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Abstract.  This paper reported test of full-scale cables attached with four types of dampers: viscous damper, 
passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. 
The logarithmic decrements of the cable with attached dampers were calculated from free vibration time 
history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum 
damping ratio were derived, which was very important for practical damper design and parameter 
optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The 
effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. 
Approximate formulations were derived and verified using numerical solutions. The critical values for 
non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were 
approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. 
The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and 
negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated 
mass was more effective than negative stiffness for higher vibration modes. 
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1. Introduction 
 

Stay cables are vulnerable to environmental excitations (Hikami and Shiraishi 1988). Harmful 
vibrations can lead to collisions or induce secondary stress for the HDPE sheath near the cable 
anchorage. Engineering societies have mainly attributed the reported corrosion and failure of 
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high-strength wires of stay cables with a shorter-than-expected life-span to damage in corrosion 
protection system. 

Throughout the last four decades, bridge engineers have been proposed different measures to 
suppress these harmful vibrations. One typical countermeasure is to attach the damper near cable 
anchorage to provide additional damping for the cable (Yamaguchi and Fujino 1998). Different 
kinds of dampers with varying working mechanisms have been employed to suppress harmful 
vibrations. Theoretical studies have also been conducted to explore damping effects. Pacheco et al. 
(1993) proposed a “universal design curve” for damper constant optimization. Then, an 
approximate closed-form solution was further developed by Krenk (2000) and widely applied in 
engineering practice for optimization of linear viscous damper constant. However, each kind of 
damper has a specific force–velocity relationship. Non-ideal factors, such as cable bending 
stiffness (Tabatabai and Mehrabi 2000, Main and Jones 2007), cable sag (Xu and Yu 1998, Krenk 
2002), damper supporter flexibility (Xu and Zhou 2007), damper friction threshold (Main and 
Jones 2002a), and damper internal stiffness (Zhou et al. 2014a, b) can affect damping of a cable 
with attached damper. Addressing these factors precisely by theoretical analysis alone remains 
challenging, as their effects are combined together. These factors are also difficult to quantify 
because they are related to boundary conditions or a complex damper/cable working mechanism. 
As such, testing a full-scale stay cable with damper is crucial to measuring actual damper 
performance. The ratio of the tested damping ratio to the maximum theoretical damping ratio can 
be derived from the test; which can then be feedback to optimize damper parameters. This paper 
reported full-scale cable tests of four typical kinds of dampers. Factors that could affect damper 
performance, especially those may increase the attainable maximum damping ratio, were 
addressed theoretically for further damper development. 

 
 

2. Passive dampers 
 

Different dampers have different working mechanisms. In this paper, four representative kinds 
of dampers (viscous damper, magnetorheological (MR) damper, friction damper and high damping 
rubber (HDR) damper) were tested with the full-scale cable. 
 

2.1 Viscous damper 
 
The viscous dampers in this test were jointly developed by Tongji University and Shanghai 

Materials Research Institute. The ideal damper force is highly dependent on velocity 

  ddd vvcvF
1 

                                                    (1) 

where dF  is the damper force, c  is the damping coefficient,   is an exponent that varies from 

0.3-1.95 in engineering practices (Lee and Taylor 2001), and dv  is damper piston velocity. The 

viscous damper will be similar to a friction damper when  0 (Fig. 1). 
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3. Full-scale cable test  
 
3.1 Experimental setup and test method 
 
There were three prototype cables tested in three cable factories (Jiangyin Fasten, Shanghai 

Pujiang and Liuzhou OVM). The test cases were shown in Table 1. The two cables in Jiangyin 
Fasten and Shanghai Pujiang cable factories were identical. Installation locations of viscous 
damper, MR damper and friction damper were also the same. The cable parameter and damper 
location in Liuzhou OVM were different from the above two cables as listed in Table 2. The tested 
results in Jiangyin Fasten and Shanghai Pujiang cable factories were almost the same, so the test 
results of the MR damper and friction damper in Jiangyin Fasten cable factory and the viscous 
damper in Shanghai Pujiang cable factory were reported in this paper for the sake of simplicity.  

The instrument setup of the test in Jiangyin Fasten and Shanghai Pujiang cable factories were 
shown in Fig. 3. There were 6 displacement meters installed at the damper location, 8L , 2L ,

4L , 43L , and 87L  in vertical direction. Five vertically oriented accelerometers were placed 

near the damper location, and at 8L , 2L , 4L , 2L ; L  was cable chord length. One 

transversely oriented accelerometer was located at 87L . The load cells were connected to 
viscous and MR dampers in series during the test; however, there was no load cell for the friction 
damper test. The experimental setup in Liuzhou OVM was simple compared to that of the above 
two factories. Three displacement meters in vertical direction (at damper location, 4L , and 2L , 

respectively) and two accelerometers also in vertical direction (at 4L  and 2L , respectively) 
were installed for the HDR damper test in Liuzhou OVM. There was no load cell in series with the 
tested damper in Liuzhou OVM too.  

 
Table 1 Test cases 

Cable factories Tested dampers 

Jiangyin Fasten 

Viscous damper 

MR damper 

Friction damper 

Shanghai Pujiang 

Viscous damper 

MR damper 

Friction damper 

Liuzhou OVM HDR damper 

 
Table 2 Parameters of the full-scale cables 

Location 
Cable  
length  
(m) 

Mass 
(ton) 

Tension 
force 

 (kN) 

Cable 
type 
(PWS) 

Diameter 
(mm) 

Natural frequency  
(Hz) 

1st 2nd 3rd

Jiangyin  
(Shanghai) 

215.58 10.61 3955.80 Ф7×151 113 0.658 1.316 1.974

Liuzhou 168.25 4.71 2731 Ф7×85 87 0.928 1.856 2.784

492



 

 
 
 

 
 

Full-scale 

(a) Full-

  (c) Ful

(e) Fricti

test of dampe

Fig. 3

-scale cable (J

l-scale cable (

ion damper (J

ers for stay cab

3 Experimenta

Jiangyin) 

(Liuzhou)

Jiangyin)

Fig. 4

 
 
 
 
 
 

ble vibration 

tal setup (Jiang

4 Full-scale ca

mitigation and

gyin and Shan

(b) Visc

(d) M

(f) HD

able test 

d improvemen

nghai) 

ous damper (S

MR damper (Jia

DR damper (L

nt measures 

 

 
Shanghai) 

 
angyin)  

 
Liuzhou) 

493



 
 
 
 
 
 

Haijun Zhou, Ning Xiang, Xigui Huang, Limin Sun, Feng Xing and Rui Zhou 

The tested four types of dampers are shown in Fig. 4. The installation position of viscous 
damper, MR damper and friction damper was 5.0 m from the anchorage ( Ll1 2.32%, 1l  is 
distance from the damper location to the nearest cable end). The two viscous dampers (Fig. 4(b)) 
were placed on the cable at an angle of 60o to suppress vertical and transversal cable vibrations; 
while the two MR dampers (Fig. 4(d)) were placed on the cable at an angle of 45o. The voltages 
applied to the MR dampers ranged from 0.0 V (no voltage applied), 3.0V, 6.0V, 9.0V and 12.0V, 
respectively (Zhou and Sun 2013). The tested friction damper included four friction pads (Fig. 
4(e)), which were attached to the steel plate by high-precision bolts. The friction force could be 
adjusted by loosening or tightening the bolts (Fig. 4(e)). The damping force of the friction damper 
was set to 2000N and 2500N (Zhou et al. 2006). A pair of HDR dampers was used in the full-scale 
cable test (Fig. 4(f)). The installation position of HDR dampers was 6.73 m from the cable 
anchorage ( Ll1 4.00%). 

 
The full-scale cable could be easily excited by human excitation at the anti-node of the 

vibration mode shape with the frequency tuned to the cable frequency. The location of human 
excitation was 2L  for the first and the third modes, 4L  for the second mode. When the 
vertical vibration amplitude reached to the designated value, the excitation was stopped and then 
the cable continued to decay freely. The free decay time history of the vertical vibration was 

recorded and the logarithmic decrement of the cable '
a  could be estimated using the following 

formula (Clough and Penzien 2003) 

















2

2' ln
1

ba

ba
a A

A

b
                                                             (2)

 

where 2baA  , 2baA   are the double amplitude of the  thba 2  and the  thba 2  period of 

oscillation, respectively, and '
a   denotes the logarithmic decrement corresponding to aA  (i.e., 

the double amplitude of the tha  period). In this paper, the data was processed using b 20 for 
those cases with dampers and 100~300 for free cable. As the damping value of the cable 
before/after damper installation is very small, the corresponding modal damping ratio of the cable 

a  could be estimated (Clough and Penzien 2003) 

             '

2

1
aa 


                               (3) 

 
3.2 Damping and frequency of free cable 
 
Fig. 5 shows the first mode free vibration decay and the calculated logarithmic decrement of 

free cable in Shanghai Pujiang cable factory. Table 3 lists the first three mode vibration frequencies 
using Fast Fourier Transform from free vibration decay of the free cable. The mean logarithmic 
decrements for the first three modes of free cable were also listed in Table 3. It was found that the 
tested damping of free cable was very small, about 0.0112 in mean logarithmic decrement value 
for the first mode, and even lower for the second and the third modes. The internal damping of the  
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logarithmic decrement of the second mode was similar to that of the first mode, however, the 
maximum logarithmic reached a maximum of approximately 0.04 when the double amplitude was 
around 30 mm. 

The above test results indicated the dependence of damping on amplitude due to the effects of 
nonlinearity (Main and Jones 2002c). It also showed that the tested maximum logarithmic 
decrement was lower than the theoretical maximum logarithmic decrement. To compare damper 
performance, the damper efficiency ratio was defined as the mean logarithmic decrement to the 
maximum theoretical logarithmic decrement. And the attainable maximum theoretical logarithmic 
decrement max was calculated using the following formula (Krenk 2000) 

Ll1maxmax 2  
                         

(4) 

Where max  is the maximum theoretical damping ratio of the cable attached with linear damper. 

The damper efficiency ratio   was calculated using the following formula (Zhou 2005) 

Ll
mm

1

'

max

'





                               (5)

 

where '
m  is the measured mean logarithmic decrement of the cable attached with the damper.   

For the same installation location of viscous damper, MR damper, and friction damper ( Ll1
0.023), max  is about 0.072. For the installation location of the HDR damper ( Ll1 0.040), 

max  is about 0.126. 

 
 
 

Table 4 Mean logarithmic decrement values and efficiency ratios 

Passive dampers Mode No. 
Mean logarithmic 
decrement value 

Efficiency ratio 

Viscous damper 

1st  0.045 0.63 

2nd  0.038 0.53 

3rd  0.042 0.58 

MR damper (6.0V) 

1st  0.043 0.65 

2nd  0.041 0.57 

3rd  0.041 0.58 

Friction damper 

1st  0.043 (0~1.00) 

2nd  0.033 (0~0.92) 

3rd  0.028 (0~0.60) 

HDR damper 

1st  0.042 0.33 

2nd  0.037 0.29 

3rd  0.034 0.27 
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Table 4 listed the mean logarithmic decrements of the first three modes of the cable attached 

with dampers and the corresponding efficiency ratios. The mean logarithmic decrement was larger 
than 0.03 for most tested cases. The friction damper was an exception because of its unique 
working mechanism, which will stopped operating when the vibration amplitude was below the 
“threshold” value. The efficiency ratio was approximately 0.6 for viscous damper and passive MR 
damper. The HDR damper was inferior to the others with an efficiency ratio of about 0.3; however, 
it was still acceptable as the mean logarithmic decrement was larger than 0.03 for the first three 
modes. 

The test results show that many non-ideal factors can affect passive damper performance in 
engineering applications, some of which may reduce damper performance, especially in terms of 
stiffness observed in the force-velocity relation (Zhou et al. 2014a, b). Therefore, some researchers 
have proposed installing viscous damper with negative stiffness spring to improve damping 
performance (Chen et al. 2015, Zhou and Li 2016, Shi et al. 2016). While recent investigation 
shown that the effects of concentrated mass exert similar damping improvement effects as negative 
stiffness (Lazar et al. 2016, Lu et al. 2017, Zhou et al. 2018). The effects of the two factors will be 
discussed in the following section. 

 
 

4. Effects of negative stiffness and concentrated mass 
 

4.1 Dynamic formulation 
 
Fig. 11 shows a taut cable with an attached damper with a concentrated mass and negative 

stiffness spring. The cable tension force is T  and the mass per unit length of the cable is m . M is 
the concentrated mass and 12 lLl  , k  is the negative stiffness and k 0, the damper is 

assumed as linear with damping coefficient c . The effects of cable sag are small for most of 
cables and therefore were ignored. 

The free vibration equation of the cable system in the transverse direction can be expressed as 
follows (Irvine 1981, Main and Jones 2002b) 

   
2

2

2

2 ,,

p

pppp

x

txy
T

t

txy
m









                        (6) 

where  t,xy pp  is the transverse displacement of the cable at point px , and px  is the 

coordinate along the cable chord axis in the thp  segment ( p 2). To solve Eq. (6) under 
boundary, continuity and equilibrium conditions, and a distinct solution over the two cable 
segments is assumed to exist for this the form (Main and Jones 2002b) 

                                 exYxy pppp ,                            (7) 

where the non-dimensional time t01  , and  mTL 01 ;    is a dimensionless 

eigenvalue that is generally complex.   can be expressed as follows (Main and Jones 2002b) 
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Full-scale test of dampers for stay cable vibration mitigation and improvement measures 

                                 021  CC                                (12a) 

                               0211  BCB                              (12b) 

                      0cothcoth 2211
2  BB                  (12c) 

where the non-dimensional mass coefficient is  mLM  , the non-dimensional damping 

constant is Tmc  and the non-dimensional negative stiffness constant is TkL   . 
Eq. (12) can be transformed into matrix form 

                                   0HΦ                                 (13) 

Where Η  is the complex matrix 

   



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
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
21

2 cothcoth

11


H                           (14) 

where Llpp   and Φ  is the corresponding complex vector 

 TBB 21Φ                           (15) 

The infinite set of nontrivial solutions ( 0Φ  ) means that det(Η )=0 and the characteristic 
polynomial is 

                         0sinhsinhsinh 21
2                           (16) 

 
4.2 Approximate formulations 
 
When the damper, negative stiffness spring and concentrated mass are near the cable end and 

the change in the eigenvalue   induced by the damper, spring and concentrated mass is small, 
the approximate relationships can be found (Main and Jones 2002b, Zhou et al. 2014b) for the 
damping ratio and non-dimensional frequency 
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              (17b) 

where the non-dimensional damper parameter grouping is    Lln 1 , n is the mode number. 
The factor that considers the effects of the concentrated mass and the negative stiffness spring is: 

                  2
11

1

n
Emk  

                                                 (18) 
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Full-scale test of dampers for stay cable vibration mitigation and improvement measures 

Fig. 12(a) indicates the maximum damping ratio increased in line with the non-dimensional 
concentrated mass coefficient. The increase in the maximum damping ratio was nonlinear for 
higher modes of vibration, and the maximum damping ratio of the third mode was much higher 
than that of the first mode. Fig. 12(b) illustrates that the maximum damping ratio increased when 
  increased; however, in contrast to the effects of the non-dimensional concentrated mass 
coefficient, the maximum damping ratio of the first three modes were almost identical as Eq. (18) 
shows the effects of non-dimensional negative stiffness is independent from the mode number.  

Figs. 12(c) and 12(d) indicated that the non-dimensional optimal damping coefficient 
corresponding to the maximum damping ratio decreased with an increase in   and  , 
respectively. The non-dimensional optimal damping coefficient also decreased when the mode 
number increased, as Eq. (20) shows the mode number in the denominator.  

Figs. 12(a) and 12(b) show 0,
max,

n   and  ,0
max,n  increase with increase in   and   for the 

first three modes, respectively. The approximate formulation could accurately predict the 
maximum damping ratio for   and   when they were smaller than 1.0. Figs. 12(a) and 12(b) 
also show a distinction that the factor of concentrated mass on maximum damping ratio was 
multiplied by 2n  as indicated in Eq. (18), while the negative stiffness has no such factor. The 
difference between the numerical and approximate optimum damper coefficient of the third mode 
became increasingly obvious as indicated in Fig. 12(c), especially when   approached 1.0. 
However, Fig. 12(d) shows the numerical and approximate optimum damper coefficient of the 
third mode were in good agreement. 

 
4.3 Critical negative stiffness and concentrated mass coefficient 
 
The above show that negative stiffness and concentrated mass could both increase the damping 

of a taut cable with an attached damper; however, the results are based on an assumption of small 
frequency change. The critical values of negative stiffness and concentrated mass could be 
deduced from Eq. (17(b)) when  0 
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When the system frequency is reduced to zero, then n 0 in Eq. (21), and the following Eq. 

(22) can be derived 
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                          (22b) 

Fig. 13(a) shows the numerical and approximate solutions of the non-dimensional first mode 
frequency 1  decreased as   increased, the approximate formulation could accurately predict 

the numerical results  10, it also roughly predicted that 1   decreased to zero when   was  
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Full-scale test of dampers for stay cable vibration mitigation and improvement measures 

 Negative stiffness and concentrated mass could both increase damper performance. The 
effects of concentrated mass are different from each mode as the factor contains the square of 
the mode number, whereas the effects of negative stiffness are independent from the mode 
number. 
 The proposed approximate formula can accurately predict damping behavior when    and 
  are smaller than 1.0 for lower mode of vibration. There are critical     and    values 
and the proposed equation can roughly predict these values. 
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