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Abstract.  The aim of the present investigation is to examine the propagation of plane waves in 
transversely isotropic homogeneous magneto thermoelastic rotating medium with fractional order heat 
transfer. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal 
waves (quasi-longitudinal, quasi-transverse and quasi-thermal waves). The wave characteristics such as 
phase velocity, attenuation coefficients, specific loss, penetration depths, energy ratios and amplitude ratios 
of various reflected and transmitted waves are computed and depicted graphically. The conservation of 
energy at the free surface is verified. The effects of rotation and fractional order parameter by varying 
different values are represented graphically. 
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1. Introduction 
 

The medium which deforms due to thermal shock and application of the magnetic field, 

produces an induced magnetic and electric field. The composite materials such as magneto- 
thermoelastic material gained considerable importance since last decade because these materials 

show the coupling effect between magnetic and thermal fields. The study of plane wave 

propagation in a thermoelastic solid gained considerable importance, due to its applications in the 

area of geophysics, nuclear fields, and related topics. In last decade significant attention has been 

given in the area of plane thermoelastic and magneto-thermoelastic wave propagation in a 

medium. 

Borejko (1996) deliberated the reflection and transmission coefficients for 3D plane waves in 

elastic media. Wu and Lundberg (1996) examined the problem of reflection and transmission of 

the energy of harmonic elastic waves in a bent bar. Marin (1997) had proved the Cesaro means of 

the kinetic and strain energies of dipolar bodies with finite energy. Sinha and Elsibai (1997) 

discoursed the reflection and refraction of thermoelastic waves at an interface of two semi-infinite 

media with two relaxation times. Ting (2004) explored a surface wave propagation in an 

anisotropic rotating medium. Othman and Song (2006, 2008) presented different hypotheses about 

                                                      
Corresponding author, Ph.D., E-mail: bawahanda@gmail.com 



 

 

 

 

 

 

Parveen Lata and Iqbal Kaur 

magneto-thermo-elastic waves in homogeneous and isotropic medium. Kumar and Chawla (2011) 

discussed the plane wane propagation in anisotropic three-phase lag model and two-phase lag 

model. Deswal and Kalkal (2015) discussed the problem in a surface suffering a time-dependent 

thermal shock for thermo-viscoelastic interactions in a homogeneous, isotropic three-dimensional 

medium.   

The reflection of plane periodic wave occurrence on the surface of generalized thermoelastic 

micropolar transversely isotropic medium is studied by Kumar and Gupta (2012) to calculate 

complex velocities of the four waves i.e., quasi-longitudinal displacement (qLD) wave, 

quasi-transverse displacement (qTD) wave, quasi- transverse microrotational (qTM) wave and 

quasi thermal (qT) waves from the complex roots of a quartic equation. Abouelregal (2013) had 

investigated the induced displacement, temperature, and stress fields in an infinite transversely 

isotropic boundless medium with cylindrical cavity due to a moving heat source and harmonically 

varying heat in reference to the linear theory of generalized thermoelasticity with a dual-phase lag 

model. Abd-alla and Alshaikh (2015) had discussed the effect of rotation and magnetic field on 

plane waves in transversely isotropic thermoelastic medium under the Green-Lindsay theory with 

two relaxation times of generalized thermoelasticity to show the presence of three quasi plane 

waves in the medium. Marin et al. (2013) have modelled a micro stretch thermoelastic body with 

two temperatures and eliminated divergences among the classical elasticity and research. 

The effects of reflection and refraction are studied by Gupta (2015) at the boundary of elastic 

and a thermoelastic diffusion media, for plane waves by expanding the Fick law with 

dual-phase-lag diffusion model with delay times of both mass flow as well as potential gradient. 

Besides, Kumar et al. (2016) had depicted the effect of time and thermal and diffusion phase lags 

for axisymmetric heat supply in a ring by using Laplace and Hankel transform technique for 

dual-phase-lag model for transfer of heat and diffusion for upper and lower surfaces of the ring 

which were considered as traction free. 

Youssef (2013, 2016) proposed for an elastic half-space a two-temperature model with constant 

elastic parameters and with generalized thermoelasticity without energy dissipation and also 

constructed a theory of thermoelasticity based on fraction order Duhamel-Neumann stress-strain 

relation in context of one temperature type and two-temperature types. Sharma and Kaur (2015) 

had investigated the transverse vibrations due to time-varying patch loads in homogenous, 

transversely isotropic, thermoelastic thin beams. However, Kumar et al. (2016) had explored of 

uncertainties due to thermomechanical sources (concentrated and distributed) using Laplace and 

Fourier transform technique in a transversely isotropic homogeneous thermoelastic rotating 

medium with magnetic effect, two temperature and by G–N with and without energy dissipation 

w.r.t. thermomechanical sources.  

Othman et al. (2017) proposed a model for generalized magneto-thermoelasticity in an 

isotropic elastic medium rotating with uniform angular velocity and with two–temperature under 

the effect initial stress under LS (Lord–Shulman), GL (Green–Lindsay) and CT (coupled theory) 

theories of generalized thermoelasticity. Kumar and Kansal (2017) found reflected and refracted 

waves occurrence due to longitudinal and transverse waves incident implicitly at a plane interface 

between uniform elastic solid half-space and magneto-thermoelastic diffusive solid half-space with 

voids as a function of the angle of incidence and frequency of the incident wave. Maitya et al. 

(2017) presented plane wave propagation in a rotating elastic fiber-reinforced medium with 

magnetic and thermal fields under GN –I and II type theories. Bayones and Abd-Alla (2017) 

discussed 2D problem of thermoelasticity regarding thermoelastic wave propagation in a rotating 

medium under magnetic field and time-dependent heat source effects due to thermomechanical 

192



 

 

 

 

 

 

Plane wave propagation in transversely isotropic magneto-thermoelastic rotating medium… 

source. Said (2017) investigated the effect of hydrostatic initial stress and the gravity field on a 

thermoelastic medium which is fiber-reinforced with its own heat and constant motion by 

three-phase-lag model and GN Type II theory. Marin et al. (2017) studied the GN-thermoelastic 

theory for a dipolar body using mixed initial BVP and proved a result of Hölder’s-type stability. 

Lata (2018a, b) studied the effect of energy dissipation on plane waves in sandwiched layered 

thermoelastic medium of uniform thickness, with combined effects of two temperature, rotation, 

and Hall current in the context of GN Type-II and Type-III theory of thermoelasticity. Ezzat and 

El-Bary (2017) gave mathematical model of phase-lag, GN, magneto-thermoelasticity theories for 

perfectly conducting media based on fractional derivative heat transfer in the presence of a 

constant magnetic field. 

Alesemi (2018) demonstrated the efficiency of the thermal relaxation time depending upon LS 

theory, Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an 

anisotropic magneto-thermoelastic rotating with stable angular velocity medium. Othman et al. 

(2019) dealt with the deformation of an infinite micro stretch generalized thermoelastic rotating 

medium under the effects of initially applied magnetic and gravitational field in GN Theory of 

thermoelasticity. Despite of this several researchers worked on different theory of thermoelasticity 

as Marin (1994, 1999), Marin and Craciun (2017), Othman and Marin (2017), Hassan et al. (2018), 

Marin (1998, 2009, 2010), Lata et al. (2016), Lata and Kaur (2019a, b, c) and Lata and Kaur 

(2019d, e), Kaur and Lata (2019f). 

Inspite of these, not much work has been carried out in plane wave propagation due to 

fractional order heat transfer in a transversely isotropic magneto thermoelastic medium. Keeping 

these considerations in mind wave propagation problem will be studied by using normal mode 

analysis & reflection techniques 

 

 

2. Basic equations  
 

The simplified Maxwell’s linear equation of electrodynamics for a slowly moving and perfectly 

conducting elastic solid are 

𝑐𝑢𝑟𝑙 �⃗� =  𝑗 + 휀0

𝜕�⃗� 

𝜕𝑡
 (1) 

𝑐𝑢𝑟𝑙 �⃗� = − 𝜇0

𝜕�⃗� 

𝜕𝑡
 (2) 

�⃗� = − 𝜇0 4
𝜕�⃗� 

𝜕𝑡
+ �⃗⃗� 05 (3) 

𝑑𝑖𝑣 �⃗� = 0 (4) 

Maxwell stress components (Kumar et al. 2016) are given by 

𝑡𝑖𝑗 = 𝜇0(𝐻𝑖𝑗 + 𝐻𝑗𝑖 − 𝐻𝑘𝑘𝛿𝑖𝑗)                        (5) 

The constitutive relations for a transversely isotropic thermoelastic medium are given by 
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𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇                              (6) 

Equation of motion as described by Schoenberg and Censor (1973) for a transversely isotropic 

thermoelastic medium rotating uniformly with an angular velocity 𝛀 =  Ω𝒏, where n is a unit 

vector representing the direction of the axis of rotation and taking into account Lorentz force 

𝑡𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌*�̈�𝑖 + (Ω × (Ω × u)𝑖 + (2Ω × 𝑢)̇𝑖 +                  (7) 

where  𝐹𝑖 = 𝜇0(𝑗 × �⃗⃗� 0)  are the components of Lorentz force, �⃗⃗� 0  is the external applied 

magnetic field intensity vector, 𝑗  is the current density vector, �⃗�  is the displacement vector, 𝜇0  

and  휀0  are the magnetic and electric permeabilities respectively and  𝑡𝑖𝑗  the component of 

Maxwell stress tensor. The terms 𝛀 × (𝛀 × 𝐮)  and 2𝛀 × �̇�  are the additional centripetal 

acceleration due to the time-varying motion and Coriolis acceleration respectively. The heat 

conduction equation following Youseff (2006, 2010) is  

𝐾𝑖𝑗 .1 +
(𝜏𝑡)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/ �̇�,𝑗𝑖 + 𝐾𝑖𝑗
∗ .1 +

(𝜏𝑣)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/𝑇,𝑗𝑖 = .1 +
(𝜏𝑞)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 + 
(𝜏𝑞)2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼/ [𝜌𝐶𝐸�̈� + 𝛽𝑖𝑗𝑇0ё𝑖𝑗]   (8) 

where 

{

0 < 𝛼 < 1  for weak conductivity,
𝛼 = 1 for normal conductivity,

1 < 𝛼 ≤ 2 for strong conductivity,
 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗                                (9) 

   𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),     𝑖, 𝑗 = 1,2,3. 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,  𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,   i is not summed.                  (10) 

Here 𝐶𝑖𝑗𝑘𝑙(𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘) are elastic parameters, 𝛽𝑖𝑗  is the thermal elastic 

coupling tensor, 𝑇  is the absolute temperature, 𝑇0  is the reference temperature, 𝜑  is the 

conductive temperature, 𝑡𝑖𝑗 are the components of the stress tensor, 𝑒𝑖𝑗 are the components of 

strain tensor, 𝑢𝑖 are the displacement components, 𝜌 is the density, 𝐶𝐸 is the specific heat, 𝐾𝑖𝑗 

is the materialistic constant, 𝛼𝑖𝑗  is the coefficient of linear thermal expansion, 𝜏0  is the 

relaxation time, which is the time required to maintain steady-state heat conduction in an element 

of volume of an elastic body when sudden temperature gradient is imposed on that volume 

element, 𝛿𝑖𝑗  is the Kronecker delta, 𝛀 is the angular velocity of the solid, 𝜏𝑡 is the phase lag of 

heat flux, 𝜏𝑣  is the phase lag of temperature gradient,  𝜏𝑞  is the phase lag of thermal 

displacement, 𝛼 is the fractional parameter. 

 

 

3. Formulation and solution of the problem 
 

We consider a homogeneous transversely isotropic magnetothermoelastic medium initially at a 

uniform temperature 𝑇0, permeated by an initial magnetic field �⃗⃗� 0 = (0,𝐻0, 0) acting along 

𝑦-axis. The rectangular Cartesian co-ordinate system (𝑥, 𝑦, 𝑧)  having origin on the surface 
(𝑧 = 0) with 𝑧-axis pointing vertically into the medium is introduced. In addition, we consider 

that 
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𝛀 = (0, Ω, 0) 

From the generalized Ohm’s law (Kumar et al. 2016) 

𝐽2 = 0 

The density components 𝐽1and 𝐽3 are given as 

𝐽1 = −휀0𝜇0𝐻0

𝜕2𝑤

𝜕𝑡2
 (11) 

𝐽3  = 휀0𝜇0𝐻0

𝜕2𝑢

𝜕𝑡2
 (12) 

In addition, the equations of displacement vector (u,v,w) and conductive temperature 𝜑 for 

transversely isotropic thermoelastic solid 

𝑢 = 𝑢(𝑥, 𝑧, 𝑡), 𝑣 = 0,𝑤 = 𝑤(𝑥, 𝑧, 𝑡)𝑎𝑛𝑑 𝜑 = 𝜑(𝑥, 𝑧, 𝑡)            (13) 

Now using the transformation on Eqs. (1)-(3) following Slaughter (2002) Eqs. (7) and (8) with 

the aid of (11)-(13), yield 

𝐶11
𝜕2𝑢

𝜕𝑥2 + 𝐶13
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝐶44 .

𝜕2𝑢

𝜕𝑧2 + 
𝜕2𝑤

𝜕𝑥𝜕𝑧
/ − 𝛽1 

𝜕𝑇

𝜕𝑥
− 𝜇0𝐽3𝐻0 = 𝜌 .

𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
/   (14) 

(𝐶13 + 𝐶44 )
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝐶44

𝜕2𝑤

𝜕𝑥2 + 𝐶33 
𝜕2𝑤

𝜕𝑧2 − 𝛽3 
𝜕𝑇

𝜕𝑧
− 𝜇0𝐽1𝐻0 = 𝜌 .

𝜕2𝑤

𝜕𝑡2 − 𝛺2𝑤 − 2𝛺
𝜕𝑢

𝜕𝑡
/   (15) 

𝐾1 .1 +
(𝜏𝑡)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/
𝜕2�̇�

𝜕𝑥2 + 𝐾3 .1 +
(𝜏𝑡)

𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/
𝜕2�̇�

𝜕𝑧2 + 𝐾1
∗ .1 +

(𝜏𝑣)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/
𝜕2𝑇

𝜕𝑥2 + 𝐾3
∗ .1 +

(𝜏𝑣)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼/
𝜕2𝑇

𝜕𝑧2 =

                                              .1 +
(𝜏𝑞)𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 + 
(𝜏𝑞)2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼/ 0𝜌𝐶𝐸�̈� + 𝑇0 2𝛽1
𝜕�̈�

𝜕𝑥
+ 𝛽3

𝜕�̈�

𝜕𝑧
31                                       (16) 

and 

𝑡11 = 𝐶11𝑒11  + 𝐶13𝑒13 − 𝛽1 𝑇                       (17) 

𝑡33 = 𝐶13𝑒11  +  𝐶33𝑒33 − 𝛽3 𝑇                   (18) 

𝑡13 = 2𝐶44𝑒13                           (19) 

where 

𝛽1 = (𝐶11 + 𝐶12)𝛼1 + 𝐶13𝛼3, 

𝛽3 = 2𝐶13𝛼1 + 𝐶33𝛼3, 

To simplify the solution, mention below dimensionless quantities are used 

𝑥′ = 
𝑥

𝐿
, 𝑧′ = 

𝑧

𝐿
,    𝑢′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,    𝑤′ = 

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑤,   𝑡′ = 

𝑐1
𝐿

𝑡,  

𝑇′ = 
𝑇

𝑇0
, 𝑡11

′ = 
𝑡11

𝛽1𝑇0
, 𝑡33

′ = 
𝑡33

𝛽1𝑇0
, 𝑡31

′ = 
𝑡31

𝛽1𝑇0
, ′ =

ℎ

𝐻0
, Ω′ =

L

𝐶1
Ω           (20) 

Making use of (20) in Eqs. (14)-(16), after suppressing the primes, yield 

𝜕2𝑢

𝜕𝑥2 + 𝛿4
𝜕2𝑤

𝜕𝑥𝜕𝑧
+ 𝛿2 .

𝜕2𝑢

𝜕𝑧2 + 
𝜕2𝑤

𝜕𝑥𝜕𝑧
/ −

𝜕𝑇

𝜕𝑥
= .

𝜀0𝜇0
2𝐻0

2

𝜌
+ 1/

𝜕2𝑢

𝜕𝑡2 − Ω2𝑢 + 2Ω
𝜕𝑤

𝜕𝑡
      (21) 
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𝛿1
𝜕2𝑢

𝜕𝑥𝜕𝑧
+ 𝛿2

𝜕2𝑤

𝜕𝑥2 + 𝛿3
𝜕2𝑤

𝜕𝑧2 −
𝛽3

𝛽1

𝜕𝑇

𝜕𝑧
= .

𝜀0𝜇0
2𝐻0

2

𝜌
+ 1/

𝜕2𝑤

𝜕𝑡2 − Ω2𝑤 − 2Ω
𝜕𝑢

𝜕𝑡
         (22) 

01 +
𝐶1

𝐿

𝜏𝑇
𝛼

𝛼!

𝜕𝛼+1

𝜕𝑡𝛼+11 0𝐾1
𝜕2

𝜕𝑥2 + 𝐾3
𝜕2

𝜕𝑧21 𝑇 + 01 +
𝜏𝑣
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼1 0𝐾1
∗ 𝜕2

𝜕𝑥2 + 𝐾3
∗ 𝜕2

𝜕𝑧21 𝑇 = [1 +
𝜏𝑞
𝛼

𝛼!

𝜕𝛼

𝜕𝑡𝛼 +

                                                         
𝜏𝑞
2𝛼

2𝛼!

𝜕2𝛼

𝜕𝑡2𝛼] 0𝐶1
2𝜌𝐶𝐸�̈� + 𝛽1𝑇0 .𝛽1

𝜕�̈�

𝜕𝑥
+ 𝛽3

𝜕�̈�

𝜕𝑧
/1                (23) 

where 

𝛿1 = 
𝑐13 + 𝑐44

𝑐11
, 𝛿2 = 

𝑐44

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
, 𝛿4 = 

𝑐13

𝑐11
 

 
 
4. Plane-wave propagation 
 

We pursue the plane-wave solution of the equations of the form 

4
𝑢
𝑤
𝑇
5 = (

𝑈
𝑊
𝑇∗

) 𝑒𝑖(𝜔𝑡;𝜉(𝑥 𝑠𝑖𝑛𝜃;𝑧 𝑐𝑜𝑠𝜃)),                 (24) 

𝑈,휁1𝜉
2 + 휁2- + 𝑊,휁3𝜉

2 + 휁4- + 𝑇∗휁5 = 0, 

 

𝑈,휁6𝜉
2 − 휁4- + 𝑊,휁7𝜉

2 + 휁2- + 𝑇∗휁8 = 0, 

 

휁11휁9𝑈 + 휁11휁10𝑊 + 𝑇∗,휁12𝜉
2 − 휁11휁13- = 0. 

 
and then eliminating 𝑈 ,  𝑊  and 𝑇∗   from the resulting equations yields the following 

characteristic equation 

𝐴𝜉6 + 𝐵𝜉4 + 𝐶𝜉2 + 𝐷 = 0                     (25) 

where 

𝐴 = 휁1휁7휁12 − 휁12휁6휁3 , 

𝐵 = 휁2휁7휁12 + 휁1휁2휁12 − 휁7휁11휁3휁1 − 휁4휁6휁12 + 휁3휁4휁12 + 휁6휁11휁3
2, 

𝐶 = 휁2
2휁12휁25 − 휁2휁7휁11휁3 − 휁2휁11휁3휁1 + 휁4

2휁12 + 휁4휁6휁11휁3 − 휁3
2휁11휁4:휁3휁8휁11휁9 + 휁5휁6휁11휁10

− 휁5휁11휁9휁7, 

𝐷 =  −휁2휁11휁3휁4 − 휁8휁11휁10휁2 − 휁4
2휁11휁3 + 휁4휁8휁11휁9 − 휁5휁4휁11휁10 − 휁5휁11휁9휁2, 

휁1 = −𝑠𝑖𝑛2𝜃 − 𝛿2𝑐𝑜𝑠
2𝜃, 

휁2 = 4
휀0𝜇0

2𝐻0
2

𝜌
+ 15𝜔2 + Ω2, 
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휁3 = (𝛿4 + 1)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃, 

휁4 = −2𝜔Ω𝑖, 

휁5 = 𝑖𝑠𝑖𝑛𝜃, 

휁6 = 𝛿1𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃, 

휁7 = 𝛿2𝑠𝑖𝑛
2𝜃 − 𝛿3𝑐𝑜𝑠

2𝜃, 

휁8 = −𝑖
𝛽3

𝛽1
𝑐𝑜𝑠𝜃, 

휁9 = −𝛽1
2𝑇0𝜔

2𝑖𝑠𝑖𝑛𝜃 , 

휁10 = 𝛽1𝛽3𝑇0𝜔
2𝑖𝑐𝑜𝑠𝜃, 

휁11 = 1 +
𝜏𝑞
𝛼

𝛼!
(𝑖𝜔)𝛼 +

𝜏𝑞
2𝛼

2𝛼!
(𝑖𝜔)2𝛼 , 

휁12 = 01 +
𝐶1

𝐿

𝜏𝑇
𝛼

𝛼!
(𝑖𝜔)𝛼:11 ,−𝐾1𝑠𝑖𝑛

2𝜃 − 𝐾3𝑐𝑜𝑠
2𝜃- + 01 +

𝜏𝑣
𝛼

𝛼!
(𝑖𝜔)𝛼1 ,−𝐾1

∗𝑠𝑖𝑛2𝜃 + 𝐾3
∗𝑐𝑜𝑠2𝜃-,  

휁13 = 𝐶1
2𝜌𝐶𝐸𝜔2 

 

The roots of Eq. (25) give six roots of 𝜉 that is, ±𝜉1 ,±𝜉2 and ±𝜉3, in which we are 

interested in those roots whose imaginary parts are positive. Corresponding to these roots, there 

exist three waves corresponding to descending order of their velocities namely a quasi-longitudinal 

(QL), quasi-transverse (QTS) and quasi-thermal waves (QT). The phase velocities, attenuation 

coefficients, specific loss and penetration depth of these waves are obtained by the following 

expressions. 
 
(i) Phase velocity 
 

The phase velocities are given by 

𝑉𝑖 = 
𝜔

𝑅𝑒(𝜉𝑖)
, i =  1, 2, 3  

 

where 𝑉1, 𝑉2, 𝑉3 are the velocities of QL, QTS and QT waves respectively. 

 

(ii) Attenuation Coefficient 
 

The attenuation coefficient is defined as 

𝑄𝑖 = 𝐼𝑚𝑔(𝜉𝑖), i =  1, 2, 3.  
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𝜃3 
𝜃2 

𝜃1 

y 

Free Surface Z=0 

x 

QT QT 

QTS QTS 

QL 
QL 

where 𝑄1, 𝑄2, 𝑄3 are the attenuation coefficients of QL, QTS and QT waves respectively. 

(iii) Specific Loss 
 

The specific loss is the ratio of energy (∆W) dissipated in taking a specimen through a cycle, to 

elastic energy (W) stored in a specimen when the strain is maximum. The specific loss is the most 

direct method of defining internal friction for a material. For a sinusoidal plane wave of small 

amplitude it was shown by Kolsky (1963) that specific loss 
Δ𝑊

𝑊
 equals 4π times the absolute value 

of the imaginary part of 𝜉 to the real part of 𝜉 i.e. 

𝑊𝑖 = (
Δ𝑊

𝑊
)
𝑖
 = 4𝜋 |

𝐼𝑚𝑔(𝜉𝑖)

𝑅𝑒(𝜉𝑖)
| , i =  1, 2, 3.  

 

Where 𝑊1,𝑊2,𝑊3 are specific loss of QL, QTS and QT waves respectively. 

 

(iv) Penetration depth  
 

The penetration depth is defined by 

𝑆𝑖 =
1

𝐼𝑚𝑔(𝜉𝑖)
, i =  1, 2, 3.  

where 𝑆1, 𝑆2, 𝑆3 are penetration depth of QL, QTS, and QT waves respectively. 

 
 
 

 

Fig. 1 Geometry of the problem 
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5. Reflection and transmission at the boundary surfaces  

 

We consider a homogeneous transversely isotropic magneto thermoelastic half-space occupying 

the region 𝑧 ≥  0. Incident quasi-longitudinal or quasi-transverse or quasithermal waves at the 

stress-free, thermally insulated surface (z = 0) will generate reflected QL, reflected QTS and 

reflected QT waves in the half-space z > 0. The total displacements, conductive temperature are 

given by 

𝑢 = ∑ 𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗<1
, 

𝑤 = ∑ 𝑑𝑗𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗<1
, 

𝑇 = ∑ 𝑙𝑗𝐴𝑗𝑒
𝑖𝑀𝑗

6

𝑗<1
, 𝑗 = 1,2,3, … ,6 

(26) 

Where 

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗 − 𝑧𝑐𝑜𝑠𝜃𝑗), 𝑗 = 1,2,3, 

𝑀𝑗 =  𝜔𝑡 − 𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗 + 𝑧𝑐𝑜𝑠𝜃𝑗), 𝑗 = 4,5,6. 

Here subscripts j = 1, 2, 3 respectively denote the quantities corresponding to incident QL, QTS, 

and QT-mode, whereas the subscripts j=4, 5, 6 denote the corresponding reflected waves, 𝜉𝑗 are 

the roots obtained from Eq. (25). 

𝑑𝑗 = 
−(휁2휁11휁13 + 휁5𝑗휁11휁9𝑗) + (휁2휁12𝑗 − 휁11휁13휁1𝑗)𝜉𝑗

2 + 휁1𝑗휁12𝑗𝜉𝑗
4

휁7𝑗휁12𝑗𝜉𝑗
4 + (휁2휁12𝑗 − 휁7𝑗휁11휁13)𝜉𝑗

2 − (휁2휁11휁13 + 휁8𝑗휁11휁10𝑗)
, 

 j = 1,2,3. 

𝑙𝑗 = 
(휁2

2 + 휁4
2) + (휁2휁1𝑗 + 휁2휁7𝑗 − 휁4휁6𝑗 + 휁4휁3𝑗)𝜉𝑗

2 + 휁1𝑗휁12𝑗𝜉𝑗
4

휁7𝑗휁12𝑗𝜉𝑗
4 + (휁2휁12𝑗 − 휁7𝑗휁11휁13)𝜉𝑗

2 − (휁2휁11휁13 + 휁8𝑗휁11휁10𝑗)
, 

 j = 1,2,3. 

𝑑𝑗 = 
−(휁2휁11휁13 + 휁5𝑗휁11휁9𝑗) + (휁2휁12𝑗 − 휁11휁13휁1𝑗)𝜉𝑗

2 + 휁1𝑗휁12𝑗𝜉𝑗
4

휁7𝑗휁12𝑗𝜉𝑗
4 + (휁2휁12𝑗 − 휁7𝑗휁11휁13)𝜉𝑗

2 − (휁2휁11휁13 − 휁8𝑗휁11휁10𝑗)
, 

 j = 4,5,6. 

𝑙𝑗 = 
(휁2

2 + 휁4
2) + (휁2휁1𝑗 + 휁2휁7𝑗 + 휁4휁6𝑗 − 휁4휁3𝑗)𝜉𝑗

2 + 휁1𝑗휁12𝑗𝜉𝑗
4

휁7𝑗휁12𝑗𝜉𝑗
4 + (휁2휁12𝑗 − 휁7𝑗휁11휁13)𝜉𝑗

2 − (휁2휁11휁13 − 휁8𝑗휁11휁10𝑗)
,  

j = 4,5,6. 
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6. Boundary conditions 
 
The dimensionless boundary conditions at the free surface z = 0, are given by 

𝑡33 = 0                                 (27) 

 

𝑡31 = 0                                  (28) 
 

𝜕𝑇

𝜕𝑧
= 0                                 (29) 

Making use of Eq. (26) into the boundary conditions Eqs. (27)-(29), we obtain 

∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))3

𝑗<1 [−𝐶13𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 + 𝐶33𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝛽3𝑙𝑗] −

                     ∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))6

𝑗<4 [𝐶13𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 + 𝐶33𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗 + 𝛽3𝑙𝑗] = 0            (30) 

∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))3

𝑗<1 [𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗] − ∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))6

𝑗<4 [𝜉𝑗𝑐𝑜𝑠𝜃𝑗 + 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗] = 0 (31) 

∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))3

𝑗<1 [𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗] − ∑ 𝐴𝑗𝑒
𝑖(𝜔𝑡;𝜉𝑗(𝑥𝑠𝑖𝑛𝜃𝑗))6

𝑗<4 [𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗] = 0        (32) 

 

The Eqs. (30)-(32) are satisfied for all values of 𝑥, therefore we have 

𝑀1(𝑥, 0) = 𝑀2(𝑥, 0) = 𝑀3(𝑥, 0) = 𝑀4(𝑥, 0) = 𝑀5(𝑥, 0) = 𝑀6(𝑥, 0)      (33) 

From Eqs. (26) and (33), we obtain 

𝜉1𝑠𝑖𝑛𝜃1 = 𝜉2𝑠𝑖𝑛𝜃2 = 𝜉3𝑠𝑖𝑛𝜃3 = 𝜉4𝑠𝑖𝑛𝜃4 = 𝜉5𝑠𝑖𝑛𝜃5 = 𝜉6𝑠𝑖𝑛𝜃6          (34) 

which is the form of Snell’s law for stress-free, thermally insulated surface of transversely 

isotropic magneto thermoelastic medium with rotation. Eqs. (30)-(32) and (34) yield 

  
∑ 𝑋𝑖𝑗𝐴𝑗 + ∑ 𝑋𝑖𝑗𝐴𝑗 = 0,    (𝑖 = 1,2,3).6

𝑗<4
3
𝑗<1                      (35) 

Where for p = 1, 2, 3, we have 

𝑋1𝑝 = −𝐶13𝑖𝜉𝑝𝑠𝑖𝑛𝜃𝑝 + 𝐶33𝑖𝑑𝑝𝜉𝑝𝑐𝑜𝑠𝜃𝑝 − 𝛽3𝑙𝑝, 

𝑋2𝑝 = 𝜉𝑝𝑐𝑜𝑠𝜃𝑝 − 𝑑𝑝𝜉𝑝𝑠𝑖𝑛𝜃𝑝, 

𝑋3𝑝 =  𝑖𝑙𝑝𝜉𝑝𝑐𝑜𝑠𝜃𝑝. 

 
And for j = 4, 5, 6 we have 

𝑋1𝑗 = −𝐶13𝑖𝜉𝑗𝑠𝑖𝑛𝜃𝑗 − 𝐶33𝑖𝑑𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝛽3𝑙𝑗, 

𝑋2𝑗 = −𝜉𝑗𝑐𝑜𝑠𝜃𝑗 − 𝑑𝑗𝜉𝑗𝑠𝑖𝑛𝜃𝑗, 

𝑋3𝑗 = −𝑖𝑙𝑗𝜉𝑗𝑐𝑜𝑠𝜃𝑗. 

 

Incident QL-wave 

In the case of a quasi-longitudinal wave, the  subscript p takes only one value, that is p=1, 

which means 𝐴2 = 𝐴3 = 0. Dividing the set of Eqs. (35) throughout by 𝐴1, we obtain a system of 
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three homogeneous in three which can be solved by Cramer’s rule and we have 

 𝐴1𝑖 = 
𝐴𝑖+3

𝐴1
=

∆𝑖
1

∆
                                (37) 

 

Incident QTS-wave 

In the case of quasi-transverse wave, the subscript q takes only one value, that is p=2, which 

means 𝐴1 = 𝐴3 = 0. Dividing the set of Eqs. (35) throughout by we obtain a system of three  

homogeneous equations in three unknowns which can be solved by Cramer’s rule and we have 

 𝐴2𝑖 = 
𝐴𝑖+3

𝐴2
=

∆𝑖
2

∆
                               (38) 

 
Incident QT-wave 
In the case of quasi-thermal wave, the subscript q takes only one value, that is p = 3, which 

means  𝐴2 = 𝐴1 = 0. Dividing the set of Eq. (35) throughout we obtain a system of three 

homogeneous equations in three unknowns which can be solved by Cramer’s rule and we have 

 𝐴3𝑖 = 
𝐴𝑖+3

𝐴3
=

∆𝑖
3

∆
                               (39) 

Where 𝑍𝑖 (i=1,2,3) are the amplitude ratios of the reflected QL, reflected QTS, reflected QT 

-waves to that of the incident QL-(QTS or QT) waves respectively. 

Here 

∆= |𝐴𝑖(𝑖:3)|3𝑋3
 

∆𝑖
𝑝
   , (𝑖 = 1,2,3) 

can be obtained by replacing, respectively, the 1st, 2nd and 3rd columns of ∆ by 

[−𝑋1𝑝, −𝑋2𝑝, −𝑋3𝑝]
′
 

Following Achenbach (1973), the energy flux across the surface element, which is the rate at  

which the energy is communicated per unit area of the surface is represented as 

𝑃∗  = 𝑡𝑙𝑚𝑛𝑚�̇�𝑙                                (40) 

Where 𝑡𝑙𝑚 is the stress tensor, 𝑛𝑚 are the direction cosines of the unit normal and �̇�𝑙 are the 

components of the particle velocity. 

The time average of 𝑃∗  over a period, denoted < 𝑃∗ >  represents the average energy  

transmission per unit surface area per unit time and is given at the interface z=0 as 

< 𝑃∗ > = < 𝑅𝑒(𝑡13). 𝑅𝑒(�̇�1) + 𝑅𝑒(𝑡33). 𝑅𝑒(�̇�3) >                 (41) 

Following Achenbach (1973), for any two complex functions f and g, we have 

< 𝑅𝑒(𝑓) >< 𝑅𝑒(𝑔) > =
1

2
𝑅𝑒(𝑓�̅�)                       (42) 

The expressions for energy ratios Ei (i=1,2,3) for reflected QL, QT, QTH-wave are given as 
(i) In case of incident QL- wave 
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𝐸1𝑖 =
<𝑃𝑖+3

∗ >

<𝑃1
∗>

, 𝑖 = 1,2,3                            (43) 

(ii) In case of incident QTS- wave 

𝐸2𝑖 =
<𝑃𝑖+3

∗ >

<𝑃2
∗>

, 𝑖 = 1,2,3                           (44) 

(iii) In case of incident QT- wave 

𝐸3𝑖 =
<𝑃𝑖+3

∗ >

<𝑃3
∗>

, 𝑖 = 1,2,3                           (45) 

Where< 𝑃𝑖
∗ > i = 1, 2, 3 are the average energies transmission per unit surface area per unit 

time corresponding to incident QL, QTS, QT waves respectively and < 𝑃𝑖:3
∗ > i = 1, 2, 3 are the 

average energies transmission per unit surface area per unit time corresponding to reflected  QL,  

QTS, QT waves respectively. 

 
 
7. Numerical results and discussion 

 
To demonstrate the theoretical results and effect of rotation, relaxation time and two 

temperature, the physical data for cobalt material, which is transversely isotropic, is taken from 

Dhaliwal and Singh (1980) is given as 

 
 

Quantity Value Unit 

𝑐11 18.78 × 1010 𝐾𝑔𝑚;1𝑠;2 

𝑐12 8.76 × 1010 𝐾𝑔𝑚;1𝑠;2 

𝑐33 17.2 × 1010 𝐾𝑔𝑚;1𝑠;2 

𝑐13 8.0 × 1010 𝐾𝑔𝑚;1𝑠;2 

𝑐44 5.06 × 1010 𝐾𝑔𝑚;1𝑠;2 

𝛽1 7.543 × 106 𝑁𝑚;2𝑑𝑒𝑔;1 

 𝛽3 9.208 × 106 𝑁𝑚;2𝑑𝑒𝑔;1 

𝜌 8.954 × 103 𝐾𝑔𝑚;3 

𝐶𝐸 4.27 × 102 𝑗𝐾𝑔;1𝑑𝑒𝑔;1 

  𝐾1
∗ 0.04 × 102 𝑁𝑠;2𝑑𝑒𝑔;1 

𝐾3
∗ 0.02 × 102 𝑁𝑠;2𝑑𝑒𝑔;1 

T0 293 deg 

𝛼1 2.98 × 10;5 𝐾;1 

𝛼3 2.4 × 10;5 𝐾;1 
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The values of frequency, rotation Ω, magnetic effect H0, are taken as 0.03,1.0, 10, respectively. 

The software MATLAB 8.0.4 has been used to determine the values of phase velocity, attenuation 

coefficient, specific loss, penetration depth, energy ratios and amplitude ratios of reflected QL, 

QTS and QT waves with respect to incident QL, QTS, and QT waves respectively. The variations 

of phase velocity, attenuation coefficients, specific loss and penetration depth with respect to 

frequency are shown in Figs. 2-13. The variation of magnitude of energy ratios of reflected waves 

subject to incident waves has been plotted in the Figs. 14-22 with respect to angle of incidence. 

The variation of magnitude of amplitude ratios has been plotted in the Figs. 23-31 with respect to 

angle of incidence. A comparison has been made to show the effect of fractional order parameter 

on the various quantities. 

1. The black line with a square symbol represents 𝛼 = 0.5 , 

2. The red line with circle symbol represents to 𝛼 = 1.0,  

3. The blue line with triangle symbol represents to  𝛼 = 1.5, 

 

PHASE VELOCITY  
 
Figs. 2-4 indicate the variations of phase velocities with respect to frequency respectively. In 

almost all the frequency range and for all the values of 𝛼, the phase velocity 𝑉1, 𝑉2, 𝑉3 decrease 

however for the range 0.6 < 𝜔 < 0.7 the phase velocity 𝑉2 increase somewhat and then again 

decreases. 

 
ATTENUATION COEFFICIENTS   
 

Figs. 5-7 shows the values of attenuation with respect to frequency respectively. From the 

graphs it is clear that for the fractional-order parameter 𝛼 =0.5 the value of attenuation 

coefficient 𝑄1, 𝑄2, 𝑄3 increases continuously. For the fractional-order parameter 𝛼=0.1 the value 

of attenuation coefficient 𝑄1 decreases for the range 0.1 ≤ 𝜔 ≤ 0.5 and then increases for the 

rest of range. Increase in the value of attenuation coefficient 𝑄2 is very small for the range 

0.1 ≤ 𝜔 ≤ 0.6 but for 𝜔>0.6 the value of 𝑄2 increases a lot however the value of attenuation 

coefficient 𝑄3 increases but for the range 0.5 ≤ 𝜔 ≤ 0.7 the value increases very large and then 

comes down at the same value and then again increases for rest of the range. For the 

fractional-order parameter 𝛼=1.5 the value of attenuation coefficient 𝑄1 decreases for the range 

0.1 ≤ 𝜔 ≤ 0.6 and then increases for the rest of range. Increase in the value of attenuation 

coefficient 𝑄2 is very small for the range 0.0 ≤ 𝜔 ≤ 0.5 then comes down and for 𝜔>0.6 the 

value of 𝑄2 increases much however the value of attenuation coefficient 𝑄3 increases but for the 

range 0.0 ≤ 𝜔 ≤ 0.7 the value increases and then comes down for the range 0.7 ≤ 𝜔 ≤ 0.9and 

then again increases for rest of the range. 

 
SPECIFIC LOSS 
 
Figs. 8-10 exhibits the variations of Specific loss with respect to frequency. From the graphs, it 

is clear that for the fractional-order parameter 𝛼=0.5 the value of specific loss 𝑅1decreases for the 

range 0.0 ≤ 𝜔 ≤ 0.1 and then increases continuously for the rest of the range. For the 

fractional-order parameter 𝛼=1.0 the value of specific loss 𝑅1 decreases for the range 0.1 ≤
𝜔 ≤ 0.5 and then increases for the 0.5 < 𝜔 ≤ 0.6 and then again decreases for rest of the range.  
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Fig. 2 Variations of phase velocity v1 with frequency 𝜔 

 

 

 

Fig. 3 Variations of phase velocity v2 with frequency 𝜔 

 

 

Similarly for the fractional-order parameter 𝛼=1.5 the value of specific loss 𝑅1decreases for the 

range 0.1 ≤ 𝜔 ≤ 0.6 and then increases for rest of the range. The value of specific loss 

𝑅2and 𝑅3 shows similar variations. For the fractional-order parameter 𝛼=1.0 the value of specific 

loss 𝑅2 for the range 0.5 ≤ 𝜔 ≤ 0.6 shows variation and increases sharply and then decreases 

and then comes down at the same value while the value of specific loss 𝑅3 for the range 

0.5 ≤ 𝜔 ≤ 0.7 shows variation and increases sharply and then decreases and then comes down at 

the same value for rest of the range of frequency. However For the fractional-order parameter 

𝛼=1.5 the value of specific loss 𝑅2 first remains stationary for initial range of frequency and for 

the range 0.5 ≤ 𝜔 ≤ 0.7  decreases somewhat and then increases for rest of the range of 

frequency and for 𝛼=0.5𝑅2 remains same for initial range and for 𝜔>0.3 increases and the value 

of specific loss𝑅3 shows almost same variations as 𝑅2. 
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Fig. 4 Variations of phase velocity v3 with frequency 𝜔 

 
 

 

Fig. 5 Variations of attenuation coefficient Q1 with frequency 𝜔 

 
 
 
PENETRATION DEPTH 
 
Figs. 11-13 shows the variations of penetration depth 𝑆1,𝑆2, 𝑆3 with respect to frequency.   

Here, we notice that there is a sharp decrease in the values of 𝑆2 and 𝑆3 corresponding to all the 

cases for the range  0.0 ≤ 𝜔 ≤ 0.1  ,and the variations approach the boundary surface by 

decreasing slowly and smoothly in the rest. However, the value of penetration depth𝑆1, for the 

fractional-order parameter 𝛼=0.5 remains stationary but shows variations for 𝛼 = 1.0 and 𝛼=1.5 

in the range0.4 ≤ 𝜔 ≤ 0.7, where it increases abruptly and then comes down and remains same 

for rest of the range of frequency. 
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Fig. 6 Variations of attenuation coefficient Q2 with frequency 𝜔 

 
 

 

Fig. 7 Variations of attenuation coefficient Q3 with frequency 𝜔 

 
 
 
ENERGY RATIOS 
 
Incident QL wave 
Fig. 14 depicts the variations of energy ratio E11 with respect to angle of incidence 𝜃. It shows 

that the values of E11 decreases for the range 0 < 𝜃 < 20and then increases for the rest of range of 

angle of incidence corresponding to all the cases of fractional order parameter 𝛼. Fig. 15 shows 

the variations of energy ratioE12with respect to angle of incidence 𝜃. Here the value increases and 

shows same increasing pattern but difference in magnitude. Fig. 16 depicts the Variations of 

Energy ratio E13 with respect to angle of incidence 𝜃. It is noticed that the values decrease and 

have variations in magnitude but not in pattern throughout the range. 
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Fig. 8 Variations of specific loss R1 with frequency 𝜔 

 
 

 

Fig. 9 Variations of specific loss R2 with frequency 𝜔 

 
 
 

Incident QTS wave 

Fig. 17 depicts the Variations of Energy ratio E21 with respect to angle of incidence 𝜃. Here 

corresponding to all the cases, we notice similar increasing trends with the difference in 

magnitudes for the whole range and show no variation for 𝛼. Fig. 18 depicts the Variations in 

Energy ratio E22 with respect to angle of incidence 𝜃. Here corresponding to all the cases, trends 

are opposite as discussed in E21 and shows no effect of 𝛼. Fig. 19.Variations of Energy ratioE23 

with respect to angle of incidence 𝜃 are shown in Fig. 19. Here, we notice small variations 

corresponding to all the cases.E23 shows increasing trend with difference in magnitude with change 

in value of 𝛼. 
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Fig. 10 Variations of specific loss R3 with frequency 𝜔 

 
 

 

Fig. 11 Variations of penetration depth S1 with frequency 𝜔 

 
 
Incident QT wave 
Figs. 20-22 depict the Variations of Energy ratios E31, E32, E33 with respect to angle of 

incidence 𝜃. Here, E31 and E33 decreases with increase in angle of incidence  𝜃 whereas E32  

increases with increase in angle of incidence 𝜃with change in magnitude corresponding to different 

values of 𝛼. 

 
AMPLITUDE RATIOS 
 
Incident QL wave 
Figs. 23-25 shows variations of amplitude ratio A11, A12, A13 with respect to the angle of 

incidence 𝜃. Here, we notice that,  initially, there is increase in the values of A11 for 𝛼 =
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0.5while for 𝛼 = 1.0 𝑎𝑛𝑑 1.5 it first decreases for the initial range and then increases sharply with 

change in magnitude showing effect of 𝛼. The amplitude ratio A12 decreases with increase in 

angle of incidence 𝜃 and shows variations for change in value of 𝛼.Here, we notice that the 

values of amplitude ratio A13 increase monotonically for the range 0 < 𝜃 < 30 and after achieving 

maximum value at 30, the values start decreasing with difference in magnitude for 𝛼 =
1.0 and 1.5 while for 𝛼 = 0.5 it shows no variations of amplitude ratio with respect to angle of 

incidence 𝜃. 

 

Incident QT wave 

Figs. 29-31 show the variations of amplitude ratios A31, A32, A33with respect to the angle of 

incidence 𝜃 respectively. Here, the variations in Figs. 29-31 are similar as discussed in Figs. 

29-31. Here, we notice that these variations show the effect of fractional order parameter 𝛼 on the 

amplitude ratios A31, A32, A33. 

 

 

Fig. 12 Variations of penetration depth S2 with frequency 𝜔 

 
 

 

Fig. 13 Variations of penetration depth S3 with frequency 𝜔 
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Fig. 14 Variations of energy ratio E11with angle of incidence 𝜃 

 

 

Fig. 15 Variations of energy ratio E12 with angle of incidence 𝜃 

 

 

Fig. 16 Variations of energy ratio E13 with angle of incidence 𝜃 
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Fig. 17 Variations of energy ratio E21 with angle of incidence 𝜃 

 

 

Fig. 18 Variations of energy ratio E22 with angle of incidence 𝜃 

 

 

Fig. 19 Variations of energy ratio E23 with angle of incidence 𝜃 
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Fig. 20 Variations of energy ratio E31 with angle of incidence 𝜃 

 

 

Fig. 21 Variations of energy ratio E32 with angle of incidence 𝜃 

 

 

Fig. 22 Variations of energy ratio E33 with angle of incidence 𝜃 
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Fig. 23 Variations of amplitude ratio A11 with angle of incidence 𝜃 

 

 

Fig. 24 Variations of amplitude ratio A12 with angle of incidence 𝜃 

 

 

Fig. 25 Variations of amplitude ratio A13 with angle of incidence 𝜃 
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Fig. 26 Variations of amplitude ratio A21 with angle of incidence 𝜃 

 

 

Fig. 27 Variations of amplitude ratio A22 with angle of incidence 𝜃 

 

 

Fig. 28 Variations of amplitude ratio A23 with angle of incidence 𝜃 
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Fig. 29 Variations of amplitude ratio A31 with angle of incidence 𝜃 

 

 

Fig. 30 Variations of amplitude ratio A32 with angle of incidence 𝜃 

 

 

Fig. 31 Variations of amplitude ratio A33 with angle of incidence 𝜃 
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8. Conclusions 
 
From above investigation, we observe: 

 

(i). The strong conductivity shows the major impact on the phase velocity, the weak 

conductivity has a high impact on the attenuation coefficients. Moreover, normal 

conductivity has significant impact on specific loss and penetration depth. Also, the 

frequency of waves formed in the material has significant effect on all the parameters of 

various kinds of waves.  

(ii). The magnitude of energy ratios is also affected by the Fractional-order parameter and 

angle of incidence. As angle of incidence increases, we notice less variation in the 

magnitudes of energy ratios.  

(iii). Fractional order parameter changes the amplitude ratios of waves. The normal 

conductivity when 𝛼 = 1 shows the major impact on the amplitude ratios of the waves. 

(iv). The signals of these waves are not only helpful in providing information about the 

internal structures of the earth but also helpful in the exploration of valuable materials 

such as minerals, crystals, and metals, etc. 
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