜓 𝑗.𝑘(𝑡) 𝜓𝑗.𝑘(𝑡)𝑑𝑡 + 𝐶 ∫𝜓 𝑗.𝑘(𝑡) 𝜓𝑗.𝑘(𝑡)𝑑𝑡 + 𝐾]

{
 
 

 
 𝑥̈𝑗.𝑘

1

𝑥̈𝑗.𝑘
2

⋮
𝑥̈𝑗.𝑘
𝑁
}
 
 

 
 

= {𝑥̈𝑗.𝑘
𝐹 } (9) 

where N is the number of degrees of freedoms. The superscripts over X present the related DOF 

numbers. The appeared integrals in Eq. (9) are only related to the mother wavelet functions. Hence 

these integrals can be written as 

𝑎(𝑗.𝑘) = ∫𝜓 (𝑗.𝑘)(𝑡)𝜓(𝑗.𝑘) (𝑡)𝑑𝑡 

𝑏(𝑗.𝑘) = ∫𝜓 (𝑗.𝑘)(𝑡)𝜓(𝑗.𝑘) (𝑡)𝑑𝑡 

(10) 

160



 

 

 

 

 

 

Structural damage detection based on changes of wavelet transform coefficients… 

In the above equation, 𝜓(𝑗.𝑘) , 𝜓 (𝑗.𝑘)  and 𝜓 (𝑗.𝑘)  are the desired wavelet, the first-order 

derivative and the second order derivative of the mother wavelet. Hence, Eq. (9) can be rewritten as 

[𝑀𝑎(𝑗.𝑘) + 𝐶𝑏(𝑗.𝑘) + 𝐾]

{
 
 

 
 𝑥̈𝑗.𝑘

1

𝑥̈𝑗.𝑘
2

⋮
𝑥̈𝑗.𝑘
𝑁
}
 
 

 
 

= {𝑥̈𝑗.𝑘
𝐹 } (11) 

By definition of the wavelet transfer function as (Law and Li 2007) 

𝐻𝜓(𝑗.𝑘)
= 𝑍𝜓(𝑗.𝑘)

−1 = (𝑀𝑎(𝑗.𝑘) + C𝑏(𝑗.𝑘) + 𝐾)−1 (12) 

Where  𝑍𝜓(𝑗.𝑘)
 is the impedance matrix and it is the inverse of the wavelet transfer function, 

𝐻𝜓(𝑗.𝑘)
. The wavelet transform of the structural response can be expressed by 

{𝑥̈𝑗.𝑘} = 𝐻𝜓(𝑗.𝑘)
{𝑥̈𝑗.𝑘

𝐹 } (13) 

The relationship between the wavelet transform of the correlation function of the applied force 

and the wavelet transform of the correlation function of structural response is defined as (Kong, 

Spanos et al. 2014) 

𝑆𝜓(𝑗.𝑘)

𝑥𝑥 = 𝐻𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝜓(𝑗.𝑘)

∗  (14) 

Where 𝐻𝜓(𝑗.𝑘)
  is the wavelet transfer function, 𝐻𝜓(𝑗.𝑘)

∗   is the complex conjugate transpose 

(Hermit matrix) of the wavelet transfer function, and 𝑆𝜓(𝑗.𝑘)

𝑥𝑥   is the wavelet transform of the 

correlation functions matrix of structural responses. Its diagonal terms are auto spectral density and 

the non-diagonal ones are cross spectral density terms. 𝑆𝜓(𝑗.𝑘)

𝑓𝑓
  is the wavelet transform of the 

correlation functions of the input in all the active degree of freedom, respectively. Eq. (15) can be 

rewritten as 

𝑍∗𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑥𝑥 = 𝐻𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑓𝑓
 (15) 

Now, Eq. (15) can be expressed for a damaged structure as follows 

[𝑍∗𝜓(𝑗.𝑘)
+ Δ𝑍∗𝜓(𝑗.𝑘)

] [𝑆𝜓(𝑗.𝑘)

𝑥𝑥 + Δ𝑆𝜓(𝑗.𝑘)

𝑥𝑥 ] = [𝐻𝜓(𝑗.𝑘)
+ Δ𝐻𝜓(𝑗.𝑘)

] 𝑆𝜓(𝑗.𝑘)

𝑓𝑓
 (16) 

Expanding Eq. (16) and subtracting Eq. (15), yields 

[𝑍∗𝜓(𝑗.𝑘)
+ Δ𝑍∗𝜓(𝑗.𝑘)

] Δ𝑆𝜓(𝑗.𝑘)

𝑥𝑥 = 𝑆𝜓(𝑗.𝑘)

𝑓𝑓
Δ𝐻𝜓(𝑗.𝑘)

− Δ𝑍∗𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑥𝑥  (17) 

Expressing the change of Δ𝑍∗𝜓(𝑗.𝑘)
 as (Law and Li 2007) 

Δ𝑍𝜓(𝑗.𝑘)
= (Δ𝑀𝑎(𝑗.𝑘) + ΔC𝑏(𝑗.𝑘) + Δ𝐾)  (18) 

and  

𝐻𝐷
𝜓(𝑗.𝑘)

= [𝑍𝜓(𝑗.𝑘)
+ Δ𝑍𝜓(𝑗.𝑘)

]
−1

 (19) 
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The change of wavelet transform of the correlation function of structural response is 

Δ𝑆𝜓(𝑗.𝑘)

𝑥𝑥 = 𝐻∗𝐷
𝜓(𝑗.𝑘)

𝑆𝜓(𝑗.𝑘)

𝑓𝑓
Δ𝐻𝜓(𝑗.𝑘)

− 𝐻∗𝐷
𝜓(𝑗.𝑘)

Δ𝑍∗𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑥𝑥 . (20) 

The estimation of Δ𝐻𝜓(𝑗.𝑘)
 is expressed as (Pedram et al. 2017) 

Δ𝐻𝜓(𝑗.𝑘)
= −𝐻𝐷

𝜓(𝑗.𝑘)
(Δ𝑀𝑎(𝑗.𝑘) + ΔC𝑏(𝑗.𝑘) + Δ𝐾)𝐻𝜓(𝑗.𝑘)

 (21) 

Substituting Eq. (15) and Eq. (21) into Eq. (17), the change of the spectral density is obtained as 

follows 

Δ𝑆𝜓(𝑗.𝑘)

𝑥𝑥 = −𝐻∗𝐷
𝜓(𝑗.𝑘)

𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝜓(𝑗.𝑘)

𝐷 (Δ𝑍𝜓(𝑗.𝑘)
)𝐻𝜓(𝑗.𝑘)

− 𝐻∗𝐷
𝜓(𝑗.𝑘)

(Δ𝑍∗
𝜓(𝑗.𝑘)

)𝐻∗
𝜓(𝑗.𝑘)

𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝜓(𝑗.𝑘)

 
(22) 

The extracted sensitivity equation is an exact formulation to relate the changes of the wavelet 

transform coefficient of the response correlation function to the changes of structural parameters. 

Because of the appeared term of 𝐻∗𝐷
𝜓(𝑗.𝑘)

, the developed sensitivity equation needs to calculate the 

wavelet transfer function at all degrees of freedom of the damaged structure. Due to technical 

limitations such as sensor installation at all degrees of freedom, and unavailability of some degrees 

of freedom and the high costs of a sensor network, the incomplete measurement problem is 

inevitable. There are methods to reduce the model or extend the data to solve the problem of 

incomplete measurement. However, these methods lead to the intensification of nonlinear and non-

uniform behavior in the finite element model updating process. The wavelet transfer function can 

be presented as (Mansourabadi and Esfandiari 2019) 

𝐻𝜓(𝑗.𝑘)
= ∑

𝜙𝑟
𝑇𝜙𝑟

Ω𝑟
2 + 𝑎(𝑗.𝑘) + 𝑖𝑏(𝑗.𝑘)Ω𝑟

𝑛

𝑟=1

 (23) 

In Eq. (23), the complete measurement of the structural responses will not be possible due to 

practical limitation. Hence, in this study, adverse effects of incompleteness in measurement of  

𝐻𝜓(𝑗.𝑘)

𝐷 , is avoided by using an approximated wavelet transfer function  of the damaged structure is 

evaluated as (Sanayei et al. 2012) 

𝐻𝜓(𝑗.𝑘)

𝐷(𝐴𝑝𝑝𝑟𝑜𝑥.)
≅ ∑

𝜙𝑟
𝑇𝜙𝑟

Ω𝑟𝐷
2 + 𝑎(𝑗.𝑘) + 𝑖𝑏(𝑗.𝑘)Ω𝑟𝐷

𝑛𝑚

𝑟=1

+ ∑
𝜙𝑟
𝑇𝜙𝑟

Ω𝑟
2 + 𝑎(𝑗.𝑘) + 𝑖𝑏(𝑗.𝑘)Ω𝑟

𝑛

𝑟=𝑛𝑚+1

 (24) 

Where, index D indicates the damage state for measured DOFs.  𝐻𝜓(𝑗.𝑘)

𝐷(𝐴𝑝𝑝)
  is used for 

approximation of unmeasured DOFs. 𝑛𝑚 is the number of measured natural frequencies of the 

damaged structure. Also, Ω𝑟  and 𝜙𝑟  are the 𝑟𝑡ℎ  natural frequency and mode shape of the 

numerical model. The values of  𝑎(𝑗.𝑘) are selected to be around to the natural frequencies of the 

damaged structure. For such values of 𝑎(𝑗.𝑘), Eq. (24)  is dominated by its denominator and will be 

more accurate.  

In order to reduce other errors in updating model, it should be noted that data very close to natural 

frequencies should not be considered. At such frequencies, the term 𝑖𝑏(𝑗.𝑘)Ω𝑟 and consequently the 

damping effects become significant. In such cases, the damping parameters must be modeled very 

accurately. in order to alleviate the shortcomings of the damping model and related measurements. 
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It is recommended that values of 𝑎(𝑗.𝑘) be selected at the vicinity of resonances. The appropriate 

differences from the resonances are depended in the damping ratios. For a structural model of very 

low damping ratios, the denominator of Eq. (24) and consequently the equation of sensitivity is 

controlled by Ω𝑟𝐷
2 + 𝑎(𝑗.𝑘). If the values of 𝑎(𝑗.𝑘) are selected very close to resonances, a small 

error in the measured resonances, will cause  significant changes in the values Ω𝑟𝐷
2 + 𝑎(𝑗.𝑘), cause 

significant large deviations in the sensitivity equations. Therefore, by appropriate selection of the 

ranges of 𝑎(𝑗.𝑘) several adverse effects can be prevented. The changes in the stiffness  and mass 

matrices in term of change in dimensionless structural parameters are 

Δ𝐾 = ∑𝐾𝑛Δ𝑃𝑛
𝐾

𝑛𝑒

𝑛=1

 

Δ𝑀 = ∑𝑀𝑛Δ𝑃𝑛
𝑀

𝑛𝑒

𝑛=1

 

(25) 

In Eq. (25), 𝐾𝑛 and 𝑀𝑛 present the element stiffness and mass structural matrices, Δ𝑃𝑛
𝐾 and 

 Δ𝑃𝑛
𝑀 are the normalized coefficients which present the relative changes of the parameters. Using 

these definitions, the sensitivity matrices for the nth structural elements are obtained from Eq. (26) 

as 

𝑆𝜓(𝑗.𝑘)

𝐾 = −𝐻∗𝐷
𝜓(𝑗.𝑘)

𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝐷

𝜓(𝑗.𝑘)
𝐾𝑛𝐻𝜓(𝑗.𝑘)

−𝐻∗𝐷
𝜓(𝑗.𝑘)

𝐾𝑛𝐻𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝜓(𝑗.𝑘)

 

𝑆𝜓(𝑗.𝑘)

𝑀 = 𝑎(𝑗.𝑘) [𝐻
∗𝐷

𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝐷

𝜓(𝑗.𝑘)
𝑀𝑛𝐻𝜓(𝑗.𝑘)

+ 𝐻∗𝐷
𝜓(𝑗.𝑘)

𝑀𝑛𝐻𝜓(𝑗.𝑘)
𝑆𝜓(𝑗.𝑘)

𝑓𝑓
𝐻𝜓(𝑗.𝑘)

] 
(26) 

The sensitivity equations for estimation of the change of the structural parameters based on all 

available data is presented as 

Δ𝑆𝜓(𝑗.𝑘)
= 𝑆𝜓(𝑗.𝑘)

𝐾 Δ𝑃𝐾 + 𝑆𝜓(𝑗.𝑘)

𝑀 Δ𝑃𝑀 (27) 

Where, 𝑆𝜓(𝑗.𝑘)

𝐾  and 𝑆𝜓(𝑗.𝑘)

𝑀   are the sensitivity equations concerning the stiffness and mass 

parameters. The performance of the sensitivity-based model updating methods is affected by several 

factors such as the number of available data, measurement and mass modeling errors, selection of 

measurement and excitation locations, the proper weighting of the equations, algorithm used to solve 

the optimization problem, and applied constraints on the variation of unknowns. Hence, the 

optimization problem is defined as follows 

min
Δ𝑃

 ‖𝑆Δ𝑃 − Δ𝑆‖2            𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   − 1 ≤ Δ𝑃 ≤ 1 (28) 

To calculate the parameter of the damaged structure, and solve the equations by the least square 

method, the “lsqlin” solver of the MATLAB optimization toolbox is used (Mathworks 2014). 

The implementing steps of the introduced damage detection method are summarized in the 

flowchart given by Fig. 1. This procedure is repeated for each simulated damage cases by Monte 

Carlo analysis, and the mean and COVs of predicted parameters are reported as damage detection 

results. 

 

 

3. Numerical results and discussion 
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Fig. 1 The flowchart of the proposed damage detection method 

 

 

Fig. 2 The geometry of a bowstring truss model 
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Fig. 3 Degrees of freedom of truss model 

 
Table 1 Cross-sectional area of truss members 

Member Area (𝐜𝐦𝟐) 

1-6 18 

7-12 15 

13-17 10 

18-25 12 

 

 
Fig. 4 Schematic excitation and measurement setup of truss model (excited and measurement degrees of 

freedom) 

 

 

3.1 2D Truss model 
 

The robustness of the presented algorithm is studied numerically for investigation of the effects 

of the location, severity, and number of the damaged elements on the model updating results. The 

presented method is applied on a six-bay truss structure, as shown by Fig. 2, Two-Dimensional axial 

truss elements are used to model the structure by finite element method. 

All truss elements are considered as steel material with Young's modulus of 200 GPa, and mass 

density of 7800
kg

m3. The cross-sectional areas of the truss members are given in Table 1. The truss 

structure is modeled by 25 elements. The active DOFs of the numerical model are presented in Fig. 

3. For a truss element, unknown parameter is axial rigidity EA, where A is cross-sectional area and 

E is Young's modulus. 

The time history analysis of the structural response, and consequently the extraction of wavelet 

transform coefficients are conducted based on the Newmark-beta method (Naeim 2007). In this 
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study, DOF numbers 1, 8, 14, 15, 20, and 21 are selected as  measurement locations, and DOF 

numbers  3, 9, 15, and 19 are selected as the excitation locations as presented schematically by Fig. 

4. It is assumed that excitation loads are applied individually, and structural responses are measured 

at the selected DOFs. Measurement and excitation locations are considered similar for all considered 

damage cases. 

The excitation force is assumed as  F(t)=5sin(6πt). The sampling rate is considered as 1000 Hz. 

The following damage scenarios of different percentage reduction of the flexural rigidity are 

considered: 

Scenario 1 – 30% and 50% reduction in elements 4 and 10. 

Scenario 2 – 20%,30%,30% and 30% reduction in elements 3,9,20 and 25. 

Scenario 3 – 40%,40%,50%.40% and 30% reduction in elements 5,10,13,20 and 24. 

The natural frequencies of intact and damaged structures at the simulated damage cases are given 

in Table 2. 

Displacement responses at the desired DOFs is extracted for two seconds after application of 

excitation. The structural responses are decomposed into four levels of Daubechies Db4 wavelets. 

The selection of 𝑎(𝑗.𝑘) is a paramount issue for successful structural parameter estimation. At the 

selected 𝑎(𝑗.𝑘) the wavelet coefficient must be sensitive to the changes of structural parameters and 

less sensitive to the measurement errors. In order to improve the accuracy of the approximated 

𝐻𝐷
𝜓(𝑗.𝑘)

  by Eq. (24) and consequently the sensitivity equation, 𝑎(𝑗.𝑘)  are selected close to the 

square of the natural frequencies of the damaged and intact structure. absolute values of 𝑎(𝑗.𝑘) is 

essential. The selected ranges of 𝑎(𝑗.𝑘) based on Eq. (10) for a different time and shift scales are 

given by Fig. 4. The selected ranges values of 𝑎(𝑗.𝑘) for the structural model updating are given in 

Table 1. 

Also, in all damage cases, four decomposition steps of response signal were  used for structural 

parameter estimation. The total number of elements in 𝑎(𝑗.𝑘) is 3850 that 275, 194, and 288 data 

has been used at different time scale for the first damage case Table 3. These data have been selected  

 

 
Table 2 Natural frequencies (Hz) for the intact and damaged cases 

Mode number. Intact model 
Damage case 

1 2 3 

1 30.34 28.53 29.34 28.81 

2 68.95 67.89 67.31 66.89 

3 96.34 94.39 95.10 92.95 

4 181.76 170.41 166.17 159.98 

5 223.23 219.64 209.06 211.59 

6 275.59 271.81 265.56 263.85 

 
Table 3 The selected range for aj,k Value for Model Updating 

Damage Case 1 2 3 

𝒂(𝒋.𝒌)range 

(-3.45e+4)~(-4.22e+4) (-3.4e+4)~(-4.22e+4) (-3.42e+4)~(-4.3e+4) 

(-5.14e+4)~(-5.41e+4) (-5.58e+4)~(-6.12e+4) (-5.64e+4)~(-6.16e+4) 

(-7.58e+4)~(-8.27e+4) (-7.6e+4)~(-8.36e+4) (-7.76e+4)~(-8.48e+4) 

- (-10.47e+4)~(-11.61e+4) (-10.17e+4)~(-11.45e+4) 
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Fig. 4 The range of collected 𝑎(𝑗.𝑘) in different damage scenarios of the truss model 

 

 

Fig. 5 The frequency response function (FRF) of the intact Truss model (excited at DOF 15 and 

measured at DOF 19) 

 

 

close to the natural frequencies of the damaged structure. The selected ranges of 𝑎(𝑗.𝑘) at second 

and third damage scenarios, which are also shown in Fig. 5, the number of collected data is different 

for achieving a better estimation of  the location and severity the damage. To allow comparison in 

a single diagram,  the data of second and third scenarios are vertically shifted by the factors 2 and 3, 

respectively. 

Due to practical limitations, it is assumed that only a few numbers of the natural frequencies are 

measurable, because the amplitude of oscillation at higher mode shapes decreases and accurate 

measurements will be impractical. By a numerical simulation, the structural response function at 

domain of frequency and wavelet transform are plotted as shown in Figs. 6 to 7 in order to show the 

ranges of coefficients 𝑎(𝑗.𝑘) around natural frequencies of the intact truss structure subjected to the 

applied load at DOF 15 and measurement at DOF 19. Due to the negligible changes of the structural 

response in the lower frequencies, the selection of the coefficient aij around resonances 1, 2, and 3 

are omitted.  
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Fig. 6 The wavelet transform function (WTF) of the intact Truss model (excited at DOF 15 and 

measured at DOF 19) 

 

  
(a) (b) 

Fig. 7 (a) First case damage predicted parameter at considering 5% measurement error and 5% modeling 

error, (b) COV of the predicted parameters 

 

 

The results of parameters estimation are shown in Fig. 8(a) to 10(a). The results demonstrate the 

acceptable performance of the proposed method to identify structural damages. 

There are unavoidable errors in the finite element updating process, such as environmental, 

modeling, and measurement errors. In order to simulate the impacts of measurement errors, random 

values are added to the numerically evaluated responses. Thus, 5% of uniformly distributed random 

errors are added proportionally to the simulated data. The proposed method uses the mass parameters 

of the structure for evaluation of the structural responses, mode shapes, and consequently, the 

proposed approximation of 𝐻𝐷
𝜓(𝑗.𝑘)

 For most real cases, structural damage influences the stiffness 

parameters and the mass parameters are identical for the intact and damaged structures. However, 

the assumed mass parameters may not be accurate. Hence, 5% of the random errors are added to the 

mass matrix as the modeling error. The average of estimated parameters do not reflect the robustness 

and confidence of the parameters estimation process. Scattering of predicted stiffness parameters 

around mean values is studied through by evaluating of standard deviations of predicted stiffness  
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(a) (b) 

Fig. 8 (a) Second case damage predicted parameter at considering 5% measurement error and 5% 

modeling error, (b) COV of the predicted parameters 

 

  
(a) (b) 

Fig. 9 (a) Third case damage predicted parameter at considering 5% measurement error and 5% modeling 

error, (b) COV of the predicted parameters 

 

 

parameters. The coefficient of variation (COV) for each of the predicted unknown parameters is 

evaluated by normalization of standard deviation concerning its mean value. Low (COV) indicates 

the resistance of the method to measurement error. Fifty sets of random errors are considered to 

examine the robustness of the proposed method against measurement and mass modeling errors. 

The model updating results presented in Fig. 8(a) to 10(a) prove that the proposed sensitivity 

equation is able to accurately identify the location of the defects as well as the severity of the 

structural damages. Furthermore, the stability and robustness of the achieved results by the proposed 

sensitivity equation are assessed by evaluating the coefficient of variation (COV) of the predicted 

parameters. The coefficient of variation for each of the predicted parameters is calculated by 

normalization of the standard deviation concerning the mean value. The coefficients of variation of 

the estimated parameters are plotted in Fig. 8(b) to 10(b). Low COVs of the predicted parameters 

indicate the robustness of the proposed method against measurement errors and less scattering of 

the obtained results. 
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Table 4 Closeness index of truss model considering measurement and modeling error 

Damage Cases 
CI 

With measurement error with measurement error and modelling error 

1 0.96 0.93 

2 0.95 0.92 

3 0.98 0.95 

 

 

Fig. 10 The geometry of plate model 

 

 

In order to have a quantitative evaluation of the accuracy  of results, some indices can be used. 

Accuracy of the results can be assessed by closeness index (CI) based on the distance between the 

actual and estimated damage vectors as (Bakhtiari-Nejad et al. 2005) 

𝐶𝐼 = 1 −
‖𝛿𝑃𝑡 − 𝛿𝑃𝑝‖

‖𝛿𝑃𝑡‖
 (29) 

Where, 𝛿𝑝𝑡 and 𝛿𝑝𝑝 are the actual and predicted damage ratios, for an accurate evaluation of 

the  damaged parameters, the CI value is one. CI values of the considered damage cases are given in 

Table 4. 

CI values confirm the validity of the updated model results. The presented results show that the 

proposed sensitivity equation can update the model in the presence of measurement errors and mass 

modeling with acceptable accuracy. 

 

3.2 Plate model 
 

The proposed method is applied numerically on a flat plate structure. The plate is simply 

supported at all edges (SSSS), as depicted in Fig. 11.  

The plate is 1 m×0.8 m, and its finite-element model consists of 20 elements (5 divisions along 

x and four divisions along y-direction). The plate is considered steel material with a Young modulus 

of 210 GPa, Poisson ratio of 0.3, and mass density of 7800
kg

m2. The thickness of the plate uniform 

is 7 mm.  
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Fig. 11 Schematic of excitation and measurement setup of the plate model 

 
Table 5 Natural frequencies (Hz) for the intact and damaged cases 

Mode Number. Intact model 
Damage Case 

1 2 3 

1 23.4 21.9 17.21 18.06 

2 55.5 53.74 48.84 45.12 

3 139.7 137.45 127.28 131.87 

4 298.1 295.1 284.74 278.23 

5 307.5 303.52 296.89 291.46 

6 336.2 332.86 318.1 316.84 

 

 

The responses measurement at the rotational DOFs is a challenging issue. Therefore, in this study, 

the transitional DOFs perpendicular to the plate, i.e., the Z-axis, are considered excitation and 

measurement locations. The DOF numbers 7, 14, 18, 22, 24, and 29 are selected for response 

measurement and DOF numbers 9, 12, 19, 22, and 23 are selected as the excitation points. The 

locations of excitation and measurements are shown in Fig. 12. 

The natural frequencies of intact and damaged structures at the simulated damage cases are given 

in Table 5. The considered damage scenarios are of a different percentage reduction in the flexural 

rigidity in an element as: 

Scenario 1 –40% reduction in element 4. 

Scenario 2 –30% reduction in elements 6 and 13. 

Scenario 3 – 45%,reduction in elements 1, 5, 16 and 20. 

In this simulation, excitation frequency points are selected around the resonance frequencies at 

low modes. The response signal analysis is decomposed up to 4 levels for parameter estimation. 

Fig. 13 shows the obtained values 𝑎(𝑗.𝑘) based on Eq. (10) for different time and shift scales to 

identify the damage to the structural vibration response. The selected ranges of 𝑎(𝑗.𝑘)  for the 

structural model updating are given in Table 6. Also, in all damage cases, four decomposition steps 

of response signal were  used for damage detection. The total number of elements in 𝑎(𝑗.𝑘) is 3850, 

that 288, 275, 192, and 212 data have been used at different time scales for the first damage case 

Table 6.  
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Table 6 The selected range for aj,k Value for Model Updating 

Damage Case 1 2 3 

𝒂(𝒋.𝒌)range 

(-2.27e+4)~(-2.68e+4) (-2.34e+4)~(-2.76e+4) (-2.24e+4)~(-2.64e+4) 

(-4.12e+4)~(-8.37e+4) (-4.23e+4)~(-4.53e+4) (-4.28e+4)~(-4.76e+4) 

(-8.6e+4)~(-9.11e+4) (-8.45e+4)~(-9.18e+4) (-8.38e+4)~(-8.97e+4) 

(-11.42e+4)~(-11.61e+4) (-11.25e+4)~(-11.57e+4) (-11.28e+4)~(-11.54e+4) 

 

 

Fig. 12 The range of collected sensitivity coefficients in damage scenarios with different time scales 

of the plate model 

 

 

Fig. 13 The frequency response function (FRF) of the intact plate model (excited at DOF 22 and 

measured at DOF 18) 

 

 

In the second and third damage scenarios, shown in Fig. 13, the number of collected data is 

different for achieving a better estimation of  the location and severity of the damage. By a 

numerical simulation, the structural response function at domain of frequency and wavelet transform 

are plotted as shown in Figs. 14 to 15 in order to show the ranges of coefficients 𝑎(𝑗.𝑘) around 

natural frequencies of the intact truss structure subjected to the applied load at DOF 22 and  
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Fig. 14 The wavelet transform function (WTF) of the intact Truss model (excited at DOF 22 and 

measured at DOF 18) 

 

  
(a) (b) 

Fig. 15 (a) First case damage predicted parameter at considering 5% measurement error and 5% modeling 

error, (b( COV of the predicted parameters 

 

  
(a) (b) 

Fig. 16 (a) Second case damage predicted parameter at considering 5% measurement error and 5% modeling 

error, (b( COV of the predicted parameters 

 

 

measurement at DOF 18.  

In this study, 5% uniformly distributed random values are added to the simulated data. Also, 5% 

of the random error is added to the mass matrix as the modeling error. in addition, 50 sets of random  
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(a) (b) 

Fig. 17 (a) Third case damage predicted parameter at considering 5% measurement error and 5% modeling 

error, (b( COV of the predicted parameter 

 
Table 7 Closeness index of the predicted parameters of the plate model considering measurement modelling 

error 

Damage Cases 
CI 

With measurement error with measurement error and modelling error 

1 0.93 0.90 

2 0.91 0.87 

3 0.87 0.85 

 

 

data are considered for structural parameter estimation. The obtained results are presented by Figs. 

16 to 18. The results are presented in Fig. 16(a) to 18(a) show that the proposed sensitivity equation 

can accurately identify the location and severity of the simulated damage cases using error-

contaminated data. The COVs of the estimated unknown parameters are plotted in Fig. 16(b) to 

18(b). 

The CI values confirm the accuracy of the model updating results. The presented results prove 

that the proposed sensitivity relation is capable of the structural model updating with acceptable 

accuracy in the presence of measurement and mass modeling errors. 

 

 

4. Conclusions 
 

In this study, the sensitivity equation of the wavelet transform coefficients of the correlation 

function was used for damage detection of the structures. An approximated equation is applied to 

estimate the unmeasured wavelet-based transform function of the damaged structure. The model is 

updated by the wavelet transform coefficients achieved in the frequency range in the vicinity of the 

resonances, in which damping and incomplete measurements have no significant effect on the results 

of the parameter estimation. Sensitivity equations are solved to obtain the change of structural 

parameters by the least-squares approach. The proposed method was successfully applied to a 2D 

truss and a plate model using simulated data contaminated by measurement and modeling errors. 

Results indicate the ability of the method to identify the location and severity of the structural 

damages. The robustness of the proposed method was confirmed by low values of the COVs of the 

parameter estimation results. 
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