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Abstract.    The purpose of this article is to strengthen concrete structures using buckling and non-buckling 
braces. Connection plates are modeled in three shapes including the effect of 1.5t hinge zone length, 2t one 
and without the zone (1.5t-CP, 2t-CP and WCP). According to the verification performed with ABAQUS 
software, the connection plates which are superior in ductility and strengthening are found. The results show 
adding steel braces in concrete moment frames increase the strength and stiffness of the structures up to 
about 12 and 3 times, respectively. The frame strength increased about 21 and 25 percent with considering 
the effect of 2t hinge length in connection plates compared to 1.5t-CPs and WCPs. Also the ductility of 
retrofitted frames with 2t-CP improved 2.06 times more than WCP ones. Thus, 2t-CP sample is the best 
choice for connecting steel braces to concrete moment frames for retrofitting them. Afterwards, optimum 
conditions for elemental coating in braces with no buckling are assessed. The length of concrete coatings 
could be reduced about 30 percent, and buckling did not occur. Therefore, the weight of restraining coating 
decreased, and its performance improved. It is worth noting that BRBs could be constructed with only steel 
materials, which have outer steel tubes too. In fact, only the square cross sections of the tube profiles are 
appropriate for removing the filler concrete, and the rectangular ones are prone to buckle around their weak 
axis. 
 

Keywords:  gusset plate connections; 2t hinge zone length; concrete frame; buckling restrained frame; 
steel tube 

 
 
1. Introduction 
 

Braces are used as resistant elements against earthquakes in various types of buildings. Using 
bracing systems in steel structures has been an economic and effective method for resisting them 
in lateral loads (Gholipour and Mazloom 2018). Convergent steel braces are one of the earthquake 
resistant systems that are installed in different shapes in structures (Mazloom and Salehi 2017). In 
concrete structures, lateral stiffness is usually provided with flexural frames individually or the 
combination of them with concrete shear walls (Mazloom 2010). Using flexural moment frames 
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combined with steel braced systems can be used too (Badoux and Jirsa 1990). The reason for it is 
the operation of this kind of system in a lower cost, as well as the ability to repair and replace the 
system after earthquakes. Also it is possible to use this type of system for concrete structures that 
are weak against lateral loads (Bush et al. 1991). 

Elfath and Ghobarah (2000) and Elfath and Ghobarah (2001) examined the concentric and 
eccentric braces of concrete frames under various earthquakes by conducting spectral analyses. 
Maheri and Memarzadeh (2001) did an empirical research on the use of flexible knee braces and 
compared them with steel braces in concrete moment frames. This study showed that reinforced 
concrete frames equipped with knee braces had superior ductility. They used ANSYS software to 
evaluate the nonlinear behavior of concrete frames with convex braces based on their laboratory 
work. They studied the behavior of frames and braces based on weak beams and braces 
philosophies. It was seen that the strengthening of frames with braces was effective. Shin et al. 
(2016) examined the dynamical performance of reinforced concrete frames with FRP (fiber 
reinforcement polymer) coating columns. They retrofitted the poorly armed double-deck frames, 
which their destruction mode was a brittle rupture of columns in the first level, by using FRP 
coating here.  

He et al. (2017) examined using steel-jackets as a way to retrofit reinforced concrete columns 
with constructing 16 samples. Their results indicated that the use of steel restrainer tubes had 
significant effects on strength, stiffness and ductility of concrete columns. Truong et al. (2017) 
also tested various strategies for retrofitting concrete columns such as steel jackets, CFRP (carbon 
fiber reinforcement polymer) coatings and new concrete coatings. The laboratory samples were 
investigated under cyclic loadings considering the initial axial force of columns. The results 
indicated that the projected retrofit methods could partially improve the seismic capacity of the 
beam–column joints; steel jackets increased the ductility and load-carrying capacities of the 
structures. CFRP wrapping methods did not significantly affect the seismic capacity of the beam–
column joints. Rahai and Lashgari (2006) studied concentric and buckling restrained braces in 
reinforced concrete structures. These systems were examined in a nine story reinforced concrete 
structure. The results showed that both systems could improve the strength and stiffness of the 
structure but BRBs had better performance than the other especially in nonlinear phase and under 
compressive forces.   

Youssef et al. (2007) and Ghaffarzadeh and Maheri (2006) tested various concentric bracing 
systems in a laboratory. According to their studies, using bracing systems for both new buildings 
and the retrofitted ones were efficient enough and led to reasonable results. Subsequently, Maheri 
and Ghaffarzadeh (2008) investigated the interaction between concrete frames and steel braces and 
calculated the excessive strength caused by this interaction. Viswanath et al. (2010) examined the 
effect concentric steel braces in the behavior of 4, 8, 12, and 16 story concrete frames. According 
to their results, the X type of steel bracing systems significantly contributed to the structural 
stiffness and reduced the maximum interstory drift of the frames. Ozel and Guneyisi (2011) 
examined the behavior of concrete frames with eccentric braces using seismic fragility curves. 
They studied the original structure and the retrofitted one with K, and V type eccentric bracing 
systems. Each of these braces were applied with four different distribution in the concrete frame 
height, and they reported improvements of these frames by comparing the average values of the 
fragility curves of the present building before and after retrofits.  

Maheri et al. (2003) analyzed reinforced concrete frames with steel X and knee braces with 
pushover method. According to their results, the strength and ductility of the systems increased, 
and its total displacements decreased up to the preferred levels. In addition, Maheri and Akbari 
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(2003) calculated the behavior of these dual systems in numerical studies. How to attach steel 
braces to concrete frames was the subject of a research by Maheri and Sahebi (1997).  

Goel and Lee (1992) investigated the seismic resistance of reinforced concrete structures with 
steel braces; the results of them showed that the system had appropriate ductility. Also, some 
retrofitted structures with this method are reported by Sekiguchi (1988), Del Val Calderon et al. 
(1988), Badoux and Jirsa (1990). Tagawa et al. (1992) tested concrete frames with K-shaped 
braces. The results indicated that the strength of the retrofitted frames were equal to the total 
concrete frame strength plus steel brace strength. In this method, the connection of braces to 
concrete frames played an important role in seismic performance of the system. Aydin et al. (2015) 
researched the optimal placement of elastic steel diagonal braces with bee colony algorithm. They 
presented a new algorithm to catch the optimal distribution of steel diagonal braces. 

The buckling restrained bracing system (BRB) is one of the newest systems due to restraining 
of braces that cannot buckle. They have the potential to absorb much more energy than 
conventional bracing systems (Zhang et al. 2018). Structures including BRBs are among the few 
earthquake resistant systems that have extreme stiffness property and great ability to deplete 
earthquake energy (Guerrero et al. 2018). In addition, this system not only is used in new 
structures but also is utilized to improve the existing steel and concrete structures in abundance. 
This type of bracing system, in addition to the significant improvement in seismic performance, 
reduces the dimensions of members in structures and also reduces the cost of repairing of the 
damaged structures in earthquakes (Yazdi et al. 2018). Meanwhile, these reasons make BRBs 
applicable in tall buildings (Mohammadi et al. 2018). 

Uang et al. (2004) and Xie (2005) studied different types of BRBs in the world and showed 
their results in abstract. In this field, Watanabe et al. (1988) estimated optimized amount of Pe/Py in 
BRBs. Chou and Chen (2010) suggested central plates that were between two amplifier elements 
with some screws in BRBs. Each of restrained elements in prefabricated concrete panels including 
steel coating were constructed to resolved problems caused by non-adherent material and concrete 
placement. Hoveidae and Rafezy (2012) examined the overall buckling behavior of steel BRBs. 
One of the basic requirements for the proper mechanical behavior of BRBs under severe 
earthquakes was to prevent general buckling until it experienced plastic deformation and great 
ductility. They studied BRBs with different values of distances between restrained and central 
elements, and the initial discontinuities to know the overall buckling behavior of such braces. They 
concluded that the flexural stiffness of the restrained elements could affect the overall buckling 
behavior of the braces. Therefore, a minimum ratio of Euler buckling load from the restrained 
element to the core was proposed for design purposes. 

 Quan et al. (2014) examined the effect of BRB model parameters on structural seismic 
response. In this study, the susceptibility of BRB models was considered to provide a tool for 
evaluating the effect of fixed parameters of this type of braces on structural behaviors. The effect 
of general and local buckling on fixed parameters of this type of braces was determined with 
modeling of one of the previous experiments (Qin et al. 2016). Bin and Yang (2015) investigated 
buckling mechanism of steel cores in BRBs. Ziqin et al. (2015) developed a finite element model 
to evaluate the contact force between the core and external restrained members to investigate the 
BRB performance. The influences of strength and stiffness of external restrained members, core 
length, and other geometric parameters on the BRB performance were examined too. They 
proposed recommended values of core width-to-thickness ratio, core thickness and gap based on 
numerical results. 

Piedraftia et al. (2015) tested a new perforated steel core in BRBs. They presented two models 
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with three different loading protocols. Some of the specimens showed stable responses, but the 
others suffered the loss of compression capacities caused by local bucklings. Mirtaheri et al. (2018) 
studied how to improve the behavior of buckling restrained braces. One of the disadvantages of 
this system was the possibility of buckling in restrained braces under compressive loads. The 
length of BRB steel cores could have significant effects on their general behaviors since they 
influenced the energy dissipation capability of the members directly.  

The motivation for this research is the promotion of weak concrete structures with using steel 
braces. They improve the structural performance effectively with less involvement of other 
members. Using buckling restrained braces has increased in recent years. Thus both two types of 
braces, which are common and restrained, were designed to evaluate how much improvement 
occur in the concrete structural performance. The first one was steel buckling braces that were 
used in concrete moment frames. The lateral strength of the structures were investigated by the 
effect of considering 2t hinge zone length at the junction of braces to frames (Astaneh et al. 2006) 
as well as changing the thicknesses of gusset plate connections. In the second part, buckling 
restrained braces (BRBs) were modeled. In this step, at first, an assessment was made to find the 
optimum conditions for coating BRB elements. Eventually, all steel BRB models were studied. 
One of the goals of this work was to obtain braces that had both sufficient resistance to lateral 
forces and economically feasible for construction projects. 

 
 
2. Buckling braced systems 

    
Steel buckling braces are used in this part. Initially, a flexural reinforced concrete frame with a 

steel bracing system is examined and verified. Then, gusset plate connections with different 
thicknesses are used in this frame, and then the effect of 2t hinge zone length, 1.5t hinge zone 
length and without considering hinge zone length (Astaneh et al. 2006) are studied (t is the 
thickness of gusset plate). Finally, the connection samples that had superior efficiencies in ductility 
and strength are specified.  

 
2.1 Verification of the analytical model 
 
Laboratory samples of Massumin and Absalan (2013) was used for numerical verification of 

the models. The numerical results of ABAQUS software were compared with the experimental 
results, and the modelling accuracy was evaluated. The dimensions and geometry of numerical 
samples were modelled exactly in accordance with laboratory samples. In the software, C3D8R 
elements which represented an eight-node hexagon component was used for concrete. A two-node 
truss element called T3D2 was used to simulate the reinforcement. This element showed a 
two-node linear element in three dimensional space. A shell element called S4R was used to 
simulate the gusset plate connections.      

Compressive and tensile stress-strain curves are shown in Figs. 1 and 2. They are used for 
concrete considered with concrete plastic damage (CPD) modelling of materials. The utilized 
isotropic bilinear stress-strain curve of the steel in the model is shown in Fig. 3. 

The embedded region option is used to model the interaction between reinforcement and 
concrete. The steel brace jointed to the connection plates and the connection plates jointed to 
concrete frames with a Tie type connection. The specifications of the steel used in this research is 
shown in Table 1. 
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Table 8 Details of group D models 

Model Br(mm) tr(mm) Bc(mm) tc(mm) S(mm) Pe/Py 
1 77.6 1.3 73 8 1 1.337 
2 79 2 73 8 1 2.11 
3 55 1.3 73 8 1 0.466 
4 55 2 73 8 1 0.689 
5 55.6 1.3 73 8 0.7 0.481 
6 56 1.3 73 8 0.5 0.492 
7 57 1.3 73 8 0 0.520 
8 56 2 73 8 0.7 0.824 
9 55 1.4 73 8 1 0.499 
10 56 1.4 73 8 0.5 0.527 

 
 

4. Conclusions  
 
Based on the analysis of the results, the following conclusions can be presented. 

1. Increasing the gusset plate thicknesses developed the structural strength up to specific amounts. 
In fact, using 2t-CP samples with 8 mm thickness was the best choice between different types of 
samples studied here to provide room for the formation of plastic hinges in the gusset plates. They 
could improve the ductility up to 2.06 and 1.65 times compared to the ones without having hinge 
zone length (WCP), and the samples considering the effect of 1.5t hinge zone length (1.5t-CP). 
Also 2t-CP samples could improve the strength of the retrofitted concrete frames up to about 25 
and 21 percent compared to WCPs and 1.5t-CPs, respectively.  
2. Buckling restrained braces (BRBs) containing concrete coating had acceptable behaviors and 
stable hysteresis loops. The optimum coated length for BRBs was 70 percent of the length of 
plastic core transformation. It means, 15 percent of the coated length could be reduced from the 
two ends of the BRBs. This reduction decreased the weight of the BRBs considerably. 
3. Only BRBs with the square cross sections of tube core profiles were appropriate for removing 
the filler concrete. Removing it from BRBs having different cross sections could lead to the 
buckling of the braces into the inside of the empty spaces. 
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