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Abstract.  Steel-confined reinforced concrete (SCRC) columns feature highly complex and invisible 
mechanisms that make damage evaluation and pattern recognition difficult. In the present article, the 
prevailing acoustic emission (AE) technique was applied to monitor and evaluate the damage process of 
steel-confined RC columns in a quasi-static test. AE energy-based indicators, such as index of damage and 
relax ratio, were proposed to trace the damage progress and quantitatively evaluate the damage state. The 
fuzzy C–means algorithm successfully discriminated the AE data of different patterns, validity analysis 
guaranteed cluster accuracy, and principal component analysis simplified the datasets. A detailed statistical 
investigation on typical AE features was conducted to relate the clustered AE signals to micro mechanisms 
and the observed damage patterns, and differences between steel-confined and unconfined RC columns 
were compared and illustrated. 
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1. Introduction 
 

Steel-confined reinforced concrete (RC) columns are widely used in civil engineering, 

especially in high-rise buildings, large-span bridges, and massive structures. The casing steel tube 

serves as a formwork and protective jacket that constrains the plastic deformation of core concrete 

and prevents premature shear failure (Han et al. 2009). Several scholars (Liu et al. 2009, Wang et 

al. 2017, Zhou et al. 2008) have investigated the mechanical behavior of steel-confined RC 

columns under different loading conditions and proved that the proposed column features good 

confinement effects, loading capacity, and anti-seismic capacity. The wide utilization of 

steel-confined RC column emphasizes the necessity of developing structural health monitoring 

(SHM) and evaluating approaches. 

Acoustic emission (AE) is a non-destructive technique that can provide reliable and real-time 

information on various structures; it has been widely explored in civil engineering for SHM and 

damage recognition (Abouhussien and Hassan 2017). At present, most studies on AE utilization 

are focused on concrete structures (Behnia et al. 2014, Carpinteri et al. 2011) and steel materials 

(Droubi et al. 2017). Due to the highly complex and invisible damage patterns, few studies have 
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paid attention to AE detection for composite structures. Behnia et al. (2016) applied the AE 

technique to detect the fracture process of steel fiber-reinforced concrete beams subjected to pure 

torsion. Ma et al. (2017) reported an AE-based damage assessment method for FRP-strengthened 

RC columns during a pseudo static test. Li et al. (2017) and Du et al. (2018) thoroughly 

investigated the AE behavior of steel-confined RC columns and FRP-confined concrete-filled steel 

tubular columns under different loading conditions and proposed indicators to evaluate the damage 

state, describe the damage mechanisms, and provide critical warning. However, quantitative 

evaluations of damage severity have not been investigated comprehensively, and the damage 

classification and failure pattern of steel-confined RC columns have not been addressed. 

Compared with traditional RC columns, steel-confined RC columns offer a highly complex and 

invisible failure mechanism by combining steel tube, anisotropic concrete, and steel rebar; such a 

structure however, makes the damage recognition very cumbersome. Damages caused by concrete 

cracking (micro and macro), steel/concrete interface slipping and friction, steel deformation 

(elastic and plastic), and ambient noises are inevitable during the damage process of steel-confined 

RC columns. Thus, correct identification of these damage modes can help us illustrate the related 

damage mechanisms, determine major damages and take niche-targeting rehabilitation measures. 

Previous research shows that cluster analysis can be successfully used for damage pattern 

classification and recognition for different materials. Among numerous cluster algorithms, the 

unsupervised k–means cluster and fuzzy C–means (FCM) cluster are used most often. For example, 

Pashmforoush et al. (2012) characterized the damage pattern of glass/epoxy composite specimens 

during three-point bending tests using the k–means and genetic algorithms. Griffin et al. (2014) 

conducted fuzzy C-clustering to discriminate three different AE signals during the grinding 

process of alloys. Marec et al. (2008) applied principal component analysis (PCA) to reduce data 

redundancy and the FCM approach to cluster the principal components into different types. To 

date, cluster analysis is mainly applied in damage recognition for composite or metal materials; 

applications of cluster analysis for steel–concrete composite structures have not been reported. 

In the current study, the AE technique is applied to trace and recognize the damage evolution of 

steel-confined RC columns during a quasi-static test. The contributions of this study are threefold. 

First, energy-based indicators such as index of damage (ID) and relax ratio, are proposed to trace 

the damage evolution and quantitatively evaluate the damage state and typical damage stages. 

Second, PCA and cluster validity analysis are conducted to ensure clustering accuracy and 

simplify the clustering process. Finally, identification of different damage patterns is achieved on 

the basis of FCM cluster and statistical analysis of typical AE features. 

 

 

2 Data processing algorithms 
 

2.1 Acoustic emission energy-based indicators 
 

The AE phenomenon is simulated by the sudden release of stored energy during material 

degradation and contains useful information on the damage initiation, internal condition, and 

failure pattern for different materials. AE features, such as amplitude, energy, duration, rise time, 

counts, intensity, and frequency, are commonly extracted to analyze the micro damage 

mechanisms of different structures. Sagar et al. (2015) provided a thorough description of AE 

features. 
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From the perspective of energy, material damage can be considered an energy-driven instability 

process. Thus, AE energy is a prevailing indicator of damage evaluation. Benavent–Climent et al. 

(2012) used the energy-based ID to correlate the AE and plastic strain energies of concrete slabs 

under seismic loading. ID is defined as the cumulative energy recorded at any moment during the 

loading cycle (EAE) divided by the cumulative energy when the structure experiences the 

maximum allowable damage (E
D 

AE) 

AE

D

AE

E
ID=

E
                              (1) 

Colombo et al. (2005a, b) proposed the relax ratio to determine the residual strength of 

concrete structures. This method is based on the theory that the normal release of AE energy 

during the unloading phase of AE testing is a sign of severe damage. The relax ratio (Eq. (2)) can 

be computed as the ratio of the average energy during unloading (AEU) to the average energy 

during loading (AEL), which explains the link between AE energy and failure loads. 

      /Relax Ratio RR AEU AEL .                  (2) 

where the AEL can be defined as the cumulative energy released during loading divided by the 

total AE hits recorded during loading, and the AEU can be defined as the cumulative energy 

released during unloading divided by the total AE hits recorded during unloading. 

 

2.2 Principal component analysis 
 
PCA has been demonstrated to be a useful tool for dimension reduction and signal 

classification. PCA projects n-dimensional data matrix into k dimensional space (k ˂ n). The 

procedure of PCA can be expressed as a splitting of original data into a sum of matrix products, 

TP
T
, and a residual matrix E (Manson et al. 2001) (Eq. (3)) 

TX TP E  ,                            (3) 

where T is the score matrix corresponding to the principal components, P is the weight matrix 

containing each variable‟s weight vector, and E is the residual matrix representing the part of the 

original data that has not been considered in TP
T
. Fig. 1 shows two principal components (PC1 and 

PC2). 

In general, sample normalization is conducted to guarantee that all data matrices are comparable 

with one another before PCA. In this study, the maximum–minimum value method is introduced 

to normalize the selected AE data of different magnitudes into a specified range (0 to 1). 

 

2.3 Cluster validity analysis 
 

Several indicators, such as the Xie–Beni index (XB), Davies–Bouldian index (DB), Dunn index, 

partition coefficient, and classification entropy, can be used for cluster validity analysis. In this 

study, the DB and XB indexes were calculated to determine the optimal cluster number. 

1) DB (Davies and Bouldin 1979). The DB index checks the dissimilarity of intra and inter 

cluster based on the inherent data set. Equation 4 provides the mathematical formulation of DB 

index 
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1

1
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( , )
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i i j
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 
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 
                           (4) 

where n is the cluster number, σi represents the average distance of all nodes to its cluster center ci 

(intra distance), and d (ci, cj) denotes the centroid distance of two different clusters (inter distance). 

A small DB index yields good clustering results. 

2) XB (Xie and Beni 1991). The XB index is based on the fuzzy clustering method and defined 

as follows 

2

1 1

2

1

( , , )         ( )
min

c n
m

ij i j

i j

i j

u v x
n

XB U V c i j
v v

 



 



                  (5) 

where c is the cluster number, n is the object number, uij represents the membership value of the 

jth object belonging to the ith category, xj represents the jth object in the ith category, and vi is the 

ith cluster center. A local minimum XB value indicates good cluster validity. 

 

2.4 Fuzzy C–means algorithm 
 

Different from the hard cluster algorithms, such as k–means, which classifies a data point as 

either belonging to a cluster or not, the FCM algorithm permits each data point to belong to a 

cluster specified by a membership grade to some degree (varying within [0, 1]). This algorithm 

aims to find the cluster centers Ci to minimize the feature function J by iteration (Marec et al. 

2008). 

2

1 1

( , ) [ ( )] ( , )
n k

f

i j j i

j i

J U V u x d x C
 

                        (6) 

where k is the cluster number, f is the fuzzy degree, U denotes the fuzzy membership grade matrix 

with k lines and n columns, and V represents the matrix for cluster centers Ci. For example 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

... ... ... ...

( ) ( ) ... ( )

n

n

k k k n

u x u x u x

u x u x u x
U

u x u x u x

 
 
 
 
 
 

                         (7) 

1 2[ | | ... ]mV C C C                                (8) 

where ui (xj) is the membership value of jth data point to the ith cluster under the condition 

1

( ) 1  
k

i j

i

u x j


                             (9) 

where d (xj,Ci) denotes the similarity matrix between the data point xj and its cluster center 
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calculated from Eq. (10).  

( , ) ( ) ( )T

j i j i j id x C x C x C                           (10) 

More algorithm details can be found in Sahu‟s paper (Sahu et al. 2012). The flow chart of the 

FCM algorithm is explained in Fig. 2. 

 

 

Fig. 1 Description of components analysis 

 

 

Fig. 2 Flow chart of FCM algorithm 
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3. Description of the experiment 
 

A total of six columns were fabricated with a cross section of 300 mm × 300 mm, and three of 

which were confined by steel tubes. Each test specimen has a total height of 1950 mm. Fig. 3 

provides the details of the specimens. The steel tube used in the experiment is Steel Q345 with a 

thickness of 3 mm; C40 commercial concrete, which has a measured compressive strength of 40.4 

MPa, is also used. Table 1 shows the detailed properties of the test materials, and Table 2 presents 

the detailed design parameters for each test group; here, QSS0 and QSS3 are used to distinguish 

the conventional RC columns and steel-confined RC columns for conciseness, respectively. 

Fig. 4 illustrates the test setup diagram, in which the prepared column–footing assemblages 

were subjected to combined constant axial and reciprocating lateral loads. A calibrated load cell 

was used to measure the axial pressure, displacement meters were applied to capture the lateral 

displacement, and strain gages were glued to the surface of the specimens to record their strain 

response. Fig. 5 presents the loading protocol for each test group. When the lateral loading 

decreased to approximately 70%–80% of the ultimate lateral loading, the test was terminated. 

More details on this test can be found in the literature (Du et al. 2018). 

Four R-15a AE sensors with resonant frequency bands ranging from 50 kHz to 200 kHz were 

fixed on both sides of the columns to monitor the damage process (Fig. 4). Table 3 shows data 

acquisition features of the AE system. Additional details can be found in the literature (Du et al. 

2018). 

 
Table 1 Detail material properties 

Material 
Yield Strength 

(MPa) 

Tensile Strength 

(MPa) 

Elastic Modulus 

(GPa) 

Thickness or 

Diameter (mm) 

Elongation

（%） 

steel tube 280 414 210 3 10.9 

Rebar 420 590 205 16 17.5 

Stirrup 400 525.4 206 8 18.3 

 

 

 
(a)                                   (b) 

Fig. 3 Construction information of test specimens: (a) geometric details of the specimens and (b) photograph 

of the test specimens 
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Fig. 4 Experimental facilities and data acquisition system 

 

 

 

  
(a) (b) 

Fig. 5 Loading schemes: (a) unconfined RC columns (QSS0) and (b) steel-confined RC columns (QSS3) 
 

 

 
Table 2 Detail information of test groups 

Test 

Group 

Specimen 

Number 

Steel 

Tube 

Longitudinal 

Rebar 
Stirrups Concrete 

Axial 

Compression 

Ratio 

Shear 

Span 

Ratio 

QSS0 3 none 6 16  C40 0.3 4 

QSS3 3 3 mm 6 16  C40 0.3 4 
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Table 3 Data acquisition features for the AE system 

Sensor 

type 

Peak response 

frequency/kHz 
Threshold 

Sampling 

rate 

Sampling 

points 
PDT/μs HDT/μs HLT/μs 

R-15a 150 45 dB 1 MSPS 1024 300 800 1000 

 

 

4. Quantitative evaluation based on acoustic emission indicators 
 

In a previous study, Du et al. (2018) reported that steel-confined RC columns show better 

loading capacity and favorable hysteretic responses than unconfined columns. Herein, the damage 

process was evaluated in three stages based on energy fluctuations, and the energy-based Sentry 

function successfully revealed the damage evolution and energy transition of the specimens. In this 

study, energy-based indicators, including ID and relax ratio, were further investigated to provide a 

quantitative evaluation of steel-confined RC columns. 

All applied loads and released AE signals were recorded during the test. Table 4 provides the 

basic test results. Fig. 6 provides the typical AE signals of different damage state. As no 

significant difference were observed among the same test group, QSS001 and QSS301 were 

considered as representative specimens and are discussed in the following chapter for conciseness. 

Fig. 7 provides the damage patterns of specimens QSS001 and QSS301. 

 

 
Table 4 Basic test results of each column-footing assemblage 

Unconfined 

group 
Load/kN 

Total AE energy 

(mV*μs) 

Total  

AE hits 

Confined 

group 
Load/kN 

Total AE 

energy 

(mV*μs) 

Total  

AE 

hits 

QSS001 129.6 33469378 846028 QSS301 160.2 6312704 855610 

QSS002 136.5 35726970 901561 QSS302 173.8 7011376 948138 

QSS003 122.3 32687343 829574 QSS303 154.1 6772152 899737 

 

 

 

  

Fig. 6 Typical AE signals during the damage process 
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(a) (b) 

Fig. 7 Damage pattern and failure mode: (a) unconfined RC column QSS001 and (b) steel confined RC 

column QSS003 

 
 

4.1 ID analysis 
 

Table 5 provides the calculated IDs of each loading cycle for all test specimens. ID was calculated at 

two points in the first two cycles and at only one point in subsequent cycles. Fig. 8 illustrates the 

increasing trend of ID versus loading history for specimens QSS001 and QSS301. The three 

evaluated stages were marked by a dashed line. 

The ID of specimen QSS001 (Fig. 8(a)) linearly increased at a low rate until the maximum 

lateral load, indicating the stable development of concrete damage and weak concrete cracking 

intensity. Subsequently, the ID exponentially increased with continuous decreases in lateral loads, 

thereby implying that unstable development of exiting cracks causes severe damages to the test 

specimen. The ultimate ID value of QSS001 was 26. 

 

 

Table 5 Calculated IDs for each test specimen (only first fifteen cycles for group QSS3) 

Cycle 

ID 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

QSS001 0.08 0.15 0.22 0.45 1.00 1.24 2.20 2.70 4.16 5.48 8.48 11.38 15.90 19.71 25.89 

QSS002 0.09 0.17 0.25 0.48 1.00 1.32 2.37 2.95 3.86 5.21 8.14 11.03 15.47 19.30 24.97 

QSS003 0.06 0.12 0.23 0.47 1.00 1.28 2.45 3.26 4.43 5.85 9.36 12.21 16.78 20.57 27.94 

QSS301 0.06 0.15 0.40 0.69 1.00 1.52 1.95 2.20 3.21 3.70 4.37 4.79 5.45 5.87 6.38 

QSS302 0.11 0.18 0.34 0.52 1.00 1.41 1.84 2.16 3.19 3.77 4.43 4.95 5.58 6.10 6.57 

QSS303 0.07 0.22 0.47 0.65 1.00 1.63 2.11 2.64 3.36 3.89 4.58 5.02 5.51 5.95 6.30 
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(a) (b) 

Fig. 8 History curve of load versus ID: (a) unconfined column and (b) steel-confined column 
 

 

The ID of the steel-confined RC column QSS301 was significantly different from that of QSS001. 

During the first two stages of loading, the ID of QSS301 rapidly increased, that can be attributed to the 

constraining effect of the steel stub, which causes high global stiffness. Thus, a large amount of energy is 

required to deform the confined columns. In stage 3, the ID increased in a slow rate, which indicates 

progressive damage to the core concrete. The ultimate ID of QSS301 was approximately 6.4. 

The ultimate ID of QSS301 (about 6.4) was only a quarter that of QSS001 (nearly 26), which 

means lighter damage occurred on the steel-confined columns in comparison with that on 

conventional columns. This result is corroborated by the damage pattern shown in Fig. 7. In 

addition, at the end of stage 2 (maximum load), the IDs of QSS001 and QSS301 were 

approximately 4.0. At this time, the test columns completely yielded. Thus, an ID of 4.0 is a good 

indicator of structural yielding and initial occurrence of severe damage. The increase rate of ID can also 

be used to depict the growth intensity of damages. 
 

4.2 Relax ratio analysis 
 

Given its quantitative superiority, the relax ratio was calculated for each deformation level 

based on Eq. (2) (Table 6). Fig. 9 depicts the relationship between relax ratio and lateral load. The 

variations in relax ratio of all specimens showed similar results and are in accordance with the 

three evaluated damage stages. 

In stage 1, nearly no accumulation of AE energy was observed, and the relax ratio continuously 

increased but maintained a low value (less than 0.4), indicating that slight concrete damages 

occurred. Subsequently, an increasing trend of relax ratio was observed with the slow increase of 

lateral load, likely because the closure and friction of existing cracks during the unloading stage 

also generates a large number of AE hits. The relax ratio reached approximately 1.0 at the 

maximum load, after which the specimens were damaged into a relax stage (stage 3). In stage 3, 

the accelerated mutual penetration and closure of existing cracks promoted AE activities in the 

unloading phase, thereby enabling the relax ratio to exceed 1.0. 

A relax ratio of 0.4 may be used as an indicator of initial yielding, whereas a relax ratio of 1.0 

could be a good indicator of the beginning of severe damage. When the relax ratio was less than 

0.4, the columns were in a safe state, and only slight damage occurred. The increment of relax 

ratio from 0.4 to 1.0, corresponding to the yielding process, shows that the structure was relatively 

safe, although some notable damages occurred. When the relax ratio was higher than 1.0, severe 

damages occurred, and the columns were in an unstable stage. 
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Table 6 Fluctuate of Relax Ratio for each test specimen (only first sixteen cycles for group QSS3) 

  Cycle 

CSS 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

QSS001 0.21 0.10 0.25 0.49 0.25 0.50 0.62 0.42 0.47 1.13 1.04 0.93 1.74 1.05 1.48 0.88 

QSS002 0.13 0.23 0.34 0.31 0.42 0.59 0.76 0.61 0.79 1.27 1.10 1.02 1.47 1.55 1.29 1.04 

QSS003 0.17 0.35 0.28 0.42 0.35 0.44 0.57 0.73 0.53 1.05 1.27 1.51 1.18 1.40 1.58 1.21 

QSS301 0.24 0.38 0.48 0.77 0.57 0.65 0.74 0.85 0.99 1.02 1.42 1.07 1.70 1.35 1.31 1.15 

QSS302 0.16 0.31 0.54 0.72 0.53 0.46 0.77 0.89 1.05 1.34 1.50 1.41 1.78 1.56 1.22 1.08 

QSS303 0.22 0.43 0.31 0.64 0.45 0.67 0.80 1.06 1.30 0.92 1.26 1.35 1.67 1.44 1.59 1.23 

 
 

  
(a) (b) 

Fig. 9 History curve of load versus relax ratio: (a) unconfined column and (b) steel confined column 

 
 
In comparison, the variations in ID and relax ratio provide quantitative information on damage 

severity. High IDs and relax ratios provide critical warnings of the potential occurrence of severe 

damage. In practical application, variations in ID and relax ratio can mutually support quantitative 

evaluations of structural damages and provide useful information for operation and management. 

 
 

5. Damage pattern recognition by clustering analysis 
 

Clustering analysis classifies n elements into k representative classes with different 

characteristics. In general, elements in the same cluster are similar; otherwise, the elements are 

alienated. The classified k clusters can be related to different damage types. In this section, the AE 

parameter-based FCM cluster method was conducted to identify different damage patterns in the 

test columns. The selected AE features were amplitude, counts, energy, rise time, duration, 

intensity, and peak frequency; these features were used as an initial set of vectors during the 

clustering process. PCA was conducted to project the selected AE features into low, irrelevant 

dimensions to eliminate redundancy. In this study, the top three principal components were used in 

the FCM algorithm to classify n AE signals into k classes. Cluster validity indicators (DB and XB) 

were calculated to determine the optimal cluster number (k). 
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(a) (b) 

Fig. 10 Cluster validity analysis for unconfined column QSS001: (a) DB index and (b) XB index 

 
 

  
(a) (b) 

Fig. 11 Cluster validity analysis for steel confined column QSS301, (a) DB index and (b) XB index 
 
 
5.1 Determination of the optimal cluster number 
 
During validity analysis, the cluster number ranged from 2 to 10. Figs. 10 and 11 show the 

indicators (DB and XB) change with the cluster number. The DB index for specimen QSS001 

achieved a local minimum value when the cluster numbers (k) were 3 and 9; by comparison, the 

XB index reached a local minimum value at cluster numbers 3 and 8. For QSS301, the DB and XB 

indices reached local minima when the cluster number was 3. In summary, the XB and DB indices 

reached local minima when the cluster number was 3 for both confined and unconfined RC 

columns. Therefore, the optimal cluster number is 3. 

 
5.2 Damage patterns corresponding to cluster outcomes 
 
The FCM algorithm was conducted to classify the AE signals recorded during the pseudo-static 

loading test into three representative classes according to their inherent data structure. The fluctuation 

of AE features and correlativity charts of different AE features after clustering are shown in Figs. 
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12-15. As shown in the cluster results, the principal component (PC1 and PC2) correlogram and 

two-dimensional cross-plot of typical AE features distinguished the three types of damage signals 

accurately. The statistical value of typical AE features for the three clusters are shown in Tables 7 

and 8. 

 

 

  
(a) (b) 

Fig. 12 Time fluctuation of AE responses of QSS001: (a) cumulative signal number of each cluster and (b) 

principal component distribution corresponding to time 
 

  
(a) (b) 

  
(c) (d) 

Fig. 13 Correlativity chart of AE features after clustering of QSS001: (a) PC1 vs PC2 distribution; (b) 

amplitude vs peak frequency distribution; (c) rise time vs amplitude distribution and (d) counts vs peak 

frequency distribution 
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(a) (b) 

Fig. 14 Time fluctuation of AE responses of QSS301: (a) cumulative signal number of each cluster and (b) 

principal component distribution corresponding to time 
 

 

 

  
(a) (b) 

  
(c) (d) 

Fig. 15 Correlativity chart of AE features after clustering of QSS301: (a) PC1 vs PC2 distribution; (b) 

amplitude vs peak frequency distribution; (c) rise time vs amplitude distribution and (d) counts vs peak 

frequency distribution 
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Table 7 Statistical analysis of AE features for specimen QSS001 

Average AE 

feature 
   Rise time (μs)  Counts  Energy 

  Amplitude 

(dB) 

  Peak frequency 

(kHz) 

Cluster 1 925.35 80.54 134.06 60.44 50.61 

Cluster 2 248.85 18.33 8.44 48.09 42.53 

Cluster 3 186.29 23.24 5.43 51.13 139.62 

Total 

average 
398.16 33.07 36.19 51.72 69.87 

 

 
Table 8 Statistical analysis of AE features for specimen QSS301 

Average AE 

feature 
   Rise time (μs)  Counts  Energy 

  Amplitude 

(dB) 

  Peak frequency 

(kHz) 

Cluster 1 209.35 62.16 23.03 57.28 128.24 

Cluster 2 229.33 23.10 10.55 49.31 40.60 

Cluster 3 104.06 16.52 2.80 47.48 132.63 

Total average 150.17 28.90 9.01 50.13 114.67 

 

 

Zitto et al. (2015) and Ji et al. (2011) concluded that the damage frequency of concrete is 

primarily concentrated between 20 and 80 kHz. Lai et al. (2014) reported that the shear fracture 

and crushing of concrete are always accompanied by high AE intensity and energy dissipation. 

Prem et al. (2016) and Aggelis et al. (2011) proved that AE frequency always decreases during 

critical shear failure. Zhang et al. (2013) conducted AE detection of Q345 steel during a tensile 

test, and found that the peak frequency of steel damages mainly ranges between 100 and 200 kHz 

with the amplitude of 50–70 dB during plastic deformation. Saeidi et al. (2014) investigated the 

damage process and mechanisms of dual phase steel and showed that void nucleation is a 

continuous process that occurs until the final fracture of the material. Kadkhodapour (2011) 

provided a thorough discussion on void formation, growth, and coalescence for a commercial steel 

material. 

Fig. 12 provides the cumulative signal numbers of each cluster and PC1 distribution 

corresponding to time for unconfined RC columns. Cluster 2 was continuously distributed 

throughout the entire damage process with a frequency of 42.53 kHz. Moreover, all AE features, 

such as amplitude, rise time, and counts, showed low values (Table 7). Thus, Cluster 2 was 

primarily caused by the generating and closuring of concrete micro cracks, and the friction 

between the faces of cracks and aggregates also result signals in Cluster 2. Clusters 1 and 3 mainly 

appear after yielding (Fig. 11(a)), and the corresponding signal numbers were only half that of 

Cluster 2.  

Cluster 1 showed high AE feature (rise time, counts, amplitude and energy) values, and its 

average peak frequency was fixed at 50.61 kHz based on the statistical value of the AE features. 

Cluster 3 revealed relatively lower AE feature values and a higher peak frequency of 149.62 kHz. 

187



 

 

 

 

 

 

Fangzhu Du and Dongsheng Li 

Thus, Cluster 1 was caused by major concrete damages, such as macro interpenetration of existing 

cracks and crushing of surface concrete. As illustrated in Fig. 7(a), the concrete was crushed and 

peeled. Cluster 3 could be associated with the yielding damages of steel rebar, including 

dislocation motion and slipping of steel crystals/grains, which causes irreversible plastic 

deformation. The exposed and buckled steel rebar is also shown in Fig. 7(a). 

With regard to the steel-confined RC columns, Fig. 14 provides the cumulative signal number 

of each cluster and PC1 distribution corresponding to time. Other steel damages were detected 

during the damage process. Clusters 1 and 3 have high peak frequencies of 128.24 kHz and 132.63 

kHz, respectively, which should be related to steel damage. Cluster 3 was sustained during the 

entire loading process with relatively low AE features (Table 8) and a large number of damage 

signals (Fig. 14(a)). According to the fracture mechanism and void development of steel 

(Kadkhodapour et al. 2011), high amplitude signals could be attributed to void coalescence and 

dislocation motion, whereas low amplitude ones are due to void nucleation and stable growth. 

Therefore, Cluster 1 mainly contains plastic damages caused by steel crystal dislocation motion, 

void unstable growth, and coalescence. Fig. 7(b) showed the steel tube yield. Cluster 3 represents 

void nucleation damages, which occur because of particle fractures and decohesion in the steel 

tube and rebar. From a micromechanical perspective, the inherent inhomogeneity of grains in steel 

cause initial defects, which are then activated by external stress and develop into macro damage. 

Cluster 2 has a low peak frequency (40.60 kHz) and an AE feature value similar to that of the 

unconfined RC columns. Thus, Cluster 2 represents the formation and closure of micro cracks and 

friction between faces of cracks and aggregates. 

The damage types and mechanisms of the steel-confined and unconfined RC columns under 

seismic loading were evidently different. AE features, such as peak frequency and amplitude, play 

a major role in the pattern identification process. For unconfined columns, no steel void nucleation 

damages were identified because most AE signals were attenuated during propagation in concrete. 

However, more concrete damage was identified because the concrete was severely damaged, 

especially around the plastic hinge region (Fig. 7(a)). For the steel-confined columns, more steel 

damage was determined because the steel tubes were stressed into plastic deformation and AE 

sensors were fixed directly on the surface of the steel tube. No concrete crushing signals were 

separated. This finding is supported by the lack of concrete crushing and no macro cracks 

observed during the test (surface concrete in Fig. 7(b) was removed artificially). 

 

 

6 Conclusions 
 

In this study, the entire damage process of steel-confined and unconfined RC columns under 

seismic loading was monitored using the AE technique. Quantitative evaluation and pattern 

recognition were realized on the basis of the recorded AE responses. The major conclusions are as 

follows: 

Energy-based indicators, including ID and relax ratio, successfully disclosed the damage 

evolution and quantitatively evaluated the damage severity of the columns. A relax ratio of 0.4 

indicates initial yielding, whereas an ID of 4.0 and relax ratio of 1.0 mutually support quantitative 

warnings of the occurrence of severe damage. 

The recognized failure patterns and damage types of steel-confined RC columns and 

unconfined RC columns were different. The FCM algorithm efficiently discriminated the AE data 

of different generation mechanisms, while statistical analysis of typical AE parameters facilitated 
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pattern recognition and mechanism illustration from the micromechanical perspective. 

The proposed combination of PCA, validity analysis, and FCM cluster incorporates statistical 

analysis of typical features presents a reliable methodology for structural damage recognition and 

evaluation. However, the results are based on limited experimental data and theoretical analysis. 

Thus, further study is needed to enable the in situ application of the presented technique. 
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