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Abstract.  In this paper, an adaptive MEMD based modal identification technique for linear time-invariant 
systems is proposed employing multiple vibration measurements. Traditional empirical mode decomposition 
(EMD) suffers from mode-mixing during sifting operations to identify intrinsic mode functions (IMF). 
MEMD performs better in this context as it considers multi-channel data and projects them into a 
𝑛−dimensional hypercube to evaluate the IMFs. Using this technique, modal parameters of the structural 
system are identified. It is observed that MEMD has superior performance compared to its traditional 
counterpart. However, it still suffers from mild mode-mixing in higher modes where the energy contents are 
low. To avoid this problem, an adaptive filtering scheme is proposed to decompose the interfering modes. 
The Proposed modified scheme is then applied to vibrations of a reinforced concrete road bridge. Results 
presented in this study show that the proposed MEMD based approach coupled with the filtering technique 
can effectively identify the parameters of the dominant modes present in the structural response with a 
significant level of accuracy. 
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1. Introduction 
 

The output-only vibrations based modal identification techniques have shown excellent 

capabilities in the health monitoring of civil infrastructure. Researchers use different time, 

frequency, and time-frequency domain algorithms, and many literature can be found on this topic 

(Maria and Silva 2001, Zhao et al. 2018, Li et al. 2014, Mahato and Chakraborty 2016, Mahato et 

al. 2020). Recently, robust signal processing methods including blind source separation (BSS) 

principles (Antoni et al. 2004, Hazra et al. 2010, Huang and Nagarajaiah 2014, Yang et al. 2020), 

wavelet transformation (Staszewski and Robertson 2007, Mahato and Chakraborty 2019), and 

Hilbert-Huang transform (Huang et al. 1998, Yang et al. 2003, 2004, Chen et al. 2017, Mahato et 

al. 2017) have been investigated in numerous structural health monitoring applications. Unlike any 

other time-frequency decomposition tools, EMD can deal with the nonlinear and non-stationary 
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signals using an adaptive transformation and therefore has gained significant popularity in 

structural condition assessment. In practical applications, the EMD technique uses only a single 

sensor measurement to obtain a subset of the modal information (Yang et al. 2003). Because of its 

self-adaptive nature without requiring a basis function, the EMD technique has become popular 

among the researchers in the time-frequency domain. Originally developed by Huang et al. (1998), 

the EMD decomposes a signal into several oscillatory waveforms called IMF. These IMFs are 

obtained by multiple averaging and interpolating the raw signal, which is known as sifting.  

However, this operation introduces a significant amount of mode-mixing in the resulting IMFs 

(Huang et al. 2003). Recently, EMD has been successfully employed for modal identification of 

structural systems in conjunction with Hilbert Transform (e.g., Hilbert-Huang Transform) (Peng et 

al. 2005a, b, Mahato et al. 2015), where a set of band-pass filters are used to alleviate the 

mode-mixing. Researchers often use EMD with BSS (Hazra et al. 2012a, b) and random 

decrement technique (RDT) (He et al. 2011) to extract the modal information from limited 

measurements.  However, these techniques require significant user intervention in designing the 

band-pass filters, which are a prerequisite for further analysis. A noise assisted technique 

commonly called the ensemble EMD (EEMD) method (Wu and Huang 2009) has been developed 

to evade the mode-mixing. In EEMD, a synthetic noise is introduced repeatedly, followed by an 

ensemble-averaging of the resulting IMFs, making it computationally prohibitive. The standard 

EMD method primarily works only for a particular signal, which is obtained from one sensor only.  

While dealing with multiple sensors, it faces two problems (Rehman and Mandic 2010a). First, 

it is not secured that the number of IMFs, obtained from different sensors is the same i.e., it often 

varies from sensor to sensor. Secondly, because the signals from multiple sensors are treated 

individually, EMD cannot provide the combined information. With this in view, a multivariate 

version of EMD is recently introduced to exploit the advantage of data fusion (Rehman and 

Mandic 2010b). In this technique (i.e., MEMD), multi-dimensional envelopes are created using the 

projections of the raw signal along the different directions. Then the average of these envelopes is 

utilized to obtain the local mean. The MEMD technique has been successfully used to separate the 

source signals of multi-channel measurements in biomedical applications (Fleureau et al. 2011) 

and mechanical systems (Zhao et al. 2012). However, the mode mixing is still an issue in higher 

modes having low energy contributions (Zhao et al. 2012) as in the standard EMD, although in a 

much lesser proportion. 

In recent, MEMD is used for modal parameters identification in the laboratory environment 

(Sadhu 2017). Similar to the previous cases, in this study, the mode-mixing phenomena is reported 

as a major hinder point on the applicability of MEMD towards structural health monitoring (SHM). 

Here, MEMD and EEMD are combinedly used to circumvent this issue. In the available literature, 

the MEMD technique’s effectiveness has not been explored towards condition assessment of a 

field structure where there is very little control over the measurement noise, vibration magnitudes, 

and other parameters. 

In this paper, the MEMD technique is implemented towards the modal identification of 

structures with adaptive filtering. The proposed methodology combines the merits of MEMD and 

filtering schemes to circumvent mode-mixing while dealing with multi-channel vibration 

measurements. Thus, two main contributions of this work are – (1) implementation of MEMD for 

modal identification of structures and (2) development of a new adaptive version tailored towards 

modal identification of real-life structures in a practical scenario. 
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2. EMD & its variants for modal identification 
 

Empirical mode decomposition is a powerful signal decomposition tool for nonlinear and 

non-stationary signals. An IMF generated for this purpose must satisfy the following two 

conditions – (1) the number of extrema and the number of zero-crossings must be either equal or 

differ at most by one, and (2) at any point, the mean value of the envelope defined by local 

maxima and minima is zero. The sifting process is implemented by identifying local extrema in a 

data (𝑦(𝑡)) between successive pairs of zero crossings and connecting them by a cubic spline line 

to create an envelope. If the envelope mean is 𝑒1, the difference 𝑦(𝑡) − 𝑒1 = 𝐼1 is the first IMF, 

provided it satisfies the necessary conditions. If not, the sifting process is repeated by treatingI1as 

the original data until an IMF is obtained. The IMF is then subtracted from the original signal, and 

the sifting is continued to decompose the data into multiple IMFs (Huang et al.1998) 
 

𝑦(𝑡) = ∑ 𝐼𝑗(𝑡)

𝑛

𝑗=1

+ 𝜖𝑛 (1) 

 

where, 𝐼𝑗  represents 𝑗{𝑡ℎ}  IMF and 𝜖𝑛 the residue left after EMD. Due to successive 

interpolation operation in the sifting process, IMFs obtained by the EMD are sensitive to noise and 

results in mode-mixing (Huang et al. 2003). 

To alleviate this problem, different adaptive filtering schemes are developed by the researchers 

(Peng et al. 2005a, b, Ong et al. 2008) to improve the performance of the traditional EMD scheme. 

In this context, Chen and Wang (2012) have proposed analytical mode decomposition (AMD) 

where the original signal is multiplied by a sinusoid with known frequency to identify low pass 

and high pass components using the Bedrosian theorem. The process is continued by varying the 

frequency of the masking signal to identify the modal frequencies present in the response. 
 

2.1 Multi-variate EMD 
 

Traditionally, EMD is based on the computation of local mean by averaging the envelopes. 

However, for multivariate signals, the local extrema may not be well defined. Moreover, the 

concept of modes in IMFs is not evident for multivariate signals. To address these issues, multiple 

envelopes are constructed by projecting the signal in a 𝑛−dimensional space, as proposed by 

Rehman and Mandic (2010b, 2011), which are averaged to obtain the local mean. It is a 

generalization of the bivariate and trivariate EMD (Rehman and Mandic 2010a). 

The estimation of local mean entails finding a suitable set of direction vectors to perform 

integration of all envelopes in the 𝑛−dimensional space. The procedure involves uniform angular 

sampling along a 𝑛−hypersphere, a generalization of an ordinary sphere’s surface to an arbitrary 

dimension.  For any natural number 𝑛, a 𝑛−hypersphere of radius is defined as the set of points 

in (𝑛 + 1)−dimensional Euclidean space. Let {𝜃𝑖: 𝑖 = 1 − (𝑛 − 1)}be(𝑛 − 1)angular coordinates, 

then a 𝑛−dimensional coordinate system having {𝑥𝑖}𝑖=1
𝑛  as the 𝑛 coordinates on a unit (𝑛 − 1) 

sphere are given by 

𝑥𝑛−1 = (∏ sin 𝜃𝑖

𝑛−2

𝑖=1

) cos(𝑛 − 1) (2) 

 

For example, a 2−dimensional case in the 3 coordinates can be written as 
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𝑥1 = cos 𝜃1 
𝑥2 = sin 𝜃1 × cos 𝜃2 
𝑥3 = sin 𝜃1 × sin 𝜃2 × cos 𝜃3 

(3) 

 

The uniform angular sampling is adequate for bivariate signals, as it produces non-uniformly 

distributed samples. For trivariate signals, it generates the points with greater concentration at 

poles of the sphere (Rehman and Mandic 2010a). To address this problem, a low-discrepancy 

Hammersley (Rehman and Mandic 2010a, b) sampling scheme is used to generate the direction 

vectors in 4−dimension space. The discrepancy estimate for Hammersley sampling is better 

compared to other sampling methods (like importance sampling, uniform angular sampling). Thus, 

it provides more uniformly distributed sampling on a sphere (Rehman and Mandic 2010b). In turn, 

it gives a suitable set of direction vectors for generating signal projections and the corresponding 

signal envelopes, ensuring enhanced local mean estimates. 

Consider a sequence of 𝑛 -dimensional vectors 𝑦(𝑡)  = {𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑛(𝑡)}  that 

represents a multivariate signal with 𝑛-components, and 𝐷𝑘 = {𝑑1
𝑘 , 𝑑2

𝑘 , … , 𝑑𝑛
𝑘} denotes a set of 

direction vectors along the 𝑘𝑡ℎ directions on a (𝑛 − 1) sphere. Then MEMD is performed using 

the following steps (Rehman and Mandic 2011) 
 

• Choose a suitable set of direction vectors, 𝐷, using Hammersley sequence 

• Calculate the 𝑘𝑡ℎ projection, 𝑝𝑘(𝑡) of the input signal 𝑦(𝑡) along the 𝑘𝑡ℎ direction 

vector, 𝑋𝑘, for all 𝑘 (i.e., 𝑘 =  1,2, . . . , 𝐿 where 𝐿 is the total number of direction vectors 

in 𝐷) 

• Find the time instants, 𝑡𝑖
𝑘 corresponding to the maxima of the projected signal, 𝑝𝑘(𝑡) for 

all 𝑘 

• Interpolate [𝑡𝑖
𝑘 , 𝑦(𝑡𝑖

𝑘)] to obtain multivariate envelopes, 𝑒𝑘(𝑡), for all 𝑘 

• For a set of 𝐿 direction vectors, the mean 𝐸(𝑡) of the envelope curves is obtained as 
 

𝐸(𝑡) =
1

𝐿
∑ 𝑒𝑘(𝑡)

𝐿

𝑘=1

 (4) 

 

• Extract the residual 𝑟(𝑡)  using 𝑟(𝑡)  = 𝑦(𝑡) − 𝐸(𝑡) . If 𝑟(𝑡)  satisfies the stoppage 

criterion for a multivariate IMF, apply the above steps to (𝑦(𝑡) − 𝑟(𝑡)) to extract the IMF 

(𝑖̃(𝑡)), otherwise apply it on 𝑟(𝑡) 
 

 

3. Proposed adaptive MEMD approach 
 

MEMD based signal processing has shown promising results in time-frequency analysis 

(Rehman and Mandic 2011). Using these futures, an adaptive MEMD based modal identification 

of the vibrating system is proposed next. For this purpose, a multi-degrees-of-freedom (MDOF) 

system is considered, which can be described as follows 
 

𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝑿(𝑡) = 𝑭(𝑡) (5) 
 

Here, the structural properties are represented by 𝑴, 𝑲, and𝑪(i.e., mass, stiffness, and damping 

matrices respectively), where 𝑿is the state vector representing displacement while differentiation 

with respect to time is represented by the over-dot. External force time-histories are represented by 
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vector𝑭(𝑡). The coupled differential equations are solved by transforming them into modal 

coordinates using the following orthogonal transformation 
 

𝑿 = ∑ 𝜙𝑗𝒛𝑗(𝑡)

𝑛

𝑗=1

 (6) 

 

Using Eq. (6) in Eq. (5), one obtains 
 

�̈�𝑗(𝑡) + 2𝜂𝑗𝜔𝑛𝑗
�̇�𝑗(𝑡) + 𝜔𝑛𝑗

2 𝒛𝑗(𝑡) = 𝒇𝑗(𝑡) (7) 
 

Where 𝜂𝑗 , 𝜔𝑛𝑗
 and 𝒇𝑗  are the modal damping, natural frequency and modal force, 

respectively. 

To extract the modal response from the recorded acceleration data, the proposed adaptive 

MEMD method is used here. Using this technique on the multi-channel acceleration records, a set 

of IMFs with a residual error are obtained as follows 
 

𝑀𝐸𝑀𝐷[�̈�(𝑡)] = 𝑀𝐸𝑀𝐷 [∑ 𝜙𝑗𝒛𝑗(𝑡)

𝑛

𝑗=1

] = ∑ 𝒄𝑗(𝑡)

𝑛

𝑗=1

+ 𝒓(𝑡) (8) 

 

Ideally, if MEMD can extract the modal response, the above equation indicates that the 𝑗𝑡ℎ 

IMF would correspond to 𝑗𝑡ℎ mode i.e., �̈�𝑗(𝑡). However, due to mode-mixing 𝑗𝑡ℎ IMF may 

contain effects from the surrounding modes. The contiguous modes result in mode-mixing as can 

be observed from the amplitude spectra of the respective IMFs. To separate these modes, adaptive 

band-pass filtering based on a user-defined bandwidth level is proposed in this study. Using the 

user-defined bandwidth parameters, the responses in different DOFs are filtered and MEMD is 

invoked to identify the modal frequencies present in the respective band. This filtering and 

successive multivariate decomposition process are repeated to identify the dominant modes 

present in the structural response within a particular frequency band where the mode mixing has 

occurred. The IMFs obtained from the above scheme have two distinct constituents – (a) the 

synchronous motions in modal coordinates and (b) the effects of the excitation frequencies, if any. 

These two constituents can be delineated using the instantaneous phase of the filtered IMFs 

corresponding to each channel. Once the modal frequencies are identified from filtered IMFs, the 

mode shapes can be estimated from the respective IMFs using finite element model updating 

(Mahato et al. 2015). 

Once the natural frequencies and mode shapes are identified, the remaining task is to evaluate 

the modal damping ratios. Considering stationary Gaussian white noise forcing function with zero 

mean, the filtered IMFs obtained from the previous step contain both free and forced modal 

responses. Estimating modal damping ratios directly from the filtered IMFs can be erroneous due 

to the non-decaying nature of the forced modal responses. This can be addressed using RDT as 

proposed in the literature (Cheng et al. 1982). Using this technique, the free modal 

response �̈�𝑓𝑟(𝜏) can be obtained i.e. 
 

�̈�𝑓𝑟(𝜏) =
1

𝑅
∑ �̈�

𝑅

𝑖=1

(𝑡𝑖 + 𝜏) (9) 
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Here, 𝑅represents the triggering value corresponding to a time-point 𝑡𝑖 and 𝜏 represents the 

lag parameter. Using Eq. (9), the free-response corresponding to 𝑗𝑡ℎ mode is given by 
 

�̈�𝑓𝑟(𝑡) = 𝑒
−𝜂𝑗𝜔𝑛𝑗

𝑡
𝐴𝑗 cos (𝜔𝑑𝑗

𝑡 − 𝜙
𝑗
) (10) 

 

where the constant terms are as follows 
 

𝐴𝑗 = √𝐶1𝑗

2 + 𝐶2𝑗

2                 𝜙𝑗 = tan−1 (
𝐶2𝑗

𝐶1𝑗

)    

𝐶1𝑗
= 𝜂𝑗

2𝜔𝑛𝑗
2 𝑎𝑗 + 2𝜂𝑗𝜔𝑛𝑗

𝑏𝑗 + 𝜔𝑑𝑗
𝑎𝑗  

𝐶2𝑗
=

𝜔𝑑𝑗

2 𝑏𝑗 − 𝜂𝑗
2𝜔𝑛𝑗

2 𝑏𝑗 − 𝜂𝑗
3𝜔𝑛𝑗

3 𝑎𝑗 − 𝜂𝑗𝜔𝑛𝑗
𝜔𝑑𝑗

2 𝑎𝑗

𝜔𝑑𝑗

 

(11) 

 

In the above equation, 𝑎𝑗 and 𝑏𝑗 are the two constants that depend on the initial conditions 

and 𝜔𝑑𝑗
 is the damped natural frequency (i.e., 𝜔𝑑𝑗

= 𝜔𝑛𝑗
√1 − 𝜂𝑗

2 ). Instantaneous amplitude 

and phase canbe obtained by applying HT on the free-response given in Eq. (10) i.e. 
 

𝑆(𝑡) = 𝐴𝑗𝑒
−𝜂𝑗𝜔𝑛𝑗

𝑡
 (12) 

 

and 
 

𝜃(𝑡) = 𝜔𝑑𝑗
(𝑡) − 𝜙𝑗 (13) 

 

The damped natural frequency 𝜔𝑑𝑗
can be estimated using the average slope of the 

instantaneous phase in Eq. (13). Finally, to estimate the 𝑗𝑡ℎ modal damping ratio, the logarithm of 

Eq. (12) is taken which leads to 
 

ln{𝑆(𝑡)} = −𝜂𝑗𝜔𝑛𝑗
𝑡 + ln (𝐴𝑗) (14) 

 

Thus, the modal frequency (𝜔𝑛𝑗
) and modal damping (𝜂𝑗) are evaluated from the slope of the 

Eqs. (13) and (14). Once, the modal frequencies are extracted, the mode shapes can be obtained by 

updating the finite element model. Here, an optimization technique is used to update the model 
 

 

Algorithm 1: Iterative filtering based MEMD 

1: Measure �̈�(i.e., acceleration response) at multiple DOFs (at least three) 

2: Apply MEMD to the multichannel data 

3: Observe all the IMFs to locate mode-mixing if any 

4: Select a frequency range encompassing the mode-mixed regions only. Design a set of band-pass 

filters by equally dividing the mode-mixed frequency range 

5: Generate a band-passed signal for all the measurements 

6: Apply MEMD on each band-passed signal from the measured DOF and extract a single IMF. Incase 

multiple IMFs are observed, reduce the bandwidth of the band-pass filters 

7: Identify natural frequency and damping as described in Eqs. (14)-(13) 
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and it is given by (Mahato et al. 2017) 
 

𝐽(𝜌, 𝑓𝑐𝑘) = ‖𝜔𝐹𝐸 − 𝜔𝑛𝑗
‖

2
 (15) 

 

In this study, the optimization is performed using two variables for a concrete road bridge – 

concrete density (𝜌) and compressive strength of concrete (𝑓𝑐𝑘), as they directly influence the 

bridge dynamics. The steps of the proposed algorithm are shown in Algorithm 1. 
 

 

4. Numerical results 
 

The adaptive MEMD technique proposed in the previous section is used here for numerical 

analysis to demonstrate its efficiency for structural system identification. It is to extract the modal 

parameters from the field experiment. A reinforced concrete road bridge is used for the 

experimental verification where a heavy truck is passed over the bridge with a constant velocity. 
 

 

 

Fig. 1 (a) Longitudinal view; (b) experimental arrangement; (c) cross section view; (d) sensor 

locations for the field study 
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4.1 Experimental Implementation 
 

The bridge near IIT Guwahati is considered in this study as shown in Fig. 1. It connects IIT 

Guwahati and National Highway–31. It has three spans, which are simply supported at both ends 

and are separated from each other by expansion joints. The length of the central span is 39 m 

which is instrumented for the experimental verification. Fig. 1 also shows the bridge cross-section 

along with other details (e.g., girder dimension and spacing etc.). From this figure, it may be 

noticed that the bridge is symmetric in cross-section and a small gap in the middle of the deck that 

separates the two sides of the bridge along the centerline. It is excited by a heavy truck along the 

outer lane as shown in Fig. 1 and the vibrations are recorded using 5 accelerometers placed 

symmetrically over the deck (Fig. 1(d)). 

Fig. 2 shows the five vibration responses of the bridge and their respective Fourier amplitude 

spectra, which clearly show only one peak corresponding to the first natural frequency of the 

bridge. The recorded acceleration time histories from different channels are analyzed by EMD and 

the IMFs corresponding to each channel are considered here for modal identification. Fig. 3 shows 

two IMFs obtained from EMD analysis of the measured data. From this figure, one can identify 

the first mode of the bridge (i.e., 3.113 Hz) while the second IMF fails to suggest the presence of 

any mode owing to poor signal to noise ratio (SNR). In this context, it may be mentioned that the 

two IMFs, shown in Fig. 3 have significant energy as compared to other spurious modes. 
 

 

 

Fig. 2 Recorded accelerations and their spectra 
 

 

 

Fig. 3 Extracted IMFs using EMD 
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Fig. 4 Extracted IMFs using MEMD (mode-mixing in 2nd IMF) 

 

 

 
Fig. 5 IMFs obtained using the proposed algorithm 

 

 

MEMD is then applied to the five recorded data set and the two dominant IMFs are shown in 

Fig. 4. From this figure, one can distinctly identify the first mode of the structure in IMF1 while 

the second IMF shows mode-mixing with some distinct peaks and their respective frequency 

values. Once the mode-mixing zone is identified as shown in Fig. 4, signals from different 

channels are passed through a set of band-pass filters iteratively, as explained in the proposed 

algorithm. MEMD is then performed using the filtered signals from all five channels and the 

modified IMFs are shown in Fig. 5. All four IMFs in Fig. 5 distinctly show the modal frequencies 

with high SNR. This, in turn, highlights the efficiency of the proposed adaptive identification 

scheme. Table 1 shows the identified frequencies obtained from the analysis. The results in this 

table show that identified frequencies are well within 5% of the values obtained from the modal 

analysis using the finite element model. Once the dominant modal frequencies are identified, mode 

shapes corresponding to these natural frequencies are obtained from the updated finite element 

model as shown in Fig. 6. Finally, the modal damping ratios are evaluated from the filtered IMFs 

using Eqs. (13) and (14). Table 1 shows the modal damping ratios that could not be verified as the 

original damping ratios are unknown in this case. However, damping values obtained from 

different channels are found to be consistent with each other. Together, the results in Fig. 5 and 
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Fig. 6 Identified mode-shapes 

 

 

Table 1 Identified parameters from bridge response 

Finite 

Element 

Method 

Identified values 

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 

𝜔𝑛(Hz) 𝜔𝑛(Hz) 𝜀(%) 𝜂(%) 𝜔𝑛(Hz) 𝜀(%) 𝜂(%) 𝜔𝑛(Hz) 𝜀(%) 𝜂(%) 𝜔𝑛(Hz) 𝜀(%) 𝜂(%) 𝜔𝑛(Hz) 𝜀(%) 𝜂(%) 

3.1187 3.1310 -0.39 5.48 3.1310 -0.39 5.21 3.1310 -0.39 5.84 3.1310 -0.39 5.35 3.1310 -0.39 5.48 

7.7353 7.7779 -0.55 0.55 7.9230 -2.43 0.82 7.5474 2.43 0.51 7.7780 -0.55 0.94 7.7779 -0.55 0.55 

13.587 13.2017 2.84 0.20 13.2236 2.67 0.40 13.2097 2.78 0.27 13.359 1.68 0.22 13.202 2.84 0.20 

20.123 19.9224 1.00 0.18 19.8808 1.20 0.30 19.8415 1.40 0.20 19.857 1.32 0.21 19.922 1.00 0.18 

 

 

Table 1 indicate the superiority and efficiency of the proposed identification strategy’s compared 

to conventional EMD for operational modal analysis. 
 

 

5. Conclusions 
 

An adaptive multi-variate empirical mode decomposition is proposed in this study to identify 

the modal parameters of linear structural systems. Although the superiority of MEMD based 

time-frequency analysis had already been established in the literature, it still suffers mode-mixing 

in higher modes. To avoid this difficulty, an adaptive filtering scheme of the recorded response is 

proposed in this study to improve its performance for modal identification. The proposed 

methodology has the followings edge compare to the previous versions of MEMD – 
 

● The response of an existing structure is considered to show the efficiency of the proposed 

technique and the complete numerical study clearly indicates the superiority of the proposed 

adaptive MEMD scheme in terms of its performance to identify the modal parameters (i.e., 

natural frequency, modal damping, and mode shape) offering significant level of accuracy. 

● It offers flexibility to the user to select different bandwidth depending upon the problem to 

solve. Thus, it helps the user in the signal decomposition based on the degree and extent of 

mode-mixing observed in the decomposed IMFs. 

● The proposed identification algorithm using adaptive multivariate empirical mode 

decomposition is equally applicable for free and forced vibration response and does not 

demand for any pre-processing of the data. Hence, it can be readily adopted for any type of 
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loading for operational modal analysis. 
 

With these in view, it may be concluded that the proposed identification algorithm can be 

adopted for efficient signal processing related to operational modal analysis of civil infrastructures 

for structural health monitoring. 
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