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Abstract.  Detection of damages in fibre reinforced plastic (FRP) composite structures is important from 
the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if 
dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed 
inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse 
problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) 
Algorithm is one such methodology, which minimizes the weighted differences between the experimentally 
observed dynamic responses and those computed using the finite element model- by optimizing 
appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using 
SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM 
algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a 
way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic 
responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and 
experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally 
determined modal responses, such as natural frequencies and mode shapes are used as observable 
parameters. The results are encouraging since a high percentage of damage cases have been successfully 
determined using the proposed algorithm. 
 

Keywords:  support vector machine; natural frequencies; mode shapes; fibre reinforced plastic (FRP) 

composites; finite element analysis; damage detection 

 
 
1. Introduction 
 

Fibre Reinforced Plastics (FRP) is extensively used in weight sensitive applications, such as in 

the field of aerospace, marine, automotive, sports etc. due to its high specific strength and stiffness 

for almost last three decades.  The application of FRP in infrastructure is somewhat recent and is 

attributed to its superior durability, fatigue strength and corrosion resistance, as compared to 

conventional materials.  Usually pultruded sections in regular forms are used as structural 

components and are likely to replace most of their similar counterparts made of conventional 
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isotropic materials in the near future. The possibility of using different anisotropic materials in 

layers and in desired orientations brings infinite design possibilities to cater to the need of 

particular applications in terms of geometric configurations and material property combinations. 

Unlike the weight sensitive aerospace applications, these infrastructure facilities made of FRP 

are supposed to operate over long period of time and may deteriorate considerably, yet remaining 

serviceable.  In case of layered FRP structures, such deterioration may be within the layers and 

may not be visible readily and needs non-destructive evaluation from time to time for their 

condition assessment and effective health monitoring. The material and structural fabrication are 

simultaneous operation for the manufacture of FRP structures, thus it inflicts uncertainties into the 

stiffness and strength as well as into its energy dissipation capabilities even during its inception. 

Thus, it appears that if long term condition assessment of FRP infrastructural facilities is in mind, 

the existing material properties need to be correctly assessed using a reliable non-destructive 

inverse technique. Although such effort may be somewhat easier for a newly built FRP structure, it 

will become more difficult for existing structures in the long run as it deteriorates. All the 

significant parameters of interest, such as the material elastic properties etc. need to be updated 

altogether to check if substantial changes into them have really taken place due to damage over 

long period of time. 

Early detection of damages in structures, especially for layered fibre reinforced plastic type of 

composites is extremely important from the condition assessment and health monitoring point of 

view. Vibration based damage detection techniques are one of the most popular methodologies 

because of the fact that measurements can be made at convenient locations globally, whereas the 

localized damaged site need not be directly accessible. This is particularly advantageous for 

layered FRP structures in which damaged locations are mostly within layers and difficult to access 

for measurement. Experimental modal testing provides scope for the measurement of damage 

sensitive vibration characteristics, viz. natural frequencies and mode shapes etc. In such inverse 

methodologies the differences between the experimentally measured dynamic response quantities 

(i.e., natural frequencies, mode shapes etc.)  and those computed from finite element modeling 

are minimized to estimate the parameters related to the stiffness loss. Such algorithms operate in 

stages- first to judge the existence and subsequently assess the location of such damages before 

finally estimating the quantitative extent of damage. The vibration based damage detection 

problems can be posed as statistical pattern recognition approach with the help of Support Vector 

Machine (SVM) algorithm in which simulations of a limited number of damage scenarios are used 

to train the algorithm so as to detect damages at unknown locations by recognizing the pattern of 

changes in measured dynamic responses of structures. 

Damage detection methodologies using changes in natural frequencies and mode shapes has 

been surveyed by Salawu and Williams (1994). Doebling et al. (1998) into their review paper 

described different aspects of vibration based damage detection techniques. A more recent review 

paper by Carden and Fanning (2004) discusses vibration based condition monitoring with 

particular emphasis on structural engineering applications. Bai et al. (2014) used fractal dimension 

analysis for the mode shapes to investigate damages in structures. In this paper, mode shapes were 

decomposed using the stationary wavelet transformation, with the damage information and the 

noise separated into distinctly scaled values of mode shapes. A scanning laser vibrometer was used 

for the experimental investigation on a cracked aluminum beam. 

Prior to the damage detection of any structure, it is to be ensured that the other important 

parameters such as the elastic material parameters and boundary conditions have much less 

uncertainty than the parameters related to the stiffness loss. The damage sensitive vibration 
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response quantities, such as the natural frequency and the mode shape information have also been 

used to identify the different material parameters of layered composite structures using inverse 

approaches. Goni et al. (2015) investigated the determination of material elastic parameters along 

with the elastic boundary stiffness parameters from modal properties of FRP composites plates. 

Mondal et al. (2016) identified the in-plane as well as out-of-plane elastic properties of sandwich 

composite plates using a gradient based inverse eigensensitivity method (IEM) under free 

boundary conditions. Mondal and Chakraborty (2016) identified the in-plane as well as 

out-of-plane elastic properties of pultruded Glass Fibre Reinforced Plastic (GFRP) laminated 

composites using IEM.  The in-plane parameters were estimated from composite plate samples, 

whereas the out-of-plane shear moduli were determined from beam samples. 

Use of measured vibration responses to detect damages are plenty in current literature. Sampaio 

and Chan (2015) conducted experimental study on railway bridges to estimate the modal 

parameters. Garcia-Palencia et al. (2015) used frequency response functions (FRFs) to identify 

damages. Abderahmane et al. (2016) used finite element analysis combined with acoustic emission 

techniques to determine the interfacial failure of a carbon fiber reinforced polymer (CFRP) repair 

patch on a notched aluminum substrate. Li et al. (2014) and Nagarajaiah and Erazo (2016) 

reviewed various recent innovations and applications of the structural health monitoring 

methodologies.   

There are plenty of literature available which discusses damage detection of FRP type of 

composites exclusively. Three different approaches- a graphical method, an artificial neural 

network approach and a surrogate-based optimization approach are compared for determining 

existence, location and extent of delamination in composite beams by Zhang et al. (2013). The 

problem of stiffness degradation of multidirectional symmetric laminates in the presence of 

off-axis cracks in symmetric laminates has been studied by Carraro and Quaresimin (2015). Very 

good agreement with experimental data has been observed. Harizi et al. (2015) proposed a 

methodology to map the heterogeneity of Glass Fiber-Reinforced Polymer laminated plates using 

ultrasonic waves in C-Scan mode. This can be easily used for the evaluation of damage caused 

during manufacturing or during service of such structures. Garcia D. and Trendafilova (2015) used 

the Singular Spectrum Analysis technique to assess damage in a two degrees of freedom 

mass-spring-damper system and subsequently applied to an experimental case study of a 

composite laminated beam. Yang and Oyadiji (2017) proposed a delamination detection approach 

using modal frequency surface and its wavelet coefficients by attaching point mass at different 

locations of a plate. The introduced local inertia greatly enhances the dynamic response at a 

delaminated section which produces significant frequency deviation. Meihong et al. (2017) 

determined damage location and severity for single and multiple damage sites in composite beams 

based on the curvature mode difference. Very simple impact hammer test was used for 

experimental verification. The amount of discrepancy in dynamic responses between a real 

composite structure and its numerical simulation can be modelled as noise added to structural 

dynamic parameters. A sensitivity analysis is carried out by Zhang et al. (2017) to determine the 

influence of such discrepancies on the prediction accuracy of delamination in composite beams. 

Soleimanpour and Ng (2017) detected delaminations in laminated composite beams using 

nonlinear guided waves. Chiachío et al. (2017) proposed a multilevel Bayesian inverse problem 

framework to deal with the sources of uncertainties associated with the measurement error and 

also due to the modelling errors due to inadequate assumptions in the context of ultrasound-based 

damage identification. The method is tested against a post-impact fatigue damage experiment in a 

cross-ply carbon-epoxy laminate. 
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Amongst the various damage detection methodologies using pattern recognition algorithms, 

SVM employs heuristic statistical learning mechanisms (Vapnik 2000). Such technique finds 

applications in diverse fields, such as in bio-informatics, computational linguistics, computer 

vision, etc. (Nello and Taylor 2000). Sohn et al. (2001) used multiple pattern recognition 

techniques for structural health monitoring, combining Auto-Regressive model with eXogenous 

(ARX) input. However, the use of SVM in structural damage detection is somewhat recent. He and 

Yan (2007) used SVM in combination with non-linear wavelets to identify damages in a single 

layer spherical lattice dome type of structure from measured ambient responses. Das et al. (2007) 

used SVM algorithm, employing time varying frequency data to identify damages in a carbon fiber 

reinforced plastic (CFRP) composite plate. Surface-mounted piezoelectric transducers were used 

to characterize the damages from measured waves. Park et al. (2008) used SVM to identify 

damage in a rail road track. Two types of damages were considered- a hole of 5 mm diameter at 

the web and a transverse cut of 5 mm in length with the same depth. Bornn (2009) presents an auto 

regressive SVM algorithm for damage detection using sensor output data from vibrating structure, 

implementing a nonlinear time-series model. Barthorpe and Worden (2011) employed a set of 

binary support vector machines for locating damages. The major contribution of the above work 

seems to be that a classifier trained for single-site damage is also made workable for multiple 

damages. Farrar and Worden (2012) described statistical pattern recognition techniques for the 

purpose of structural health monitoring. This is a valuable reference for comparison of various 

pattern recognition approaches. Kim et al. (2012) investigated damage detection of smart 

structures using discrete wavelet transform, autoregressive model and a SVM algorithm. Satpal et 

al. (2013) and Gupta et al. (2016) investigated the damage detection in isotropic aluminum beams 

and plates, honeycomb core sandwich panels using SVM, employing mode shapes. The data has 

been polluted with Gaussian random noise to observe the sensitivity of the algorithm against noise. 

Rother et al. (2014) used Morlet wavelet transform to assess the condition of a machine using 

SVM. The combination of continuous wavelet transform and SVM is found to be more efficient 

than the combination with the discrete wavelet transform and SVM for detecting machine faults. 

Satpal et al. (2015) determined damage locations in aluminium beams using SVM as classifier and 

regression employing both simulation data and experimental data. Cevik et al. (2015) provided 

considerable insight on various aspects of structural health monitoring using SVM. Case studies of 

damage detections were presented along with the determination of ultimate load capacity of beams 

and corbels. Shyamala et al. (2016) used SVM to identify damage in an isotropic beam using 

numerically simulated data. Damage detection in FRP composite structures using SVM and 

comparison of results with artificial neural networks (ANN) were presented by Farooq et al. 

(2012). Static strain data were numerically simulated adding Gaussian noise at 6 predefined 

locations. One undamaged structure and two damaged structures having small cracks were 

investigated, with varying material properties and loading conditions. It was found that the SVM 

performed better than the artificial neural network in almost all cases. 

The literature available on SVM shows that the methodology is likely to be robust and can be 

used for damage detection of existing structures. However, limited literatures are available on 

damage detection of existing fibre reinforced plastic (FRP) composite structures using SVM. This 

needs to be explored along with the estimation of elastic parameters prior to the detection of 

damages in case the structure has already passed a considerable period of serviceable life. In the 

present investigation, the location and severity of damage in a fibre reinforced plastic composite 

plate is investigated employing SVM algorithm from experimentally determined natural 

frequencies and mode shapes. During simulations, the damage is modelled by reducing the elastic 
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moduli, such as the Young‟s moduli in two orthogonal directions and the shear modulus of the 

material within an elemental volume which indirectly reflects the localized stiffness loss. 

Numerically simulated data are generated from a converged finite element model of the composite 

plate, simulating various damage scenarios. Further, experimental investigation has also been 

carried out to detect damages in a fabricated FRP composite plate successfully. 

 

 

2. Mathematical formulation of the support vector machine algorithm 

 
The present paper implements the regression form of SVM to detect damages in a fibre 

reinforced plastic composite plate. Several damage scenarios are simulated and the regression 

analysis finds the best fit function by minimizing the error between the model and the observed 

modal properties. The two datasets are assumed to be linearly independent in a two dimensional 

space for proper operation. This is practically true when a large number of observations could be 

made of the output measureable parameters in an over-determined sense. The benefit of using 

SVM is that, the linearly non-separable data can easily be distinguished by projecting the data 

space to a higher dimensional space by adding suitable kernel function. The kernel function thus 

converts the non-linearly separable data into a linearly separable data set in higher dimensions. 

The methodology of SVM is basically a supervised statistical learning procedure which analyzes 

data for both classification and regression. The algorithm works depending upon the principle of 

structural risk minimization (SRM), which is found to be superior to the traditional empirical risk 

minimization (ERM) principle that tries to minimize the error between the actual (experimentally 

observed) value of a parameter and its predicted value. Such prediction may come from finite 

element modeling of structural behavior (Vapnik 2000). The SVM algorithm employing SRM 

technique is found to be superior for parameter estimation (such as stiffness loss in damage detection) 

as compared to the ERM techniques, even within the larger variations of the upper and lower bounds 

of the parameters. The basic aim of the present investigation is to implement the SVM technique to 

retain the above mentioned advantages, employing SRM for more robust estimation of damage 

sensitive parameters, such as the local stiffness loss due to damage in FRP composite plates. 

The SVM algorithm classifies a structure as either damaged or undamaged, depending upon the 

defined loss of local stiffness. This is realized into the algorithm as the normalized distance from a 

hyper-plane defined in multi-dimensional space to distinguish a damaged state from an undamaged 

one. The subsequent portion of the algorithm is devoted to the regression form of the SVM 

algorithm to quantitatively estimate the severity of damage in FRP composite plate (Gunn 1998). 

The algorithm works on a set of training data which can be represented as (y,x) where x= 

(x1,x2,x3 . . .xn-1, xn) are the natural frequencies of the FRP plate in „n‟ dimensional plane. Here „y’ 

is a scalar value indicating the class of the „x’, representing the damage state realized through the 

local stiffness loss at designated locations. For the present formulation, y is normalized between -1 

to +1, hence  ,y 1 1  . 

Fig. 1 gives a geometric interpretation of the data plotted in two dimensions as an example. It 

may be mentioned that in actual physical problem where a large number of sets of numerical and 

experimental modes are compared, the visualization will become difficult in two dimensional plots 

due to their eventual multidimensional characteristics.  Let us take for example, H1 and H2 being 

the two particular classes of data. The idea is that, data points belonging to a particular class is 

expected to cluster amongst themselves and thus, making it easy to define a hyper-plane 

247



 

 

 

 

 

 

Prashanth Shyamala, Subhajit Mondal and Sushanta Chakraborty 

distinguishing these two different states. In our damage detection problem, the two distinguished 

states for the structure are clearly either the damaged state or the undamaged state.  

Thus the damage detection problem within the framework of SVM can be defined as determining 

an appropriate division or boundary between the clusters indicating either damaged or undamaged 

states. Considering Fig. 1, x
2R , where, R is a set of real values of natural frequencies. The data 

points can be separated by a linear fit of the boundary. This is treated as a classifier for indicating 

damage state and can be represented as 

0 w, x b
                              (1)

 

Where, w is the weighting vector perpendicular to the straight boundary line and b is the 

perpendicular distance of the boundary line from the origin (called a bias). The above equations 

can further be represented as 

,

,

b 1 when y 1

b 1 when y 1

  

    

w, x

w, x
                     (2)

 

The distance d of a point from the hyperplane (called the margin) as shown in Figure 1, can be 

defined as 

d=
w, x b

w
                            (3)

 

The boundary which has the maximum margin from either side of the points is the optimal 

hyper-plane. For the clearly non-separable data, a functional has to be minimized to decide on 

which side of the hyper-plane the points under consideration belong. 

 

 

 

Fig. 1 Hyper planes dividing the data points belonging to two classes 
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w
n

2

i

i 1

1
C

2




 
                            (4)

 

Here, C is the penalty function. The above equation should also satisfy the constraints

   ,b 1 0     w, x . Here,  x  transforms the problem to higher dimensional space. 

The term   represents those data points which are noisy and can be termed as „mis-classifiers‟, 

similar to an outlier. These points should be avoided during computation by adjustment of the 

penalty function C (Gunn 1998). 

When the dataset is very large, extension of the problem to higher dimensional space eventually  

becomes complicated. Most of the practical damage detection problems are actually expected to 

fall into this category as damage can be at multiple locations simultaneously having varying 

extents. If a multiple damage scenario is to be tackled appropriately, the spatial distribution of 

stiffness loss at several points needs to be stored for further processing and the database becomes 

comparatively larger. The problem can be solved by choosing suitable Kernel functions efficiently, 

example of one such Kernel function can be expressed as 

     , .K x x x x  
                         (5)

 

Then the resultant Lagrangian which needs to be minimized becomes 

 min ,
n n n

i i j j i j k

i 1 j 1 k 1

1
y y K x x

2
  

  

 
                 (6)

 

Here, i, j, k, are the indices, 𝛼 is a coefficient and „n’ is ranging upto the number of damages. Here the 

kernel function does the transformation implicitly and gives a scalar product in the feature dimension space. 

The kernel used in the present investigation is a Gaussian type of a Radial Basis Function and can be 

expressed as 

 ,

2

2

x x

2K x x e 


 

  
 
                            (7)

 

The classification problem in SVM can be extended to the regression analysis by introduction of a 

loss function to enable the same framework of pattern recognition scheme described above for 

classification (whether damaged or undamaged) towards quantification of damage (estimation of 

severity of damage through stiffness loss). Effort to use SVM for both the purpose-first to locate 

the damage using classifier approach and then, extent of damage using regression are explained in 

subsequent sections. 

 

 

3. Numerically smulated eample 
 

A set of numerically simulated problems are presented in this section in order to explore the 

possible applications of the SVM algorithm to detect damages in structures. It may be mentioned 

that the methodology depends upon the availability of a correct baseline model of the structure at 
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its undamaged state. For this, accurate assessment of the elastic parameters, such as stiffness and 

inertia properties are mandatory. The vibration response of a structure can be conveniently 

expressed in modal domain in terms of natural frequencies, mode shapes and modal damping 

factors. Since the influence of damping on the natural frequencies and mode shapes is 

comparatively less, inclusion of damping in the model is kept out of scope of the present 

investigation. It is assumed that the stiffness and mass properties of the undamaged structure is 

either accurately known a-priori or estimated through any suitable methodology before the damage 

detection using SVM is taken up. 

The approach followed in this section using SVM algorithm is to identify the location of the 

damage first and then, to estimate the extent of the damage. The parameters selected for the 

present investigation are the material elastic constants of the composite structure. The damage is 

visualized as a local reduction of stiffness at selected locations. In practical circumstances where 

the exact values of the material elastic constants are not known, the same can be guessed initially 

from established standards or from manufacturer‟s manual or from engineering judgment, 

considering their statistical variances and nominal values. Else, the values can be obtained from 

experimental characterization tests of samples; however, this may be difficult for existing 

structures. The methodology relies upon comparison of experimental modal database with the 

numerically modeled modal properties to estimate the stiffness loss exclusively due to damage. 

Hence, the basic steps in the algorithm is to prepare an accurate and converged finite element 

model of the structure, to obtain experimental modal data as precise as possible, form the objective 

function from the differences in modal properties obtained by both approaches and finally, the 

application of SVM to determine the stiffness loss using parameter estimation as damage indicator. 

In case of numerically simulated examples, the „experimental‟ modal data is also simulated using 

the same finite element model of the damaged structure. 

 

3.1 Finite element modeling of the FRP composite plate 
 

Finite element technique is almost universally used to model complicated structural forms with 

different material property combinations. This is particularly advantageous for layered FRP type of 

composites. An equivalent single layer theory (ESL) is most popular for modelling the FRP type of 

structures for the determination of global dynamic responses. The theory is based on the 

determination of the average in-plane stiffness parameters of a laminate from defined geometric 

properties and elastic material properties. The laminate consists of several individual lamina which 

are assumed to be quasi-homogeneous, orthotropic and connected at lamina interfaces by perfect 

bond. The principal assumption in modelling, implementing such equivalent single layer theory is 

that the displacements are assumed to vary through the thickness of the entire laminate according 

to a single expression and not allowing for possible discontinuities in the deflected shape at the 

interfaces of two individual laminas. Strains are assumed to be constant within a particular layer. 

The individual laminas having different orientations are stacked in sequences and the overall 

stiffness is found by integration after appropriate transformation, taking the geometrical mid-plane 

as the reference plane. The formulation for the global stiffness and mass matrices for composite 

structure follows standard procedures explained by Ishai and Daniel (2005) and the equations of 

equilibrium can be expressed as 

           M C Kx x x F t  
                   (8)
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An 8 noded quadratic shell element (S8R) incorporating shear deformation has been implemented 

using ABAQUS. The element has six degrees of freedom per node, thereby allowing both 

translation and rotation in all directions. The real mode eigenvalues and eigenvectors are obtained 

by solving the undamped equation of motion. 

        K M U
2

i i 0 
                      (9)

 

There are several algorithms available in current practice to determine undamped eigenvalues and 

eigenvectors. Amongst them, two popular solution algorithms are the subspace iteration and 

Lanczos method. In Lanczos solver, the dimension of the subspace grows for making better 

approximation of the eigenvectors. Due to this reason, the Lanczos solver is selected and 

implemented using ABAQUS for the present application. Only free boundary condition is 

explored for this proof of concept study to eliminate errors accumulating due to imperfect 

boundary conditions. 

The finite element program requires initial values of all the elastic parameters, density etc. for 

the FRP plate. The mass density is assumed to be 1960 kg/m
3

. The nominal values of the in-plane 

material elastic constants are chosen as Ex=35 GPa, Ey=30 GPa, Gxy=7 GPa and the in-plane 

Poisson‟s ratio is assumed to be υxy=0.25 (Mondal and Chakraborty, 2014). Here, x and y are the 

longitudinal and transverse directions of the plate. The transverse shear moduli, Gxz and Gyz both 

are considered to be 5 GPa. 

 

 

 

Fig. 2 First five mode shapes and corresponding frequencies of the GFRP composite plate 
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For this numerically simulated problem, „experimental‟ modal data are generated using the 

same finite element model with the above nominal material properties and incorporating damage 

by reducing the stiffness at selected region locally. The aim of the SVM algorithm is to realize 

such damages through detection of stiffness loss at a specific location.  

The plate investigated here is assumed to have dimensions 400 mm x 300 mm with thickness of 

10 mm. Fig. 2 shows a typical set of mode shapes and corresponding frequencies of the 

undamaged FRP composite plate, modeled using finite element with chosen nominal values of 

material parameters as input. 

 

3.2 Identifying damage location using SVM 
 

The damage detection algorithm employing SVM is first tried as a classifier. A set of material 

property values are assumed within selected upper and lower bounds to generate the required data 

sets of dynamic responses to prepare adequate training data. For the plate considered here, the 

values of Ex and Ey are made to vary between 15 GPa to 45 GPa. The value of Gxy is selected 

between 3 GPa and 9 GPa. It may be noted that the selected upper and lower bounds are very 

much conservative as compared to most real applications. In any realistic situation the chances of 

the actual values of these parameters falling outside these limits are practically negligible. The 

material parameter sets are generated randomly within these bounds. The density of the plate is 

assumed to be 1960 kg/m3 and is assumed to have less uncertainty. The plate was divided into 

small size elements of size 20 mm x 20 mm to create at least 300 sets of elements as shown in Fig. 

3. Damage is inflicted into any of these elements by reducing the stiffness within its elemental area 

to the desired severity. The values of EX, Ey, Gxy are reduced simultaneously in such cases. In a 

similar manner huge data sets of various damage cases are formed and the data are stored.  

For possible damage location 1 to 50 and 251 to 300, 125 combinations of Ex, Ey and Gxy for 

these 100 locations (i.e., 12500 possibilities in total) and for the remaining 200 locations (i.e., from 

51 to 250) with 72 combinations of Ex, Ey, Gxy (i.e., 14400 possibilities in total) involving first 4 

modes of vibration are used to generate the required model for the SVM algorithm. The numbers 

125 and 72 are chosen arbitrarily at the moment and later found to be appropriate for predicting the 

damages.  

 

 

Fig. 3 Discretization of FRP Plate into 300 damage locations 
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Thus, it needs some trial and error for individual problems to be tackled in various cases to fix the 

number of combinations of material parameters for generating data sets. A total 26900 cases 

(14400+12500) are considered as training data sets for the present problem. The intention behind 

having such a large data set is due to the fact that the damage state of the plate is affected by 

several combinations of independent material parameters. The optimum values of cost parameter C 

and radial basis function Kernel parameter σ were then obtained by cross-validation technique. 

The trained data has been split into 10 numbers of sets. Out of these 10 sets, 9 sets of data were 

used to generate SVM model using cost parameter C (varying between limits 1 to 10000) as well 

as, the radial basis function Kernel parameter σ (varying between 0.00001 to10). The remaining 

10
th 

set (comprising of 2690 data) were used for the validation of the model by selecting different 

combination of C and σ. It was observed that the optimum value of C and σ are 4000 and 0.008 

respectively for the particular example chosen for the present investigation. 

A sample size of 6000 was selected randomly for each location as training data from the total 

overall available 26900 sample data. This is done arbitrarily to reduce the computational effort. 

The studies involved generating model using natural frequencies alone, mode shapes alone and 

also using their weighted combinations. For test data (actually numerically simulated damage data 

which is not considered earlier as training data), 10 locations were chosen in a random manner as 

shown in Fig. 3. The damages were induced by reducing the values of the in-plane elastic 

parameters (Ex, Ey, Gxy) locally for an element. Further, each location was run for 3 different sets of 

reduced in-plane parameters, thereby resulting in 30 sample test data.  

The actual damages are caused at the location 94 and 95 as indicated in Fig. 3. The results of 

the damage location prediction using SVM have been given in Table 1, using natural frequencies 

alone, mode shapes alone as well as, using their weighted combinations. For example, 2ɷ + 1 ϕ 

means, the weight to frequency is 2, whereas the weight to the mode shape is 1. 

It may be readily observed from Table 1 that there are large variations within the success rates 

achieved using various combinations of frequencies and mode shapes for locating the damage. The 

highest success rate of prediction of correct location of damage was achieved with a combination 

of twice the weight to the natural frequency with a weight of unity for the mode shapes. This has 

been done with trial and error for different combinations of weights. However, still with a high 

percentage of success rates of the SVM, the detection of the location of damage can be done with 

confidence. 

 

 

 
Table 1 Prediction of location of damage using test data (numerically simulated) 

Training data Prediction rate (%) for 30 samples 

 of test data 

Only first 10 natural frequencies(ɷ) 24 

Only first 10 mode shapes(ϕ) 70 

1 natural frequencies (ɷ) 1  mode shapes (ϕ) 73 

2 natural frequencies (ɷ) 1  mode shapes (ϕ) 80 

5 natural frequencies (ɷ) 1  mode shapes (ϕ) 60 
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Table 2 Estimation of severity of damage in terms of stiffness losses (numerically simulated) 

Training data sets 

Error in Prediction rate(%) for 30 samples of 

test data 

Ex Ey Gxy 

Only first 10 natural frequencies  10.25 11.32 12.5 

Only first 10mode shapes  5.5 5.64 4.6 

1 natural frequencies (ɷ) 1  mode shapes (ϕ) 5.62 4.24 6.21 

2 natural frequencies (ɷ) 1  mode shapes (ϕ) 12.21 11.581 8.21 

5 natural frequencies (ɷ) 1  mode shapes (ϕ) 20.12 22.21 12.01 

 
 
3.3 Estimation of severity of damage using SVM 
 

After the determination of location, the determination of the severity of damages has been 

taken up. The errors in predicting the severity of damages are presented in Table 2 and it can be 

observed that the results are quite reliable with various combinations of frequencies and mode 

shapes. It may also be noted that the error is least while using the mode shapes information; this is 

perhaps due to the localized information available in the elements of the mode shapes even if they 

are normalized. Such information is difficult to be obtained from much globalized natural 

frequency information alone. It may appear that incorporation of natural frequency information is 

actually detrimental for predicting the severity. However, incorporation of natural frequency still is 

necessary to improve the prediction rate of the location of damage. Also, the error for severity 

prediction is less (around 12% maximum) in the particular case study.   

 

 

4. Experimental investigation on a composite plate 
 

A pultruded FRP composite plate having the same dimensions as described in the numerically 

simulated example has been modal tested to determine the natural frequencies and modes shapes 

using an impact hammer (8207 of B&K) and accelerometers (4507 of B&K) to measure forces and 

accelerations directly. The plate was suspended from flexible rubber threads to replicate the free 

boundary conditions. This eliminates the possibility of error due to improper fixity. The frequency 

of oscillation of the suspended FRP plate is much lower than the frequencies of vibration of the 

plate within the frequency range of interest, thereby justifying the imposed suspension system as 

somewhat acceptable replication of the free boundary condition. In case such plates are supported 

elastically on the boundaries, as the case may be in practice, the boundary stiffness parameters 

need to be updated along with the material parameters using model updating technique using SVM. 

The plate was divided into 10 x 10 elements and accelerations at a particular point were measured, 

whereas the point of application of the force changed sequentially to all the available 121 finite 

element node points. For the acquisition of the responses, the accelerometer was placed at point 80 

as shown in Fig. 4 and the roving hammer procedure was adopted traversing at all the 121 points. 

The time domain force and acceleration response data were Fourier transformed in a spectrum 

analyzer and their division gives the FRFs using PULSE LABSHOP modal testing software 

(B&K). The software MEScope was used to determine the natural frequencies, mode shapes and 

254



 

 

 

 

 

 

Numerical and experimental investigation for damage detection in FRP composite plates… 

modal damping values from the measured FRFs using curve fitting. Fig. 4 shows the excitation 

and response measurement of the FRP plate in free boundary conditions. First the undamaged plate 

is tested. The plate is then progressively damaged by removing materials by making cuts of square 

shapes of sizes 10 mm, 20 mm and 40 mm subsequently, extending through half of the thickness of 

the plate. Fig. 5 compares the first 5 measured mode shapes of the undamaged and the damaged 

FRP plate with cut of square shape of 40 mm size through half of the depth. Fig. 6 shows the 

percentage variations of frequencies for various sizes of the cut within the plate, taking the 

undamaged plate as reference. It may be observed that the dynamic responses of the plate become 

more sensitive, as the size of the damage increases. Moreover, such variations are mode dependent, 

thereby providing opportunity for the SVM type of pattern recognition based damage detection 

algorithm to inversely determine the location as well as, the severity of damages.  

The nominal material parameters assumed to model the plate using finite element have been 

updated with respect to the observed modal parameters of the undamaged plate using SVM. The 

modal data thus obtained and the updated material properties using SVM are considered as the 

base line material and structural property data for the plate. The error in the estimation of Ex was 

less than 1% for 60% of the total cases considered and the error in the estimation of Ey and Gxy                                                                  

was less than 1% for 80% of the cases considered. The maximum error for the determination of Ex 

was about 10% of the nominal values, whereas for Ey and Gxy the maximum error is 5% of the 

nominal values of the baseline model respectively. Thus it can be concluded that the user of the 

algorithm can easily detect the outliers and rely upon the successfully predicted values. Next, the 

finite element model was used to generate training data for various combinations of values of 

Ex ,Ey ,Gxy.   

Table 3 shows that there are large variations within the success rates achieved using various 

combinations of frequencies and mode shapes for locating the damage. The highest success rate of 

prediction of correct location of damage achieved was, like the numerical simulation, with a 

combination of twice the weight to the natural frequency with a weight of unity for the mode 

shapes.  

 

 

 

Fig. 4 Modal testing of the damaged pultruded FRP plate 
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Table 3 Prediction of location of damage using test data (Experimental) 

Training data Predicted damage location from the test data 

Only first 10 natural frequencies(ɷ) 19(edge of plate but nearby damage region) 

Only first 10 mode shapes (ϕ) 81 (close to actual damage area) 

1 natural frequencies (ɷ) 1  mode shapes (ϕ) 87 (Correctly identified the damage location) 

2 natural frequencies (ɷ) 1  mode shapes (ϕ) 88 (Correctly identified the damage location) 

5 natural frequencies (ɷ) 1  mode shapes (ϕ) 92 (center of plate and nearby actual damage area) 

 

 

 

Fig. 5 Experimentally obtained mode shapes (undamaged and damaged mode shapes) 

 

 

This has been done with trial and error for different combinations of weights. It may be mentioned 

that the weights to the natural frequencies and mode shapes have been kept same in Table 

1(numerical) and Table 3 (experimental). It is clearly seen that the global natural frequencies alone 

are not very efficient damage indicator, so also the weighted combination of frequencies and mode 

shapes where natural frequencies are weighed substantially more than the mode shapes. 
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Fig. 6 Variations of natural frequencies with respect to damage sizes (experimental) 

 

 

In most real applications, it is practicable only to measure the first few flexural modes. Also, 

deployment of sensors has its own practical limitations- usually displacement or accelerations are 

measured at selected locations only due to high cost and also sensors take up physical space and 

affects the dynamics of the body itself. In most practical cases a limited number of modes are 

measured and displacements sampled at limited coordinates in particular direction (say transverse 

direction only, rotational degrees of freedom are almost never measured). The above is known as 

modal and coordinate measurement sparsity and has been accepted as more realistic. Obviously, 

the present methodology of damage detection of FRP plate employing SVM will perform much 

better if this restriction of coordinate and modal sparsity is relaxed, i.e. more measurement points 

and increased number of measured modes are made available. Methodologies in current literature 

which demand a very large number of modes to be measured with displacements sampled at a 

large number of coordinates have less scope of being practically applied. 

The authors have put the proposed methodology into test to extreme level of modal and 

coordinate sparsity, only 4 modes are taken into account. The methodology still works as desired 

thus indicating the robustness.  

It may also be noted that, since a symmetric rectangular plate with respect to the centroidal 

axes is chosen, the reporting for the location of damage for such plate using frequency and 

symmetric mode shape information may be interchanged between the elements symmetrically 

located within the plate boundaries. Incorporation of higher asymmetric modes can bring 

additional uniqueness to the solution of the problem. The investigations related to the severity of 

damages are taken up next and the results are presented in Table 4. 

It may once again be observed that the accuracy of the determination of the severity is well 

within the acceptable limits. Even with a high percentage of frequency information, the percentage 

error level never exceeds 30% for this particular problem. 
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Table 4 Estimation of severity of damage in terms of stiffness losses (Experimental) 

Material parameter of undamaged plate (GPa) Material parameter of damaged size (4 4cm) GPa 

Ex 32.00 19.72 

Ey 31.0 22.03 

Gxy 5.73 4.188 

 

 

The SVM algorithm as a classifier detects if any element has a stiffness loss or not. Into the 

numerically simulated problem in absence of any measurement noise discussed in this paper, the 

regressor form of the SVM algorithm detects the amount of stiffness loss into those elements 

perfectly. In case of actual experimentation, since the damage created to the structure is substantial, 

the regressor part of the SVM is still able to estimate the extent of damage into these selected 

elements. The discretization of the structure should be adequate so that the damaged extent can be 

covered by elements completely. Since the user is expectedly unaware of both the damage location 

and extent initially, this may not be completely true if some elements partially cover the damaged 

portion of the structure. In the present investigation, the damaged element has been assumed to be 

either damage free or completely damaged with varying extents in numerically simulated example, 

whereas in the actual experimentation also, damaged portion has been formed extending full extent 

of any element. In actual practice, the error can only be minimized by refining the mesh sizes in 

finite element modelling. 

 

 

4. Conclusions 
 

The location and severity of damages in a fibre reinforced plastic composite plate has been 

determined using Support Vector Machine (SVM) algorithm through numerical simulations and 

actual experimentations. The method could detect the location of damages with high degree of 

confidence as the outliers could be easily eliminated. The experimental investigations also 

demonstrate that the location of the inflicted damages could be detected with high confidence level. 

For practical application, it will be mandatory to have an updated finite element model in terms of 

material properties to determine the severity of damages. It has been consistently observed that the 

localized information of the mode shape is actually quite useful in determining the severity of 

damages whereas, properly weighted frequency information in addition to the weighted mode 

shape information improves the accuracy of determination of both location and severity. 
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