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Abstract. An improved method is presented to estimate the axial force of a bar member with vibrational 
measurements based on modified Timoshenko beam theory. Bending stiffness effects, rotational inertia, 
shear deformation, rotational inertia caused by shear deformation are all taken into account. Axial forces are 
estimated with certain natural frequency and corresponding mode shape, which are acquired from dynamic 
tests with five accelerometers. In the paper, modified Timoshenko beam theory is first presented with the 
inclusion of axial force and rotational inertia effects. Consistent mass and stiffness matrices for the modified 
Timoshenko beam theory are derived and then used in finite element simulations to investigate force 
identification accuracy under different boundary conditions and the influence of critical axial force ratio. The 
deformation coefficient which accounts for rotational inertia effects of the shearing deformation is discussed, 
and the relationship between the changing wave speed and the frequency is comprehensively examined to 
improve accuracy of the deformation coefficient. Finally, dynamic tests are conducted in our laboratory to 
identify progressive axial forces of a steel plate and a truss structure respectively. And the axial forces 
identified by the proposed method are in good agreement with the forces measured by FBG sensors and 
strain gauges. A significant advantage of this axial force identification method is that no assumption on 
boundary conditions is needed and excellent force identification accuracy can be achieved. 
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1. Introduction 
 

One-dimensional structural members are widely used in civil engineering, e.g., in truss girders 

or space truss structures. During the construction and service life of these structures, experimental 

identification of axial forces in these members is of great significance to estimate the internal force 

redistribution under changing loads or to further learn structural degradation (Li et al. 2016). 

Previous methods can be used to estimate axial force in a bar, e.g. wave-based method (Barnes 

2009), magneto-elastic method (Chen et al. 2008) and vibration-based method (Irvine et al. 1972, 

1992). Owing to convenient excitation devices and broad applicability, vibration-based methods 
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are most widely utilized techniques for site assessment of member axial forces.  

Vibration methods are based on the second-order effect of axial force on the transversal 

stiffness of a bar. In this sense, a bar is usually recognized as a beam considering its transversal 

vibration. Hereinafter, both terms are then used interchangeably without distinction. Modal 

characteristics of a bar depend on its bending stiffness, and are indirectly influenced by the axial 

force. Practical formulas (Russell 1998) were proposed to estimate the axial force in a bar by 

considering bending stiffness on the basis of a single natural frequency. Other methods take 

advantage of vibration responses, measured at several points distributed along the entire structure 

(Greening and Lieven 2003), or a local vibration measurement along the bar of interest (Tullini 

and Laudiero 2008). These methods all rely on the assumption of fixed or hinged end boundary 

conditions of a bar. Very often, however, support conditions are not completely fixed or hinged, 

but in an in-between state, which will lead to significant force identification errors with arbitrarily 

assumed boundary conditions. To account for the effect of boundary rotational stiffness, Yamagiwa 

(Yamagiwa et al. 1999) and Mehrabi (Mehrabi et al. 1998) proposed an approach to identify the 

tensile force of inclined cables. As an alternative to analytical formulations, Tullini and Laudiero 

(2008) made use of one natural frequency and the corresponding modal displacements at three 

points. The axial force as well as the end flexural stiffness can be recognized under the assumption 

of infinite translational stiffness at the beam ends. However, such accurate information on the 

boundary conditions is often not available in practice. In order to solve this situation, Li et al. 

(2013) develop an analytical approach to estimate the axial force in a beam from natural frequency 

and its corresponding mode shape without assumptions on the boundaries. The above discussed 

methods are all based on simple Euler-Bernoulli beam theory. They are not appropriate if effects of 

rotational inertia and/or shear deformation are significant. Furthermore, the inertia of sensors 

cannot always be neglected (Zui et al. 2002). Based on classical Timoshenko beam theory, Maes et 

al. (2013) proposed an axial force method that takes rotational inertia, shear deformation and the 

mass of the sensors into account. However, the moment of inertia caused by shear deformation is 

not considered in the classical Timoshenko beam theory (Timoshenko et al. 1970), which is also 

long known to suffer from the second spectrum problem (Stephen 2006). In this work, a modified 

Timoshenko beam approach (with only one spectrum) is adopted to identify axial forces with 

improved accuracy.  

In this paper, we present the modified Timoshenko beam theory with the inclusion of the axial 

force as well as the associated member mass and stiffness matrices. The relationship between the 

changing wave speed and the frequency is examined to improve accuracy of the deformation 

coefficient as compared to that used in conventional Timoshenko theory. Characteristic equation 

and steps for axial force identification is thus detailed. Then, numerical simulation is employed to 

identify axial forces of a beam with various boundary conditions and critical axial force ratios. 

Finally, dynamic tests are conducted in our laboratory to identify progressive axial forces of a steel 

plate and a truss structure with the proposed method, and the force identification accuracy with the 

proposed method is validated. 

 

 

2. Theoretical background 
 
2.1 Modified Timoshenko beam theory and the deformation coefficient 
 

The free-vibration equation of motion for modified Timoshenko beam under axial force N can 
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be written as, (Chen et al. 2005) 
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In the equation,  txv ,  is the transverse-displacement response varying with position x  and 

time t  , yk  is the shear deformation coefficient. The axial force N  is positive for a tensile 

force and negative for a compressive force. The geometric moment of inertia I , cross section A , 

and material density  are assumed to be known. The deformation coefficient   is a 

non-dimensional parameter considering the effect of non-rigid body rotation inertia as follows, 
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where, c  is the wave speed which varies with wave number, ω is the angular frequency.  

The deformation coefficient   plays an essential role in the modified Timoshenko beam 

theory since it determines how to account for rotational inertia due to the shearing deformation of 

each beam cross section. Conventionally, the deformation coefficient   takes the non-rigid nature 

of deformed beam section under the influence of shearing force into consideration with a fixed 

shear wave speed, and is obtained by equating the first natural frequency with classical 

Timoshenko theory (Timoshenko et al. 1970) to that with modified Timoshenko beam theory 

(Chen et al. 2005). 

In fact, the wave speed is increasing with beam vibrating frequency until it reaches the fixed 

shear wave speed. If a constant wave speed is used even in the low frequency domain, the 

deformation coefficient will be exaggerated. To account for this effects, the relationship between 

the changing wave speed and the frequency is examined as follows (Jean-Louis et al. 2006) 
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Solving Eq. (3) under free vibration by assuming the basic solution 

)(, tkxietx  ）（                              (4) 

where,   is wave amplitude, k  is wave number and is given by 

c
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By introducing Eq. (4) into Eq. (3), the wave number k  is obtained as 
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By introducing Eqs. (4) and (5) into Eq. (3), the wave speed c  is obtained as  
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To examine the different influence of fixed shear wave speed ）（ /G
 
and varying wave 

speed c  on the deformation coefficient, a simple steel bar is selected for the purpose of 

demonstration. The steel bar has a circular cross section with a diameter 0.014 m. The shear 

deformation coefficient yk  is taken as 4/3 . Density  , Young’s modulus E , Shear modulus G 

and Poisson’s ratio   are taken as 33kg/m1093.7  , 211N/m1093.1  ,  )1(2/ E  and 0.3, 

respectively. The longitudinal wave speed and shear wave speed are taken as ）（ /E  and 

）（ /G . By introducing these parameters into Eq.(7), the relation between c  and k  is shown 

in Fig. 1.  

The first wave speed of classical Timoshenko beam theory is zero and the second speed is 

infinity when the wave number equals to zero as shown in Fig. 1. The first wave speed is 

traditionally considered right and it increases to shear wave speed when wave number increases 

gradually (Guyader et al. 2006).  

Shear wave speed and varying wave speed of the classical Timoshenko beam are then both 

used to calculate deformation coefficient as shown in Fig. 2. As the angular frequency increases, 

both deformation coefficients   decrease. The deformation coefficients   obtained from 

varying wave speed by the classical Timoshenko beam theory is smaller than   from fixed shear 

wave speed when angular frequency is not large enough as discussed in preceding paragraph. 

Therefore, it is recommended to use varying wave speed to calculate deformation coefficient   

instead of fixed shear wave speed. 

 

 

Fig. 1 The relationship between wave speed and wave number in the classical Timoshenko beam 
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Fig. 2 The relation of deformation coefficient η and angular frequency 

 

 

2.2 Consistent mass and stiffness element for modified Timoshenko beam theory 
 

For the purpose of numerical simulation, the influence of boundary conditions and slenderness 

on the accuracy of axial force identification, element mass and stiffness matrices are needed for 

the modified Timoshenko beam theory. As proposed by Friedman and Kosmatka (1993) to avoid 

shear lock, two shape functions are used to obtain associated member mass and stiffness matrices 
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in which the ratio of the beam bending stiffness to the shear stiffness,  , is defined as 
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According to Williams and Wittrick (1970), energy function  (Eq. (11)) can be obtained by 

using the minimum potential principle, and the first variation of Eq. (11) is equal to zero. 
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By substituting the shape function Eqs. (9) and (10) into Eq. (11) and letting its first variation 

equal to zero the stiffness matrix is found 
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The first term in Eq. (12) is the classical stiffness matrix for the Timoshenko beam theory, and 

will reduce to the stiffness matrix for the Bernoulli-Euler theory be setting ( 0  ). The second 

term of the stiffness matrix in Eq. (12) appears due to the second-order effect of the axial force on 

the transversal stiffness. 

In a similar way, the consistent mass matrix can be found as 
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The first term of the mass matrix in Eq. (13) attributes to the inertia of translational movement, 

whereas the second term is associated with rotational inertia. These two matrices will reduce to the 
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consistent translational and rotatory mass matrices for the Bernoulli-Euler beam theory by setting 

( 0  ). With both stiffness and mass matrices derived with the modified Timoshenko beam 

theory in Eq. (1), more accurate natural frequencies and mode shapes of a beam can be obtained, 

which will be used in the numerical simulations in subsequent section 3. 

 

2.3 Characteristic equation for axial force identification  
 

For axial force identification, Eq. (1) can be solved by separating different variables by 

assuming the transverse-displacement response  txv ,  to be harmonic at a certain frequency   

                          , s i nv x t x t                            (15) 

By introducing Eq. (15) into Eq. (1), the following equation is obtained 
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The solution of Eq. (16) s then given by 
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The parameters )4,,,1( kk  depend both on the bar properties and the axial force N . The 

coefficients )4,,,1( kCk  depend on the boundary conditions. There are, in total, five unknowns 

( NCCCC ,,,, 4321 ) in Eq. (18). Consequently, at least five equations are needed to solve the 

non-linear Eq. (18) in order to identify the axial force. Fortunately, this condition can be easily 

fulfilled by measuring certain natural frequency   and modal displacement at five points along a 

beam/bar. 
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Due to the non-linear nature of the solution in Eq. (18), the axial force has to be estimated in an 

iterative fashion. For a given value of frequency  , the parameters a , b  and c  depend only 

on the axial force N . Once the axial force N is assumed to be a given value and modal 

displacement at five points are obtained (Maes 2013), the ratio ij  of two points displacement is 

given by 

 
  )exp()exp()exp()exp(

)exp()exp()exp()exp(
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which can be further transformed to  

    222111 ))exp()(exp())exp()(exp( CxxCxx jijijiji    

0))exp()(exp())exp()(exp( 444333  CxxCxx jijijiji             (21) 

Four different ratios from modal displacement leads to the characteristic equation as follows 
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Which can be simplified as  
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where S  is the characteristic matrix. As boundary conditions must have non-zero solution, the 

determinant of the characteristic matrix S  should be equal to zero 

0S                                 (24) 

For the true value of the axial force N , the value of S  approaches zero, by which actual 

axial force can be determined. 

Also Eq. (18) can be rewritten as 

AcQ                                 (25) 

The vector )R( 1nQ contains the modal response   at each sensor position. The vector 

)R( 14c involves the four coefficients kC which are to be determined. The coefficient matrix A  

is given by the form 
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In a least squares sense, the value of c  can be obtained as 

†
c = A Q                                   (27) 

where †
A  is the pseudo inverse of the coefficient matrix A . 

In such a way, boundary conditions and axial forces can be simultaneously identified. 

The force identification procedure is as follows:1) The ratio ij  is computed according to Eq. 

(20) with identified modal displacement at two points; 2) The characteristic matrix S  is 

constructed with the different ratios ij ; 3) Compute determinant of the characteristic matrix S  

by assuming different axial forces N, and actual axial force can be determined when the 

determinant equals zero. 

 

 

3. Numerical simulation 
 

The axial force estimation procedure presented in section 2 is illustrated for the case of a beam 

with rectangular cross section as shown in Fig. 3. To ascertain the accuracy and the applicability of 

the proposed method, parameters of the beam in the paper (Li et al. 2013) are utilized for the 

purpose of comparison, in which Euler-Bernoulli beam theory was adopted. The beam is of an 

identical steel member with a length L  of 0.72 m, width b  of 0.035 m and height h  of 

0.005m . The shear deformation coefficient yk  is taken as 5/6. Density  , Young’s modulus E  

and Poisson’s ratio   are taken as 7860 kg/m
3
, 211N/m102.1  and 0.3, respectively. Five 

sensors (Wang et al. 2017) are uniformly attached along the beam (Fig. 1, Sk (k=1…5)) and the 

mass of each sensor is 0.01 kg. The beam is subjected to a static axial force of 15 kN. A finite 

element (FE) model is developed with the stiffness and mass matrices derived in Eqs. (12)-(14) in 

MATLAB. For all cases, the element size is set to 0.012 m. 

 

3.1 Determination of boundary conditions 
  

The mode shapes calculated by the FE model are extracted at the five sensor locations. The 

sensor 3S  is taken as a reference sensor and the others as regular sensors. Four different 

boundary conditions are investigated to examine the effectiveness of the proposed method as 

shown in Table 1.  

 

 

 

Fig. 3 Dynamic test model of a bar 
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Table 1 Axial force identification with four different boundary conditions 

Case 
K1 

(N/m
-1

) 

K2 

(Nm/rad
-1

) 

K3 

(N/m
-1

) 

K4 

(Nm/rad
-1

) 

NE 

(kN) 

NM 

(kN) 

Error 

reduced (%) 

A1 ∞ ∞ ∞ ∞ 15.165 15.017 0.987 

A2 ∞ 0 ∞ 0 15.122 15.028 0.627 

A3 ∞ 1000 ∞ 1000 14.829 15.041 0.867 

A4 ∞ 0 2000 0 15.088 15.028 0.4 

 

 

In Table 1, 1,2,3,4)(iKi  are the support stiffness at the boundaries. In the first case, A1, both 

ends of the beam are fixed for two degrees of freedoms (DOFs) (K1 = K2 = K3 = K4 = ∞). In the 

second case, A2, both ends of the beam are fixed in the horizontal direction (K1 = K3 = ∞) but free 

for rotation (K2 = K4 = 0). In the third case, A3, both ends of the beam are fixed in the horizontal 

direction (K1 = K3 = ∞) but limited with given rotation stiffness (K2 = K4 = 1000 Nm/rad
-1

). In the 

fourth case, A4, the beam is fixed in the horizontal direction (K1 = ∞) at the left end, but limited 

with given horizontal stiffness ( K3 = 2000 Nm/rad
-1

) at the right end, and free for rotation at both 

ends.  

Identified axial force based on the first five bending modes are shown in Table 1 along with 

identification errors. In Table 1, EN  is the axial force identified by Li et al. (2013) with the 

Euler-Bernoulli beam theory, whereas MN  is the axial force estimated by the modified 

Timoshenko beam theory as proposed in Section 2. For each of the four cases, improved force 

identification results are achieved by the modified Timoshenko beam theory with an accuracy 

almost up to 1%, which is better than those obtained with the Euler-Bernoulli beam theory. 

 

3.2 Axial force identification with different    

 

A non-dimensional parameter   is usually defined to evaluate the effect of bending stiffness 

on the free vibration of beam member in previous studies (Mehrabi et al. 1998) 

EI

N
L                              (28) 

When axial force is compressive 

          
c r EN

N
   with 

2

2

L

EI
NcrE


                    (29) 

Li et al. (2013) mainly concentrate on the range of ξ≤50, and axial forces cannot be identified 

in some cases in the range of ξ≥50. This section will take the non-dimensional parameter, critical 

axial force ratio,  ,  into consideration. In Table 2, E is the Young’s modulus of the beam with a 

value of 210 GPa for all five cases; L, b, and h are the length, width and height of the beam, 

respectively; N is the axial force applied on the beam; EN  is the axial force identified by Li et al. 
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Experimental axial force identification based on modified Timoshenko beam theory 

(2013) with the Euler-Bernoulli beam theory, whereas MN  is the axial force estimated by the 

modified Timoshenko beam theory proposed in Section 2.  

There are in total five cases with different beam dimensions (B1, B2, …, B5) and resulting with 

various critical axial force ratio  , ranging from 1.036 to 56.338 as shown in Table 2. The 

estimated axial forces for five cases with the first 5 bending modes are listed in Table 2. For cases, 

B1, B2 and B4, both Euler-Bernoulli beam theory and the modified Timoshenko beam theory can 

yield accurate axial force estimation. However, conventional Euler-Bernoulli beam theory failed 

for cases B3 and B5, whereas the modified Timoshenko beam theory can still yield accurate axial 

force estimation although the accuracy of identified forces is decreasing a bit with the increase of 

the non-dimensional parameter  . Therefore, the proposed method has a wider range of 

applicability than conventional Euler-Bernoulli beam theory. 

 

 
4. Experimental validation 

 

In this section, the effectiveness of the proposed axial force identification method with 

modified Timoshenko beam theory is further investigated by laboratory tests of a steel beam.  

 

4.1 Experiment setup 
 

The dimensions and physical properties of the steel beam specimen are listed in Table 3. Five 

PCB LC0101 miniature piezoelectric accelerometers (sensitivity 0.1 V/g, mass 8 g), with micro IC 

amplifier built-in, are glued to the surface of the steel beam at even distances as shown in Fig. 2. 

The accelerometers are respectively numbered as S1 , S2 ,S3 , S4 , S5 from top to bottom.  

The measurement frequency ranges from 0.5 to 8000 Hz. Both ends of the specimen are fixed 

into the MTS810 (Su 2006) material servo instrument with the TestStar IIs control system 

provided by the MTS company. The MTS810 and the control terminal of TestStar IIs system are 

shown in Fig. 3. The specimen is axially loaded increasingly by uniaxial tension force from 0 kN 

to 30 kN with a step increment of 5 kN. 

 

 

 
Table 2 Axial force identification with different   

Case 
E 

(N/m
2
) 

L 

(m) 

b 

(m) 

h 

(m) 

N 

(kN) 
ξ 

NE 

(kN) 

NM 

(kN) 

Error reduced 

(%) 

B1 

 

 

2.10E+11 

0.72 0.08 0.012 5 1.036 5.009 5.001 0.16 

B2 0.72 0.035 0.005 5 5.843 5.0 5.0 0.0 

B3 1.2 0.035 0.005 5 9.697 * 5.0 * 

B4 0.72 0.035 0.005 30 14.52 30.0 30.0 0.0 

B5 0.72 0.035 0.002 30 56.338 * 29.948 * 
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Fig. 4 Experimental specimen and sensor locations 

 

 

  
(a) The material servo instrument MTS810 (b) The control terminal TestStar IIs 

Fig. 5 Experiment equipment for axial force step loading 

 

 
Table 3 Parameters of experiment bar specimen 

N   L (length) 0.6 m 

0 kN 0 b (width) 0.035 m 

5 kN 5.734 h(thickness) 0.0045 m 

10 kN 8.109 E(Young’s Modulus) 211N/m102.06  

15 kN 9.931 G(Shear Modulus) 210 N/m108.05  

20 kN 11.468  (density) 38163kg/m  

25 kN 12.821  (Poisson ratio) 0.28 

30 kN 14.045 yk ( shear deformation coefficient) 5/6 

164



 

 

 

 

 

 

Experimental axial force identification based on modified Timoshenko beam theory 

 

 

Fig. 6 Data acquisition instrument of LMS Test.Lab 

 

 

4.2 Experimental modal identification 
 

A series of impact forces is performed by a hammer on the middle of the beam, close to the 

accelerometer S3. The LMS (Learning Management System) Test.Lab (Peeters et al. 2001) is 

employed for experimental modal analysis and the front-end acquisition equipment is shown in 

Fig. 6.  

The deterministic-stochastic subspace identification method is adopted for modal analysis with 

a sampling frequency of 2500 Hz. The beam is excited in the horizontal direction, and the 

responses are measured horizontally as well. The frequency response function of measured 

acceleration at the sensor S1 to S3 is plotted in Fig. 7, and a stabilization diagram with apparently 

five natural frequencies up to around 1000Hz is shown in Fig. 8. Identified first five natural 

frequencies and mode shapes of the beam are listed in Table 4 when the beam is bearing various 

axial forces increasing from 0 kN to 30 kN with a step of 5 kN. Identified frequencies are 55.564, 

77.508, 91.175, 102.797, 109.456, 124.926, and 138.677 for seven axial loading cases. It is seen 

obviously that the first natural frequencies is increasing sharply with applied axial forces. 

Identified mode shapes are listed at the sensor locations from S1 to S5 with S3 as the reference 

sensor and normalized displacement. 

 

 

 

Fig. 7 Measured frequency response function at sensor S1 
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Table 4 Identified natural frequencies and mode shapes of the beam under various axial forces 

N 0 kN 5 kN  10 kN 15 kN 20 kN 25 kN 30 kN 

Mode 1        

frequency 55.564 77.508 91.175 102.797 109.456 124.926 138.677 

1S  0.361  0.372  0.404  0.402  0.463  0.442  0.425  

2S  0.828  0.830  0.846  0.831  0.837  0.921  0.863  

3S  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

4S  0.801  0.823  0.823  0.811  0.876  0.852  0.835  

5S  0.333  0.383  0.388  0.392  0.464  0.430  0.380  

Mode 2        

frequency 155.594 186.858 214.194 234.382 253.858 270.608 286.344 

1S  -0.799  -0.831  -0.812  -0.831  -0.841  -0.872  -0.899  

2S  -0.959  -0.952  -0.925  -0.931  -0.922  -0.931  -0.936  

3S  0.043  0.039  0.053  0.003  0.053  0.066  0.072  

4S  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

5S  0.763  0.782  0.779  0.797  0.815  0.858  0.832  

Mode 3        

frequency 309.358 346.687 376.493 402.494 426.607 449.69 470.204 

1S  -0.967  -0.989  -0.995  -0.966  -0.967  -0.981  -0.982  

2S  -0.294  -0.252  -0.231  -0.246  -0.292  -0.206  -0.220  

3S  0.934  0.943  0.962  0.960  0.951  0.968  0.965  

4S  -0.230  -0.210  -0.190  -0.174  -0.165  -0.164  -0.167  

5S  -1.000  -1.000  1.000  -1.000  -1.000  -1.000  -1.000  

Mode 4        

frequency 511.776 550.368 585.615 614.531 641.71 670.342 697.501 

1S  -0.931  -0.925  -0.932  -0.965  -0.970  -0.939  -0.917  

2S  0.716  0.743  0.847  0.884  0.803  0.788  0.786  

3S  0.008  0.083  0.084  0.007  0.068  0.008  0.101  

4S  -0.713  -0.726  -0.760  -0.750  -0.762  -0.781  -0.792  

5S  1.000  1.000  1.000  1.000  1.000  1.000  1.000  

Mode 5        

frequency 763.705 805.49 840.996 872.886 900.571 933.282 971.128 

1S  0.888  0.728  0.850  0.721  0.744  0.744  0.742  

2S  -0.917  -0.911  -0.920  -0.942  -0.936  -0.919  -0.898  

3S  0.963  1.000  1.000  1.000  0.998  1.000  1.000  

4S  -1.000  -0.945  -0.968  -0.969  -1.000  -0.953  -0.952  

5S  0.882  0.748  0.759  0.740  0.779  0.797  0.664  

 

 

 

Examining the stabilization diagram of stochastic subspace modal identification in Fig. 8, the 

first and second modes are more stabilized with the increase of the rank, which will naturally leads 

to better modal identification of the first two modes and contribute to the excellent axial force 

identification results for both modes in Table 5. In fact, only one mode is sufficient to identify the 

axial force in each case.  
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Experimental axial force identification based on modified Timoshenko beam theory 

 

Fig. 8 Stabilization diagram for modal analysis at sensor S1 

 
 
4.3 Axial force estimation  
 

Considering hinged boundary conditions in our tests, the displacements at both ends of the 

beam can be regarded as zero. For each of the five modes, the axial tensile force is identified using 

the modified Timoshenko beam method as developed in Section 2.  

The first five modes along with axial force identification results are all presented in Tables 4 

and 5 for the comparison of identification accuracy with different modes. The estimated axial 

forces with the improved Timoshenko beam method are listed in Table 5. The average deviation of 

estimated axial forces from actual ones falls within the range of 1 kN. For the loading case of 5kN, 

the errors of axial force estimation are comparatively larger than other loading cases, which may 

be induced by initial friction effects of the fixtures. For the loading cases of 10~30 kN, the relative 

force identification errors are comparatively small, especially for the first mode and the second 

mode. 

 

 
Table 5 Identification of axial force by improved Timoshenko beam method 

Ntrue 

(kN) 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Nid 

(kN) 

Error 

(%) 

Nid 

(kN) 

Error 

(%) 

Nid 

(kN) 

Error 

(%) 

Nid 

(kN) 

Error 

(%) 

Nid 

(kN) 

Error 

(%) 

5 5.51 10.24 4.93 1.40 5.35 7.00 5.05 1.00 5.50 10.00 

10 9.81 1.90 10.09 0.9 9.98 0.20 9.53 4.70 10.40 4.00 

15 14.79 1.40 14.18 5.47 15.19 1.27 14.43 3.80 15.45 3.00 

20 19.81 0.95 19.15 4.25 21.44 7.20 18.98 5.10 20.46 2.30 

25 25.13 0.52 24.25 3.0 25.79 3.16 24.29 2.84 24.36 2.56 

30 29.85 0.50 29.96 0.13 29.81 0.63 28.72 4.27 30.21 0.70 
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5. Engineering application 
 
5.1 A truss structure 
 

In this section, the effectiveness of the proposed method is further investigated by identifying 

the axial forces of a steel truss structure. The truss is made up of circular hollow bar and connected 

by ball joints. The dimension of the truss is shown in Fig. 9 and the physical properties of the 

circular hollow bars are listed in Table 6. Two identical single trusses are connected laterally to 

guarantee its horizontal stability. A steel plate lied on two middle ball joints is employed to 

distribute the vertical loading evenly on the truss as shown in Fig. 10(a). 

 

5.2 Calibration tests 
 

In order to obtain actual axial force of bar 1 and 2 (which is marked with red in Fig. 9), fiber 

Bragg grating (FBG) sensors(Minardo et al. 2014) and strain gauges(Li et al. 2014) are attached 

on the bars to measure their strains. Calibration tests are conducted before tests to obtain the 

relationship between axial forces and measured signals from FBG sensors and strain gauge as 

shown in Fig. 10(b).  

 

 
Table 6 Bar parameters of the steel truss 

L (length) 0.74 m 

d1 (outside diameter) 0.020 m 

d2(inside diameter) 0.010 m 

E(Young’s Modulus) 211N/m102.1  

G(Shear Modulus) 210N/m1027.8   

 (density) 37850kg/m  

 (Poisson ratio) 0.269 

yk ( shear deformation coefficient) 1/2 

 

 

 

Fig. 9 Dimensions of single truss structure 
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Table 7 Relationship of Δλ、ΔV and ΔN of bar 1 and 2 

relationship expression Δλ(nm)—ΔN(kN) ΔV(V)—ΔN(kN) 

bar 1  Δλ=0.0250ΔN+0.0038 ΔV=0.0574ΔN+0.0003 

bar 2 Δλ=0.0256ΔN-0.0029 ΔV=0.0596ΔN+0.0084 

 

 

  
(a) Truss model (b) Calibration tests of bar 1 and 2 

Fig. 10 Experiment model and calibration tests 

 

 

When the bar 1 and 2 are bearing various axial forces increasing from 0 kN to 10 kN with a 

step of 1kN for four times, the voltages of strain gauges and wave length changes of FBG sensors 

can then be measured to obtain the relationship. The relation expression between FBG’s wave 

length variation (Δλ) , strain gauge’s voltage variation (ΔV) and axial force variation (ΔN) for two 

bars are listed in Table 7. 

 

5.3 Axial force identification 
 

The bars was compressively loaded by SNAS10 from 0 kN to 10 kN with a step increment of 

2.5 kN. Five PCB LC0101 miniature piezoelectric accelerometers were glued to the surface of the 

steel bar at even distances as shown in Fig. 11. After each load step, a series of impact forces was 

performed by a hammer on the middle of the beam, close to the middle accelerometer. The data of 

acceleration, voltage value and wave length were also recorded.  

The first modes of two bars along with different compression load are presented in Table 8. 

The first column of Table 8 shows the values of applied axial forces in experiments, and the third 

column lists measured first natural frequencies of both bars. The last five column presents 

measured first mode shapes at the five accelerometers attached to the bar.It can easily be observed 
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from Table 8 that : a) The fundamental frequency of bar 1 increases gradually and bar 2 decreases 

gradually with the load. b) The normalized modal values of bar 1 appear in good symmetry 

whereas bar 2 is not. The reason for the discrepancy is perhaps due to uneven plan loading and 

unsymmetry of horizontal connection, which needs further investigation.  

The measured and identified axial forces of both bars are listed in Table 9 for the comparison 

of identification accuracy. For bar 1 and bar 2, the identified axial forces are basically consistent 

with axial forces measured by FBG sensors and strain gauges, which are further shown in Fig. 

12(a) of bar 1 and Fig. 12(b) of bar 2.  

 

 
Table 8 Table of bars’ frequency and modal information under single truss load 

Frequency and modal f(Hz) 1 2 3 4 5 

0 kN 
bar 1 88.415 0.5325 0.8991 1 0.8932 0.5313 

bar 2 95.659 0.4152 0.8099 1 0.9054 0.5469 

2.5 kN 
bar 1 90.001 0.5131 0.8929 1 0.8774 0.5116 

bar 2 94.954 0.4154 0.8155 1 0.8998 0.5417 

5 kN 
bar 1 93.533 0.4977 0.8827 1 0.8720 0.4853 

bar 2 93.492 0.4107 0.8118 1 0.9030 0.5362 

7.5 kN 
bar 1 97.548 0.4733 0.8548 1 0.8650 0.5064 

bar 2 91.982 0.4126 0.8084 1 0.9068 0.5495 

10 kN 
bar 1 98.807 0.4830 0.8699 1 0.8594 0.4966 

bar 2 90.548 0.4131 0.8104 1 0.9046 0.5451 

 

 

  
(a) Experiment setup (b) Experimental bar and sensor locations 

Fig. 11 Experiment setup and sensor locations 

 

 

170



 

 

 

 

 

 

Experimental axial force identification based on modified Timoshenko beam theory 

 

  
(a) Bar 1 (b) Bar 2 

Fig. 12 Comparison of identified axial forces with measured ones by FBG sensors and strain gauges 

 

 
Table 9 Table of identification axial force of two bars under single truss load 

Axial 

force(kN) 
Ways 0 kN 2.5 kN 5 kN 7.5 kN 10 kN 

bar 1 

FBG 0.25 1.86 3.43 5.00 6.53 

strain gauge 0.29 1.81 3.45 5.15 6.81 

improved 

method 
1.56 2.47 3.27 5.48 6.44 

bar 2 

FBG -0.12 -1.62 -3.22 -3.53 -4.62 

strain gauge -0.24 -1.49 -2.81 -3.68 -4.76 

improved 

method 
-1.03 -2.16 -2.91 -3.15 -5.08 

 

 

In Fig. 12, the blue solid line represents measured axial forces by strain gauges, the cyan 

dash-dotted line represents measured axial forces by FBG sensors, and the red dotted line 

represents identified axial forces by the proposed method. For the loading case of 0 kN and 2.5 kN, 

the errors of axial force estimation are comparatively larger than measured other cased, which may 

be induced by initial friction effects of the connecting parts of screw and spherical hinges. For the 

case of 5 kN, 7.5 kN and 10 kN, the axial forces identified with the modified Timoshenko beam 

theory are in good agreement with FBG and strain gauge. These tests powerfully demonstrate that 

axial forces can be accurately identified by on the proposed modified Timoshenko beam theory, 

and can be further applied to actual engineering structures.  

 

 

6. Conclusions 
 

Based on modified Timoshenko beam theory, an improved method has been developed to 

estimate the axial force in a bar member. The method takes bending stiffness effects, rotational 
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inertia, shear deformation and the rotational inertia caused by shear deformation into consideration. 

The deformation coefficient which accounts for rotational inertia effects of the shearing 

deformation is extensively discussed in the paper. It is found that varying wave speed should be 

used for the calculation of the deformation coefficient, especially in the low frequency domain, A 

significant feature of the proposed method is that the axial force can be identified without 

assumption of the boundary conditions as conventional methods. 

Consistent stiffness and mass matrices are derived based on the modified Timoshenko beam 

theory, and they are used in the numerical simulations to verify the accuracy and applicability of 

this proposed method with various boundary conditions and non-dimensional bending influence 

parameter  . Conventional Euler-Bernoulli beam theory failed for some cases, especially for 

cases when ξ is larger than 50, whereas the modified Timoshenko beam theory can still yield 

accurate axial force estimation. Consequently, the proposed method has a wider range of 

applicability. 

Experiments on a steel plate were conducted to verify the proposed axial force identification 

method. With identified mode shapes and modal frequencies, axial forces are accurately identified 

and the error is less than 5% for most cases. The applicability of the proposed method is further 

verified by identifying axial forces of two bars of a steel truss. The identified axial forces are in 

good agreement with axial forces measured by FBG sensors and strain gauges in most cases.  

The accuracy of modal identification may contribute to the accuracy of estimate axial force. 

How to combine identified axial forces with different modes to improve identification accuracy 

needs further investigations. 

 

 

Acknowledgements 
 

The authors are grateful for the support of the National Natural Science Foundation of China 

(No.51121005 and 51578107) and the National 973 Project of China (No.2015CB057704). The 

authors are also grateful for the generous help from Professor Xing-Lin Guo and doctor 

Cheng-Zhu Xiu for the experiments. The authors are all members of Dalian University of 

Technology. 

 

 

References 
 
Barnes, M.R. (2009), ―Form finding and analysis of tension structures by dynamic relaxation‖, Int. J. Space 

Struct., 14(2), 89-104. 

Chen, L., Song, J. and Zhang, Q. (2008), ―Theory and engineering practice research on cable tension 

measurement with EM method ‖, Constr. Technol., (in Chinese), 37(5), 144-153. 

Chen, R., Wan, C.F. and Xue, S.T. (2005), ―The correction and effect of equation of the Timoshenko beam 

motion‖, J. Tongji university: natural science edition, 33(6), 711-715. 

Friedman, Z. and Kosmatka, J.B. (1993), ―An improved two-node Timoshenko beam finite element‖, 

Comput. Struct., 47(3), 473-481.  

Greening, P.D. and Lieven, N.A.J. (2003), ―Identification and updating of loading in frameworks using 

dynamic measurements‖, J. Sound Vib., 260(1), 101-115. 

Irvine, H.M. and Irvine, H.M. (1992), Cable structures (Vol. 5), New York: Dover Publications. 

Irvine, M. (1978), ―Free vibrations of inclined cables‖, J. Struct. Div. - ASCE, 104(2), 343-347. 

172



 

 

 

 

 

 

Experimental axial force identification based on modified Timoshenko beam theory 

Jeanlouis, Guyader. (2006), ―Vibrations in Continuous Media‖, Library of Congress 

Cataloging-in-Publication Data.  

Li, H.N., Li, D.S., Ren, L., Yi, T.H., Jia, Z.G. and Li, K.P. (2016), ―Structural health monitoring of 

innovative civil engineering structures in Mainland China‖, Struct. Monit. Maint., 3(1), 1-32. 

Li, H.N., Yi, T.H., Ren, L., Li, D.S. and Huo, L.S. (2014), ―Reviews on innovations and applications in 

structural health monitoring for infrastructures‖, Struct. Monit. Maint., 1(1), 1-45.  

Li, S., Reynders, E. Maes, K. and De Roeck, G. (2013), ―Vibration-based estimation of axial force for a 

beam member with uncertain boundary conditions‖, J. Sound Vib., 332(4), 795-806. 

Maes, K., Peeters, J., Reynders, E., Lombaert, G. and De Roeck, G. (2013), ―Identification of axial forces in 

beam members by local vibration measurements‖, J. Sound Vib., 332(21), 5417-5432. 

Maes, K., Reynders, E., De Roeck, G. and Lombaert, G. (2011), ―Determination of axial forces by local 

vibration measurements‖, Master's Thesis, Department of Civil Engineering, KU Leuven. 

Mehrabi, A.B. and Tabatabai, H. (1998), ―Unified finite difference formulation for free vibration of cables‖, 

J. Struct. Eng. -ASCE, 124(11), 1313-1322. 

Minardo, A., Coscetta, A., Porcaro, G., Giannetta, D., Bernini, R. and Zeni, L. (2014), ―Distributed optical 

fiber sensors for integrated monitoring of railway infrastructures‖, Struct. Monit. Maint., 1(2), 173-182. 

Peeters, B. and De Roeck, G. (2001), ―Stochastic system identification for operational modal analysis: a 

review‖, ASME J. Dynam. Syst., Meas. Control., 123 (4) 659–667. 

Reynders, E.―System identification methods for (operational) modal analysis: review and comparison, 

Archives of Computational Methods in Engineering‖, 19(1) 51-124. 

Russell, J.C. and Lardner, T.J. (1998), ―Experimental determination of frequencies and tension for elastic 

cables‖, J. Eng. Mech. –ASCE , 124(10), 1067-1072. 

Stephen, N.G. (2006), ―The second spectrum of Timoshenko beam theory–Further assessment‖, J. Sound 

Vib., 292(1-2), 372-389. 

Su, X. (2006), ―Application of MTS810 for Evaluating Mechanical Property of Ceramics‖, Modern 

Scientific Instruments. 

Tullini, N. and Laudiero, F. (2008). ―Dynamic identification of beam axial loads using one flexural mode 

shape‖, J. Sound Vib., 318(1), 131-147. 

Wang, J. and Yang, Q.S. (2017), ―Sensor selection approach for damage identification based on response 

sensitivity‖, Struct. Monit. Maint., 4(1), 53-68. 

Williams, F.W. and Wittrick, W.H. (1970), ―An automatic computational procedure for calculating natural 

frequencies of skeletal structures‖, Int. J. Mech. Sci., 12(9), 781-791. 

Yamagiwa, I. Utsuno, H. Endo, K. and Sugii, K. (1999), ―Application of simultaneous identification of 

tension and flexural rigidity at once to the bridge cables‖, Proceedings of the IABSE Conference, 

Cable-Stayed Bridges, Past, Present, and Future. 

Zui, H. Hamazaki, Y. and Namita, Y. (2002), ―Study on tension and flexual rigidity identification for cables 

having large ratio of the diameter and the length‖, Doboku Gakkai Ronbunshu, 2002(703), 141-149. 

 

 
TY 

173




