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Abstract.   The main purpose of the present paper is to evaluate the influence of increase of the coefficient of 
viscosity with time on the strain energy release rate for a longitudinal crack in a continuously inhomogeneous beam 
configuration under linear creep. The beam exhibits continuous material inhomogeneity along the width, thickness 
and length. The creep behavior is studied analytically by a viscoelastic model structured by one dashpot and three 
springs. The coefficient of viscosity of the dashpot and the modulii of elasticity of the springs are distributed 
continuously in the width, thickness and length directions of the beam. Besides, the coefficient of viscosity increases 
with time. Time-dependent solutions to the strain energy release are derived by considering the balance of the energy 
and by applying the compliance method. The results obtained by the two solutions are identical which proves the 
correctness of the analysis performed. The solutions take into account the creep behavior and the increase of the 
coefficient of viscosity with time. A parametric study of the strain energy release rate is carried-out by using the 
solutions derived. It is found that the strain energy release rate decreases with increasing of the coefficient of viscosity 
with time. 
 

Keywords:  longitudinal crack; beam structure; viscoelastic behavior; creep; continuous material 
inhomogeneity 
 
 
1. Introduction 

 
Continuously inhomogeneous materials are important structural materials which are widely 

used in various engineering areas such as aerospace, automotive industry, astronautics, nuclear 
reactors, biomedicine, energy conservation and electronics. The properties of structural members 
made of these modern materials vary gradually along one or more coordinates. Thus, the material 
properties are continuous functions of the coordinates. One of the advanced continuously 
inhomogeneous materials is the functionally graded material. Continuous variations of 
microstructure and material properties of functionally graded materials are obtained by gradually 
changing the proportions of the constituent materials along the desired directions in the solid 
(Avcar and Mohammed 2018, Butcher et al. 1999, Çallioglu et al. 2011, 2015, Demir et al. 2013, 
Gasik 2010, Han et al. 2001, Hedia et al. 2014, Hirai and Chen 1999, Nemat-Allal et al. 2011, 
Saiyathibrahim et al. 2016, Udupa et al. 2014, Sofiyev and Avcar 2010, Sofiyev et al. 2012, Uslu 
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Uysal and Kremzer 2015, Uslu Uysal 2015, 2016, Wu et al. 2014). Due to the fact that the 
properties of functionally graded materials can be formed technologically and vary smoothly in the 
material, these novel composites possess remarkable advantages in comparison with traditional 
laminated composite. The functionally graded materials find extensive application especially in 
development of structural members and components subjected to non-uniform exploitation 
requirements. 

In order to design the continuously inhomogeneous (functionally graded) structural members 
safely, various aspects of the fracture behavior of continuously inhomogeneous materials should be 
carefully analyzed (Panigrahi and Pohit 2016, Wei et al. 2012, Erdogan 1995, Uslu Uysal and 
Güven 2016, Yang and Chen 2008). 

Various problems of linear-elastic fracture mechanics of functionally graded materials have 
been formulated in Erdogan (1995). The deboning fracture behaviour of functionally graded 
coatings has been discussed too. The effects of residual and thermal stresses on the fracture have 
been considered. Delamination cracks in beam structural members with functionally graded 
surface coatings with linear-elastic behaviour have also been studied. 

Functionally graded beam structures with edge cracks have been investigated theoretically 
assuming linear-elastic behavior of the material (Yang and Chen 2008). The beams under 
consideration are functionally graded along their thickness only. Cracked beams with different end 
supports such as clamped-clamped, clamped-free and hinged-hinged have been analyzed. 

Fracture analyses of functionally graded beam configurations with axial loading have been 
developed in (Wei et al. 2012). The crack has been modeled by using a rotational spring. Free 
vibration of cracked beams with linear-elastic mechanical behavior has been studied. The effects 
of crack location and end supports have been evaluated and discussed. It has been shown that the 
analyses developed can be used for controlling of damaged functionally graded beams structures.               

   Fracture behavior of continuously inhomogeneous (functionally graded) beam structures 
has been studied analytically in Panigrahi and Pohit (2016). Various beam configurations have 
been analyzed by using the neutral surface as a reference. The material is functionally graded 
along the beam height. The influence of crack depth on the fracture behavior has been investigated 
and discussed. 

The present paper is focused on analysis of the effect of increase of the coefficient of viscosity 
with time on the strain energy release rate for a longitudinal vertical crack in a continuously 
inhomogeneous beam structure that exhibits linear creep behavior. It should be noted that the 
previous works on longitudinal fracture of continuously inhomogeneous beam configurations do 
not consider the influence of creep behavior (Rizov 2017, 2018a, b, 2019, 2020, Rizov and 
Altenbach 2020). However, inhomogeneous materials and structures under long-lasting external 
loads usually have creep behavior that has to be taken into account in longitudinal fracture 
analyses. Therefore, developing of analyses with considering of creep is an important problem of 
fracture mechanics of inhomogeneous structures. Such analyses will contribute for improving of 
safety, reliability and durability of inhomogeneous structural members subjected to long-lasting 
loads. It should be mentioned that analysis of longitudinal fracture is an important problem also 
because continuously inhomogeneous (functionally graded) materials can be built-up layer by 
layer (Mahamood and Akinlabi 2017, Markworth et al, 1995, Miyamoto et al. 1999) which is 
premise for appearance of longitudinal cracks between layers. In the present paper, the time-
dependent strain energy release rate is derived by considering the balance of the energy. The 
results obtained are confirmed by applying the compliance method. The beam under consideration 
is continuously inhomogeneous along the width, thickness and length. The creep is treated by a 
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viscoelastic model with one dashpot and three springs (the coefficient of viscosity of the dashpot 
increases exponentially with time). A parametric study is performed by using the time-dependent 
solution to the strain energy release rate. 

 
 

2. Theoretical model. Analysis of the strain energy release rate 
 
A viscoelastic beam configuration is depicted in Fig. 1. The beam has a rectangular cross-

section of width, 𝑏, and thickness, ℎ. The length of the beam is 2(𝑙ଵ + 𝑙). The beam is subjected 
to four-point bending by two vertical forces, 𝐹, applied at the ends of the beam. A notch of depth, 𝑏ଵ, is cut-out in the lateral surface of the beam as shown in Fig. 1. A longitudinal vertical crack of 
length, 2𝑎, is located symmetrically with respect to the mid-span. The cross-sections of the right-
hand and left-hand crack arms are rectangles of widths, 𝑏ଵ and 𝑏ଶ, and thickness, ℎ. The notch 
divides the right-hand crack arm in two symmetric parts of length, 𝑎. It is obvious that the ring-
hand crack arm is free of stresses. It should be mentioned that the crack is located in beam portion, 𝐷ଶ𝐷଺, which is loaded in pure bending (Fig. 1). 

  The beam exhibits linear creep behavior that is described by using the viscoelastic model 
shown schematically in Fig. 2. The model is structured by one dashpot with coefficient of 
viscosity, 𝜂଴௧, and three springs with modulii of elasticity, 𝐸௔, 𝐸௕ and 𝐸௖. The increase of 𝜂଴௧ 
with time is expressed as 

 𝜂଴௧ = 𝜂଴𝑒ఘ௧, (1)
 

where 𝑡 is time, 𝜂଴ is the value of the coefficient of viscosity at 𝑡 = 0, 𝜌 is a material property (𝜌 > 0). 
For the viscoelastic model under constant applied stress, 𝜎 ⥂, it can be written that 
 𝜎 = 𝜎ఎ + 𝜎௕, (2)
 𝜎௔ = 𝐸௔𝜀௔⥂, (3)
 𝜎௕ = 𝐸௕𝜀௕, (4)
 𝜎ఎ = 𝜂଴௧⥂ 𝜀•ఎ ⥂, (5)
 𝜎௔ + 𝜎௕ = 𝜎, (6)
 𝜀ఎ⥂ + 𝜀௔ = 𝜀௕, (7)
 𝜀௕ = 𝜀, (8)
 

where 𝜎௔, 𝜎௕ and 𝜎ఎ are the stresses in the springs with modulii of elasticity, 𝐸௔ and 𝐸௕, and 
in the dashpot, respectively. The strains in the springs with modulii of elasticity, 𝐸௔ and 𝐸௕, and 
in the dashpot are denoted by 𝜀௔, 𝜀௕ and 𝜀ఎ, respectively. 
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Fig. 1 Geometry and loading of an inhomogeneous viscoelastic beam with a longitudinal crack 
 
 
By combining of (1)-(8), one obtains 
 

𝜎 = 𝜂଴𝑒ఘ௧ ൦𝜀• − 1𝐸௔ ൭𝜎• − 𝐸௕𝜀•⥂ ൱⥂ ൪ + 𝐸௕𝜀, (9)

 

Since 
 𝜎• = 0⥂ , (10)
 

Eq. (9) takes the form 
 𝜎 = 𝜂଴⥂𝑒ఘ௧ ൬𝜀• + 𝐸௕𝐸௔ 𝜀•൰ + 𝐸௕𝜀. (11)

 
 

Fig. 2 Linear viscoelastic model with a dashpot and three springs 
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By solving of (11) with respect to the strain, 𝜀, and adding the strain in the spring with 
modulus of elasticity, 𝐸௖ , one obtains the following stress-strain-time relationship for the 
viscoelastic model shown in Fig. 1 

 𝜀 = 𝜎𝐸௕ ቈ1 − 𝑒 ா್ொఘ൫௘షഐ೟ିଵ൯቉ +⥂ 𝜎 ⥂⥂⥂ 𝑒 ா್ொఘ൫௘షഐ೟ିଵ൯𝐸௔ + 𝐸௕ + 𝜎𝐸௖. (12)

 

where 
 𝑄⥂ = 𝜂଴(𝐸௔ + 𝐸௕)𝐸௔ . (13)

 
The beam is made of material that is continuously inhomogeneous in width, thickness and 

length directions. Therefore, the modulii of elasticity and the coefficient of viscosity of the 
viscoelastic model vary continuously along the width, thickness and length of the beam. The 
distributions of the modulii of elasticity and the coefficient of viscosity in the beam cross-section 
are written as 𝐸௔ = 𝐸௔଴𝑒௙ೌ ⥂௕ଶା௬య௕ ା௚ೌℎଶା௭య

ℎ , (14)

 𝐸௕ = 𝐸௕଴𝑒௙್⥂௕ଶା௬య௕ ା௚್ℎଶା௭య
ℎ . (15)

 𝐸௖ = 𝐸௖଴𝑒௙೎⥂௕ଶା௬య௕ ା௚೎ℎଶା௭య
ℎ , (16)

 𝜂 = 𝜂଴௧𝑒௙ആ⥂௕ଶା௬య௕ ା௚⥂ആℎଶା௭య
ℎ , (17)

 

where 
 − 𝑏2 ≤ 𝑦ଷ ≤ 𝑏2, (18)

 − ℎ2 ≤ 𝑧ଷ ≤ ℎ2. (19)

 
In formulae (14)-(19), 𝐸௔଴, 𝐸௕଴, 𝐸௖଴ and 𝜂଴௧ are, respectively, the values of 𝐸௔, 𝐸௕ , 𝐸௖ 

and the coefficient of viscosity, 𝜂⥂, in the upper left-hand vertex of the beam cross-section, 𝑓௔, 𝑓௕, 𝑓௖, and 𝑓ఎ are, respectively, material properties which control the distributions of 𝐸௔, 𝐸௕, 𝐸௖ 
and 𝜂⥂ along the beam width, 𝑔௔, 𝑔௕, 𝑔௖ and 𝑔ఎ are, respectively, material properties which 
control the distributions of 𝐸௔, 𝐸௕, 𝐸௖ and 𝜂⥂ along the beam thickness, 𝑦ଷ and 𝑧ଷ are the 
centroidal axes of the beam cross-section. 

Along the beam length, the distributions of 𝐸௔଴, 𝐸௕଴, 𝐸௖଴ and 𝜂଴  are expressed as 
 𝐸௔଴ = 𝐸௔଴஻𝑒௦ೌ⥂ ௫య௟భା௟, (20)
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𝐸௕଴ = 𝐸௕଴஻ ⥂ 𝑒௦್ ௫య௟భା௟, (21)
 𝐸௖଴ = 𝐸௖଴஻𝑒௦೎ ௫య௟భା௟, (22)
 𝜂଴ = 𝜂଴஻𝑒௦ആ ௫య௟భା௟, (23)
 

where 
 0 ≤ 𝑥ଷ ≤ 𝑙ଵ + 𝑙. (24)
 
In formulae (20)-(24), 𝐸௔଴஻, 𝐸௕଴஻, 𝐸௖଴஻ and 𝜂଴஻ are, respectively, the values of 𝐸௔଴, 𝐸௕଴, 𝐸௖଴ and 𝜂଴ at the ends of the beam, 𝑥ଷ is the longitudinal centroidal axis of the beam, 𝑠௔, 𝑠௕, 𝑠௖ and 𝑠ఎ are material properties controlling the distributions of 𝐸௔଴, 𝐸௕଴, 𝐸௖଴ and 𝜂଴ along 

the beam length, respectively. At 
 𝑙ଵ + 𝑙 ≤ 𝑥ଷ ≤ 2(𝑙ଵ + 𝑙), (25)
 

the distributions of 𝐸௔଴, 𝐸௕଴, 𝐸௖଴ and 𝜂଴ are written as 
 𝐸௔଴ = 𝐸௔଴஻𝑒௦ೌ⥂ଶ(௟భା௟)ି௫య௟భା௟ , (26)
 𝐸௕଴ = 𝐸௕଴஻ ⥂ 𝑒௦್ଶ(௟భା௟)ି௫య௟భା௟ , (27)
 𝐸௖଴ = 𝐸௖଴஻𝑒௦೎ଶ(௟భା௟)ି௫య௟భା௟ , (28)
 𝜂଴ = 𝜂଴஻𝑒௦ആଶ(௟భା௟)ି௫య௟భା௟ . (29)
 
Formulae (20)-(29) indicate that the modulii of elasticity and the coefficient of viscosity are 

distributed symmetrically with respect to the mid-span. 
A time-dependent solution to the strain energy release rate for the longitudinal crack in Fig. 1 is 

derived by considering the balance of the energy. The solution takes into account the linear creep 
behavior and the increase of the coefficient of viscosity with time. Due to the symmetry, only half 
of the beam, 𝐷ସ𝐷଻, is analyzed (Fig. 1). The balance of the energy is written as 

 𝐹𝛿𝑤 = 𝜕𝑈𝜕𝑎 𝛿𝑎 + 𝐺ℎ𝛿𝑎, (30)
 

where 𝐺 is the strain energy release rate, 𝑤 is the vertical displacement of the application point, 𝐻, of the external force (Fig. 1), 𝑈 is the time-dependent strain energy cumulated in half of the 
beam, 𝛿𝑎 is a small increase of the crack length. 

From (30), one derives 
 𝐺 = 2 ൬𝐹

ℎ
𝜕𝑤𝜕𝑎 − 1

ℎ
𝜕𝑈𝜕𝑎൰. (33)
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Fig. 3 Cross-section of the left-hand crack arm
 
 
The right-hand side of (31) is doubled in view of the symmetry (Fig. 1). 
The time-dependent strain energy in half of the beam is written as 
 𝑈 = 𝑈ଵ + 𝑈ଶ, (32)
 

where 𝑈ଵ and 𝑈ଶ are the strain energies in portion, 𝐷ସ𝐷ହ, of the left-hand crack arm, and in 
portion, 𝐷ହ𝐷଺, of the beam. It should be mentioned that the strain energy cumulated in portion, 𝐷଺𝐷଻, of the beam is not involved in (32), respectively in (31) since this strain energy does not 
depend on the crack length. 

The time-dependent strain energy cumulated in portion, 𝐷ସ𝐷ହ, of the left-hand crack arm is 
found as (Fig. 3) 𝑈ଵ = න න න 𝑢଴ଵ𝑑𝑥ଵ𝑑𝑦ଵ⥂𝑑𝑧ଵℎଶି

ℎଶ
௕మଶି௕మଶ

௔
଴ , (33)

 
where the time-dependent strain energy density, 𝑢଴ଵ, is written as 

 𝑢଴ଵ = 12 𝜎𝜀. (34)

 
By applying the Bernoulli’s hypothesis for plane sections, the distribution of strains in the 

cross-section of the left-hand crack arm is expressed as 
 𝜀 = 𝜀஼భ + 𝜅ଵ⥂𝑦ଵ + 𝜅ଶ𝑧ଵ, (35)
 

where 𝜀஼భ is the strain in the centre of the cross-section, 𝜅ଵ and 𝜅ଶ are the curvatures in the 𝑥ଵ𝑦ଵ and 𝑥ଵ𝑧ଵ planes, respectively. It should be mentioned that the Bernoulli’s hypothesis is 
applicable since beams of high length to thickness ratio are considered in the present paper. 

The following time-dependent equations for equilibrium of the elementary forces in the cross-
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section of the left-hand crack arm are used in order to determine 𝜀஼భ, 𝜅ଵ and 𝜅ଶ 
 𝑁ଵ = න න 𝜎𝑑𝑦ଵ𝑑𝑧ଵℎଶି

ℎଶ
௕మଶି௕మଶ , (36)

 𝑀௬భ = න න 𝜎𝑧ଵ𝑑𝑦ଵ𝑑𝑧ଵℎଶି
ℎଶ

௕మଶି௕మଶ , (37)

 𝑀௭భ = න න 𝜎𝑦ଵ𝑑𝑦ଵ𝑑𝑧ଵℎଶି
ℎଶ

௕మଶି௕మଶ , (38)

 

where 𝑁ଵ is the axial force, 𝑀௬భ  and 𝑀௭భ  are the bending moments with respect to 𝑦ଵ and 𝑧ଵ. 
It is obvious that 𝑁ଵ = 0, (39)

 𝑀௬భ = 𝐹𝑙, (40)
 𝑀௭భ = 0. (41)
 
By combining of (12) and (35), one obtains 
 

𝜎 = ቆ𝜀஼భ⥂ + 𝜅ଵ𝑦ଵ + 𝜅ଶ𝑧ଵቇ ቐ 1𝐸௕ ቈ1 − 𝑒 ா್ொఘ൫௘షഐ೟ିଵ൯቉ +⥂ ⥂⥂⥂ 𝑒 ா್ொఘ൫௘షഐ೟ିଵ൯𝐸௔ + 𝐸௕ + 1𝐸௖ቑିଵ. (42)

 
After substituting of (42) in (36), (37) and (38), the equations for equilibrium are solved with 

respect to 𝜀஼భ, 𝜅ଵ and 𝜅ଶ at various values of time by using the MatLab computer program. 
The time-dependent strain energy in beam portion, 𝐷ହ𝐷଺, is written as 
 𝑈ଶ = න න න 𝑢଴ଶ𝑑𝑥ଵ𝑑𝑦ଶ⥂𝑑𝑧ଶℎଶି

ℎଶ
௕⥂ଶି௕⥂ଶ

௟
௔ , (43)

 
where 𝑢଴ଶ is the time-dependent strain energy density in this beam portion, 𝑦ଶ and 𝑧ଶ are the 
centroidal axes of the cross-section. The strain in the centre of the cross-section and the curvatures 
of the beam in portion, 𝐷ହ𝐷଺, are determined by using the equations for equilibrium (36), (37) and 
(38). For this purpose, 𝑏ଶ and 𝜎 are replaced with 𝑏 and 𝜎஽ఱ஽ల, respectively. The stress, 𝜎஽ఱ஽ల, 
in the beam portion, 𝜎஽ఱ஽ల, is expressed by replacing 𝜀஼భ, 𝜅ଵ and 𝜅ଶ with the strain in the 
centre and curvatures of the beam portion, 𝜎஽ఱ஽ల, in formula (42). 

The vertical displacement, 𝑤, that is involved in the expression for the time-dependent strain 
energy release rate (31) is derived by applying the theorem of Castigliano 

 𝑤 = 𝜕𝑈 ⥂𝜕𝐹 . (44)
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By substituting of (32), (33), (43) and (44) in (31), one derives 
 𝐺 = 2ℎ ቎𝐹 𝜕𝜕𝐹 ⥂⥂ ቌන න 𝑢଴ଵ𝑑𝑥ଵ𝑑𝑦ଵ⥂𝑑𝑧ଵ−⥂ න න 𝑢଴ଶ𝑑𝑥ଵ𝑑𝑦ଶ⥂𝑑𝑧ଶℎଶି

ℎଶ
௕⥂ଶି௕⥂ଶ

௛ଶି௛ଶ
௕మଶି௕మଶ ቍ 

             − න න 𝑢଴ଵ𝑑𝑥ଵ𝑑𝑦ଵ⥂𝑑𝑧ଵ௛ଶି௛ଶ +⥂ න න 𝑢଴ଶ𝑑𝑥ଵ𝑑𝑦ଶ⥂𝑑𝑧ଶℎଶି
ℎଶ

௕⥂ଶି௕⥂ଶ
௕మଶି௕మଶ ቏, (45)

 

where the derivative, డడி (. . . ), is obtained by the MatLab computer program. The integration in 
(45) is carried-out also by using the MatLab. The time-dependent solution (45) is applied to 
calculate the strain energy release rate at various values of time. 

A time-dependent solution to the strain energy release rate is derived also by using the 
compliance method. For this purpose, the strain energy release rate is written as 

 𝐺 = 2 ൬ 12ℎ ⥂ 𝐹ଶ 𝑑𝐶⥂𝑑𝑎 ൰, (46)
 

where 𝐶 is the compliance of the beam. The right-hand side of (46) is doubled in view of the 
symmetry. The compliance is defined as 

 𝐶 = 𝑤𝐹, (47)
 

where 𝑤 is found by using (44). 
By combining of (32), (33), (43), (44), (46) and (47), one obtains 
 𝐺 = 𝐹ℎ 𝜕𝜕𝐹 ⥂ ቌන න 𝑢଴ଵ𝑑𝑥ଵ𝑑𝑦ଵ⥂𝑑𝑧ଵ௛ଶି௛ଶ

௕మଶି௕మଶ −⥂ න න 𝑢଴ଶ𝑑𝑥ଵ𝑑𝑦ଶ⥂𝑑𝑧ଶℎଶି
ℎଶ

௕⥂ଶି௕⥂ଶ ቍ. (48)

 

The integration in (48) is performed by the MatLab computer program. The derivative, డడி (. . . ), 
is found also by using the MatLab. 

It should be noted that the strain energy release rates obtained by (48) match exactly these 
calculated by (45). This fact proves the correctness of the time-dependent solutions to the strain 
energy release rate derived in the present paper. 

 
 

3. Parametric investigation 
 
The time-dependent solution to the strain energy release rate (45) is applied here in order to 

carry-out a parametric investigation. 
The strain energy release rate is expressed in non-dimensional form by using the formula 𝐺ே =𝐺/(𝐸௔଴஻ℎ). The purpose of the parametric investigation is to evaluate the influence of the 

increasing coefficient of viscosity with time on the strain energy release rate. The influences of the 
length and location of the longitudinal crack and the material inhomogeneity along the width, 
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Fig. 4 The strain energy release rate in non-dimensional form presented as a function of non-dimensional 
time (curve 1 – at 𝜌 = 0.5, curve 2 – at 𝜌 = 1.0 and curve 3 – at 𝜌 = 1.5) 

 
 

thickness and length of the beam on the strain energy release rate are also evaluated. It is assumed 
that 𝑏 = 0.015 m, ℎ = 0.010 m, 𝑙ଵ = 0.020 m, 𝑙 = 0.040 m and 𝐹 = 10 N. 

First, the change of the strain energy release rate with time is evaluated. For this purpose, 
calculations of the strain energy release rate are carried-out at various values of time. 

In order to evaluate the effect of increase of the coefficient of viscosity with time, the strain 
energy release rate is obtained for three values of 𝜌. The strain energy release rate in non-
dimensional form is presented as a function of non-dimensional time in Fig. 4 for three values of 𝜌. The time is expressed in non-dimensional form by using the formula 𝑡ே = 𝑡𝐸௔଴஻/𝜂଴஻ூ. It can 
be observed in Fig. 4 that the strain energy release rate increases with time (this behavior is due to 
creep). The curves in Fig. 4 indicate that the strain energy release rate decreases with increasing of 𝜌. Therefore, it can be concluded that the increase of the coefficient of viscosity with time leads to 
decrease of the strain energy release rate (physically, this is due to decrease of the deformability). 

The influence of material inhomogeneity in the beam cross-section on the strain energy release 
rate is analyzed too. The findings of this analysis are shown in Fig. 5. First, the influence of the 
continuous variation of the value of 𝐸௔ along the width and thickness of the beam cross-section 
on the strain energy release rate is studied by performing calculations of the strain energy release 
rate at various values of 𝑓௔ and 𝑔௔. The results of these calculations are illustrated in Fig. 5(a) 
where the strain energy release rate in non-dimensional form is presented as a function of 𝑓௔ for 
three values of 𝑔௔. The curves in Fig. 5(a) indicate that the strain energy release rate decreases 
with increasing of 𝑓௔. The increase of material property, 𝑔௔, also leads to decrease of the strain 
energy release rate (Fig. 5(a)). The reason for this behavior is increase of the beam stiffness. 

An investigation of the effect of the continuous change of 𝐸௕ in the width and thickness 
direction of the beam cross-section is carried-out by calculating the strain energy release rate at 
various values of 𝑓௕ and 𝑔௕. The results obtained are shown in Fig. 5(b). One can observe in Fig. 
5(b) that the strain energy release rate decreases with increasing of 𝑓௕ and 𝑔௕ (this is explained 
by increase of the stiffness). 

A similar investigation of the effect of the continuous variation of the value of modulus of 
elasticity, 𝐸௖, along the width and thickness of the cross-section is performed. The calculated 
strain energy release rate is presented in non-dimensional form as a function of 𝑓௖ in Fig. 5(c) at 
three values of 𝑔௖. The curves in Fig. 5(c) show that the increase of 𝑓௖ and 𝑔௖ leads to decrease 
of the strain energy release rate. 
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Fig. 5 The strain energy release rate in non-dimensional form presented as a function of (a) 𝑓௔ (curve 

1 – at 𝑔௔ = 0.5, curve 2 – at 𝑔௔ = 1.0 and curve 3 – at 𝑔௔ = 2.0); (b) 𝑓௕ (curve 1 – at 𝑔௕ =0.5, curve 2 – at 𝑔௕ = 1.0 and curve 3 – at 𝑔௕ = 2.0); (c) 𝑓௖ (curve 1 – at 𝑔௖ = 0.5, curve 2 
– at 𝑔௖ = 1.0 and curve 3 – at 𝑔௖ = 2.0); (d) 𝑓ఎ (curve 1 – at 𝑔ఎ = 0.5, curve 2 – at 𝑔ఎ =1.0 and curve 3 – at 𝑔ఎ = 2.0) 

 
 

 
Fig. 6 The strain energy release rate in non-dimensional form presented as a function of (a) 𝑠௔ (curve 1 – 

at 𝑠௕ = 0.5, curve 2 – at 𝑠௕ = 1.0 and curve 3 – at 𝑠௕ = 2.0); (b) 𝑠௖ (curve 1 – at 𝑏ଶ/𝑏 = 0.3, 
curve 2 – at 𝑏ଶ/𝑏 = 0.6 and curve 3 – at 𝑏ଶ/𝑏 = 0.9); (c) 𝑠ఎ (curve 1 – at 𝑎/𝑙 = 0.25, curve 2 – 
at 𝑎/𝑙 = 0.5 and curve 3 – at 𝑎/𝑙 = 0.75) 
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Calculations of the strain energy release rate are carried-out also at various values of 𝑓ఎ and 𝑔ఎ in order to assess the effect of the continuous variation of the coefficient of viscosity along the 
width and thickness of the beam cross-section. The strain energy release rate in non-dimensional 
form is presented as a function of 𝑓ఎ at three values of 𝑔ఎ in Fig. 5(d). One can observe in Fig. 
5(d) that the strain energy release rate decreases with increasing of  𝑓ఎ and 𝑔ఎ. 

The effect of continuous material inhomogeneity along the beam length on the strain energy 
release rate is also analyzed. The results obtained are shown in graphical form in Fig. 6. First, the 
effect of continuous variation of the modulii of elasticity, 𝐸௔ and 𝐸௕, along the beam length is 
studied. For this purpose, calculations of the strain energy release rate are performed at various 
values of 𝑠௔ and 𝑠௕. One can get an idea for the effect of continuous variation of 𝐸௔ and 𝐸௕ 
along the beam length from Fig. 6(a) where the strain energy release rate in non-dimensional form 
is presented as a function of 𝑠௔ at three values of 𝑠௕. It can be observed in Fig. 6a that the strain 
energy release rate decreases with increasing of 𝑠௔. The curves in Fig. 6(a) indicate also that 
increase of 𝑠௕ leads to decrease of the strain energy release rate. These findings are explained by 
increase of the stiffness. 

The influence of the crack location along the beam width and the continuous variation of the 
modulus of elasticity, 𝐸௖, along the beam length on the strain energy release rate is illustrated in 
Fig. 6(b) where the strain energy release rate in non-dimensional form is presented as a function of 𝑠௖ for three values of 𝑏ଶ/𝑏 ratio (this ratio characterizes the location of the crack along the beam 
width). One can observe in Fig. 6(b) that the strain energy release rate decreases with increasing of 𝑠௖. Concerning the influence of crack location along the beam width, the curves in Fig. 6(b) show 
that the strain energy release rate decreases with increasing of 𝑏ଶ/𝑏 ratio. This behavior is due to 
increase of the stiffness of the left-hand crack arm with increasing of 𝑏ଶ/𝑏 ratio. 

Finally, the influences of the crack length and the continuous variation of the coefficient of 
viscosity along the beam length on the strain energy release rate are evaluated by performing 
calculations of the strain energy release rate at various values of 𝑎/𝑙 ratio and 𝑠ఎ. The strain 
energy release rate in non-dimensional form is presented as a function of 𝑠ఎ in Fig. 6(c) at three 
values of  𝑎/𝑙 ratio. It can be observed that the strain energy release rate decreases with 
increasing of 𝑠ఎ (Fig. 6(c)). The increase of 𝑎/𝑙 ratio (this ratio characterizes the crack length) 
leads to increase of the strain energy release rate (Fig. 6(c)). 

 
 

4. Conclusions 
 
The strain energy release rate for a longitudinal crack in a continuously inhomogeneous beam 

configuration under linear creep is analyzed. The creep behavior is described by a linear 
viscoelastic model structured by one dashpot and three springs. The coefficient of viscosity of the 
dashpot increases with time. The beam exhibits continuous material inhomogeneity along the 
width, thickness and length. Therefore, the modulii of elasticity of springs and the coefficient of 
viscosity vary continuously in the width, thickness and length directions of the beam. Time-
dependent solutions to the strain energy release rate that take into account the creep and the 
increase of viscosity with time are derived by using two approaches (by considering the energy 
balance and by applying the compliance method). The results yielded by the two approaches are 
identical. The solutions to the strain energy release rate are applied to perform a parametric study. 
It is found that the strain energy release rate increases with time (this behavior is due to the creep). 
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Concerning the effect of the increase of the coefficient of viscosity with time, the study reveals 
that the strain energy release rate decreases with increase of the coefficient of viscosity. The effects 
of continuous material inhomogeneity along the width, thickness and length of the beam, the crack 
length and the crack location along the beam width on the strain energy release rate are also 
assessed. The calculations indicate that the strain energy release rate decreases with increasing of 
material properties, 𝑓௔ , 𝑔௔ , 𝑓௕ , 𝑔௕ , 𝑓௖ , 𝑔௖ , 𝑓ఎ , 𝑔ఎ , 𝑠௔ , 𝑠௕ , 𝑠௖  and 𝑠ఎ  (these material 
properties control the variation of the coefficient of viscosity and the modulii of elasticity along 
the width, thickness and length of the beam). It is found that the strain energy release rate 
decreases with increasing of 𝑏ଶ/𝑏 ratio. The increase of the crack length leads to increase of the 
strain energy release rate. 
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