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Abstract.  Automated damage detection through Structural Health Monitoring (SHM) techniques has 
become an active area of research in the bridge engineering community but widespread implementation on 
in–service infrastructure still presents some challenges. In the meantime, visual inspection remains as the 
most common method for condition assessment even though collected information is highly subjective and 
certain types of damage can be overlooked by the inspector. In this article, a Frequency Response 
Functions–based model updating algorithm is evaluated using experimentally collected data from the 
University of Central Florida (UCF)–Benchmark Structure. A protocol for measurement selection and a 
regularization technique are presented in this work in order to provide the most well-conditioned model 
updating scenario for the target structure. The proposed technique is composed of two main stages. First, the 
initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic 
signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from 
the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference 
between the updated parameters from subsequent stages revealed both location and extent of damage in a 
“blind” scenario, without any previous information about type and location of damage. 
 

Keywords:  damage detection; dynamic nondestructive testing; bridges; frequency response functions; 

finite element models; model updating 

 
 
1. Introduction 
 

Currently, condition assessment of in–service bridges is primarily based on visual inspection to 

evaluate their structural integrity; this basically means that “what you see is what you get”. 

However, visual inspection has two major disadvantages. First, certain types of damage can be 

hidden from view, for example internal cracking in beams or under asphalt membranes. Second, 

visual inspection can be extremely difficult to perform in some instances, for example, in long 

bridges spanning waterways. A hands–on detailed visual inspection for a typical overpass bridge 

can take about 3 hours whereas the vibration signature of a properly instrumented bridge can be 
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collected in the same time frame. 

Although, additional time for data post–processing is required, the vibration signature provides 

more objective information about the structural condition and can be tracked over time to detect 

changes that may not be visible to the human eye. Also, it should be noted that the vibration based 

monitoring can be conducted much more frequently than the visual inspection once the bridge is 

instrumented.  

In response to the current infrastructure concerns (American Society of Civil Engineers, 2013), 

more attention has been drawn to the application of SHM methods as a tool for condition 

assessment in the context of civil engineering infrastructure. SHM is composed of four damage 

identification levels (Rytter 1993): 1) Detection, 2) localization, 3) quantification and 4) prediction 

of remaining life. Most of the methods developed to date for large scale systems can only attain 

levels 1 and 2 given the many challenges on modelling, data collection and especially post 

processing as measurements are highly dependent on environmental conditions (Chesné and 

Deraemaeker 2013). By integrating SHM systems to the current visual inspection protocols, a 

better damage diagnosis in properly instrumented bridges can be attained.   

Vibration–based methods for SHM have received considerable attention during the last two 

decades, since dynamic data is global in nature and easier to collect in the field. A detailed review 

on this subject is presented in (Hsieh et al. 2006, Cruz and Salgado 2008, Fan and Qiao 2011, 

Talebinejad et al. 2011, Chesné and Deraemaeker 2013). This research focuses on Model Based 

(MB) methods, which rely on a Finite element Model (FEM) to evaluate the condition of in–

service structures.  

Essentially, MB methods require an error function that expresses the difference between 

analytically predicted and experimentally measured response (Mottershead and Friswell 1993). 

Then, that error function is minimized based on selected unknown structural parameters based on 

field observations and engineering judgment. This process is widely known as model updating. As 

a result, a multi–stage approach is implemented in order to assess structural health. First, the initial 

FEM is updated via changes in stiffness, mass and damping parameters, in order to capture the 

dynamic signature of the structure in its undamaged state (i.e., baseline model). Then the updating 

process is repeated for each set of vibration measurements from different damage states as 

required by the SHM system, with damage defined as meaningful changes to the stiffness, mass 

and damping matrices of the structure. The difference between updated parameters from the 

baseline and subsequent damage states can be used to locate and quantify damage. 

Recently, researchers have developed methods based on modal information (Mendrok and Uhl 

2010, Jafarkhani and Masri 2011, Panigrahi et al. 2013, Modak 2014, Wang et al. 2014) and 

Frequency Response Functions (Esfandiari et al. 2009, Maia et al. 2011, Rahmatalla et al. 2012, 

Chesné and Deraemaeker 2013, Gang et al. 2014). While using modal data has been the most 

commonly employed approach for model updating given its many advantages (Ewins 2000), 

information is limited to that at resonance and could be prone to extraction errors. On the other 

hand, FRF–based techniques bypass such extraction errors while providing information in a 

frequency–by–frequency basis. However, dealing with FRFs has some disadvantages because they 

are more complex mathematically and such methods could be computationally very expensive for 

large–scale structures. Additionally, (Catbas et al. 2012) showed that practical technologies (e.g., 

Falling Weight Deflectometer) can be utilized to generate input-output data 

The previous publications on this FRF-based two-step model updating algorithm presented the 

mathematical formulation and calibration of a FEM of the UCF Benchmark (Garcia–Palencia and 

Santini–Bell 2013), and the Powder Mill Bridge (Garcia-Palencia et al. 2014). In both cases, 
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parameter identification was performed on the baseline (undamaged) model only. In this article, 

the model updating algorithm is extended to include damage detection, localization and 

quantification using experimentally obtained FRF data. In addition, a regularization technique and 

a protocol for selection of frequency points for updating is developed in this work in order to 

provide the most well-conditioned model updating scenario for the target structure. 

The target structure is the University of Central Florida (UCF) Benchmark (Gul 2009) and is 

intended to capture the dynamic behavior of short to medium span bridges. Several boundary 

conditions (e.g., rollers, fixed support and semi fixed support with neoprene pads) can be set in 

order to simulate different damage cases. This is a collaborative effort between several academic 

institutions and first started under the auspices of the International Association for Bridge 

Maintenance and Safety (IABMAS) (Caicedo et al. 2006, Catbas et al. 2006, Cruz and Salgado 

2008). 

 

 

2. Frequency response functions–based model updating for damage detection 
 

In this study, model updating is performed using a FRF–based error function proposed 

originally by Thyagarajan et al. (1998). This formulation was further modified by Garcia–Palencia 

and Santini–Bell (2013) to account for multiple excitation points and with a damping matrix that 

captures the variation of modal damping ratios with natural frequencies. A summary of the 

formulation for model updating is presented here for completeness and clarity. 

The equation of motion of a viscously damped system subjected to a harmonic force can be 

expressed as shown in Eq. (1) (Thyagarajan et al. 1998). 

)}Re({}]{[}]{[}]{[ tjeFuKuCuM                     (1)
 

where [K], [M] and [C] are the stiffness, mass and damping matrices respectively, {u} is the 

displacement vector, Ω is the frequency of the excitation load, {F} is a vector that contains the 

amplitude of the applied forces, 1j , and t is the time. A solution of Eq. (1) is given by 

{ } ( )tjeqtu Ω}{Re=)(
                        (2)

 

where }{q  is a complex frequency response vector. Substitution of Eq. (2) into Eq. (1) gives 

   0}{}{][][][Re 2 







 tjeFqCjMK

                  (3)

 

A solution to Eq. (3) is given by 

  0}{}{][][][ 2  FqCjMK                     (4)
 

Assume that modal testing is performed on the structure and the FRF vector {qe} are the 

measured displacements. Let the dynamic stiffness matrix [A] = [K] – Ω
2
[M] + jΩ[C] and {qe}= 

{qa qb}
T
, where qa and qb represent degrees of freedom (dofs) on the real structure where the FRFs 

are measured and not measured respectively. The matrix [A] can also be partitioned accordingly as 

shown in Eq. (5) 
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After some mathematical manipulations, the FRF–based two–step error function {eFRF(p1,p2)} 

for any frequency Ωr is given by Eq. (6). For an interested reader, a detailed derivation is given in  

(Garcia–Palencia and Santini–Bell 2013) 

      
r

bababaababbabaaFRF FAAFqAAAAppe


  }{]][[}{][]][[][),( 11
21     (6)

 

where {p1} includes the unknown properties of the system such as modulus of elasticity and mass 

density, that are related to [K] and [M]; {p2} includes the unknown damping parameters which are 

related to [C] and {Fa} and {Fb} are the result of partitioning the vector of applied forces {F}. 

As it can be observed in Eq. (6), multiple inverse calculations are required when computing the 

error vector for scenarios with sparse measurements. Solving a complex matrix inverse can be 

particularly computationally intensive. In this research, a single object oriented solver called 

Factorize (Davis 2013) is integrated into the model updating algorithm. Factorize improves how 

rank–deficient systems are handled by incorporating a complete orthogonal decomposition, and 

the singular value decomposition.  

Model updating is performed in two steps: in Step 1, only the mass and stiffness matrices will be 

updated therefore {p1} is set as the vector of unknown parameters and {p2} is kept constant. In 

other words, the modal damping ratios remain unchanged from the initial numerical model. On the 

other hand, in Step 2 the damping matrix will be updated and {p2} is set as the new vector of 

unknown parameters, while keeping the updated parameters from Step 1 {p1}
updated

 as constants. 

Different segments of the frequency response function provide meaningful information about 

different parameter groups, specifically (1) stiffness and mass and (2) damping. By developing a 

two-step model updating protocol, frequency points can be selected to provide the most 

well-conditioned model updating scenario for each target structure. A frequency selection protocol 

is presented in Sections 4.1.1 and 4.1.2. Therefore, Eq. (6) can be rewritten as shown in Eq. (7); 

for the sake of consistency, {p2}* denotes the initial damping parameter vector that is kept 

constant for Step 1 

      
r

bababaababbabaaFRF FAAFqAAAAppe


  }{]][[}{][]][[][*),( 11
21      (7)

 

Likewise, Eq. (6) can be modified for Step 2 where the damping matrix will be updated and {p2} 

is set as the new vector of unknown parameters. Updated parameters from Step 1 {p1
updated

} will be 

kept constant then 

      
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
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The stacked residual error vector for the kth dynamic test {EI (p)k} is calculated as shown in Eq. 

(9) 
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where {
r

peFRF Ω)( } is the error vector for the rth updating frequency Ωr, and is a function of the 

unknown parameters {p}. Depending on the step, {p} can be either {p1} or {p2}. In turn, the 

stacked error vector {EFRF(p)} that accounts for different load locations {EI (p)k} is given by Eq. 

(10) 
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Essentially, parameter estimation through model updating is a constrained minimization 

problem. Then, the error function {E(p)} has to be expressed as a scalar objective function J(p) 

)}({)}({)( * pEpEpJ T                         (11)
 

where the superscript *T is the conjugate transpose of the error the vector. The associated 

minimization problem from Eq. (11) can be expressed as Eq. (12) 

min J(p) subject to {pmin}< {p}≤ {pmax}                     (12) 

where {pmin} and {pmax} are predefined constrains based on engineering judgment. Such constrains 

prevents the search algorithm from generating physically meaningless solutions.  

In some cases, optimization can be particularly challenging due to measurement errors and ill–

conditioning. Regularization techniques (Tikhonov and Arsenin 1977, Weber et al. 2009, Fu et al. 

20113) partially address these issues by adding new information in the form of a side constraint 

(Mottershead et al. 2011)  

}]{[}{})}({]{[}))({{})({ 2
i

T
iE

T pWppEWpEpJ                (13)
 

where the regularization parameter  provides a balance between the objective error function  

J({p}) = {E({p})}
T 
[WE] {E({p})} and the side constraint {Δpi}

T
 [Wθ] {Δpi}. Link (1993), suggests 

that 
2
 should lie in the range from 0 (no regularization) and 0.3, for strong ill–conditioning. In this 

article, 
2
 = 0.05 is used as suggested by Mottershead et al. (2011). The matrix [Wθ] can be 

expressed as (Link 1993) 

;      ]Γ[
))]Γ([(

]))Γ([(
=][ 1

1diagmean

diagmean
Wθ

 
  })]({][[})]({[][ pSWpSdiag E

T       (14)
 

where [S({p})] is a sensitivity matrix where each column represents the partial derivative of 

{E({p})} with respect to each unknown parameter from {p}. Eq. (14) constraints {Δpi}
T
 according 

to their sensitivities so that parameters remain unchanged if the sensitivity approaches zero. For a 

least-squares solution, the change in parameter {Δpi} for the FRF error function is calculated 

based on Mottershead et al. (2011) as 

  




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In this research, MUSTANG, (Model Updating STructural ANalysis proGram) a MATLAB–

based (MathWorks Inc., 2011) iterative algorithm developed at the University of New Hampshire, 

is used to minimize J({p}). MUSTANG is linked to SAP2000 (Computers and Structures, Inc., 

2011) through is Application Programming Interface (API) and allows the user to perform model 

updating at predefined groups of elements. 

 

 

3. Description of the target structure: The UCF–Benchmark 
 

The University of Central Florida (UCF) Benchmark Structure (Fig. 1) was used to validate the 

model updating methodologies presented in this article. The structure was intended to capture the 

dynamic behavior of short to medium span bridges. A detailed description of the physical model is 

given in Burkett (2005) and Gul (2009).  

The structure was constructed with steel sections and can be easily modified for different test 

setups. The dimensions are 5.49 m by 1.83 m with transverse bracing at 0.91 m intervals as shown 

in Fig. 2. Beams have S76x8.4 (S3x5.7) sections whereas the columns are W310x38.7 (W12x26). 

Also, several boundary conditions (e.g., pin support, rollers, fixed support and semi fixed support 

with neoprene pads) can be set in order to simulate different damage cases (Gul and Catbas 2008). 

 

 

 

Fig. 1 Experimental setup of the UCF Benchmark Structure (adopted from Gul and Catbas 2008) 
 

 

  
(a) (b) 

Fig. 2 (a) Finite Element Model using SAP2000 ®  and (b) Plan view of the structure and instrumentation 

layout 
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(a) 

 
(b) 

Fig. 3 Variation of boundary conditions with respect to displacements/rotations: (a) UZ vs. KZ and (b) θY 

vs. RY 

 

 

The initial FEM of the UCF Benchmark structure (Fig. 2(a)) was created in SAP2000®  

(Computers and Structures, Inc., 2011) and has 196 nodes and 201 frame elements with modulus 

of elasticity ESTEEL = 200 GPa and mass density ρSTEEL = 7850 kg/m
3
. Additional translational and 

rotational springs at the corner joints 1, 4, 7, 8, 11 and 14 were added so that changes in the 

boundary conditions can be captured by the FEM during the model updating process. Initial values 

for the boundary conditions are based upon the plots shown in Fig. 3, and express the variation of 

the springs’ stiffness with respect to the rotation/displacements at the node of interest. 

They were obtained by applying an arbitrary static point load at node 3 on the FEM and then 

calculating the displacements UZ and the rotations θY at each support. As it can be observed in Fig. 

3, the plots are generic as the values of displacements/rotations change depending on the support, 

but the values of the stiffness for free condition/full fixity are consistent for each support. 

Translational springs in the vertical direction were assumed as KZ = 2 x 10
5
 kN/m which represents 

fixity in the z–direction whereas rotational spring RZ and RY are assumed as 1 kN∙m/rad. Those 

initial values are the “best guess” based upon as–built drawings and reflect the physical boundary 

conditions in the healthy structure (approximately pinned/roller connections). On the other hand, 

damping in the FEM was calculated by superposing modal damping matrices as shown in Eq. (16) 

 

10
2

10
3

10
4

10
5

Translational Stiffness K
Z
 (kN/m)D

is
p
la

c
e
m

e
n
t 

in
 t

h
e
 z

-d
ir

e
c
ti

o
n
  

 U
Z

 

 

0

10
0

10
1

10
2

10
3

10
4

10
5

Rotational Stiffness R
Y

 (kN-m/rad)

R
o

ta
ti

o
n

 a
b

o
u

t 
th

e
 y

-d
ir

e
c
ti

o
n

  
 

Y

 

 

0


f

405



 

 

 

 

 

 

Antonio Garcia-Palencia, Erin Santini-Bell, Mustafa Gul and Necati Catbas 

 

][
2

][][
1

M
M

MC
N

n

T

nn

n

nn











  




                     (16)

 

where ζn is the modal damping ratio of the nth mode shape ϕ n , Mn = ϕ n
T 
[M] ϕ n  = 1, ωn is the nth 

natural circular frequency of vibration and N is the number of modes considered in the analysis. 

This damping formulation makes it possible to specify the modal damping ratios in any number of 

modes as opposed to Rayleigh damping or mass–proportional damping. Modal damping ratios of 

0.15% are assumed for all the modes as a starting point for Step 1. 

 

3.1 Dynamic testing on the UCF–Benchmark 
 

Four separate impact tests were performed on the structure at selected locations and 

acceleration data were collected at 14 locations as shown in Fig. 2(b). However, accelerometers on 

the support nodes were not used in the calculations due to negligible vibration, which introduced 

excessive noise on the data. This reduces the number of measured nodes from 14 to eight. Based 

on the number of input and output location, the number of available FRFs for model updating is 32. 

These FRFs were obtained by using five averages. For the impact tests, an exponential window 

was applied to both input and output signals whereas a force window was applied only to the input 

signal. The sampling frequency was 320 Hz but the FRF analysis was carried out until 150 Hz 

because, according to the preliminary FE analysis, there were a sufficient number of modes in the 

range 0–150 Hz (Gul and Catbas 2008). Based upon experimental results evaluation data in the 

frequency range 5–110 Hz was selected for model updating, which corresponds to the first 12 

modes of vibration as shown in Table 1.  

 

 

4. Damage detection using experimentally obtained FRFs 
 

In this study, damage detection through model updating is composed of two basic stages. First, 

the initial FEM of the UCF–Benchmark is updated via changes in stiffness, mass and damping 

parameters, in order to capture the dynamic signature of the system in its undamaged state (i.e. 

baseline model). Then, the updating process is repeated employing a new set of vibration 

measurements from the damaged configuration. In this research, damage was physically induced 

by fixing the support at nodes 7 and 14 with oversized through–bolts as observed in Fig. 4. The 

difference between updated parameters from the baseline and the subsequent damage state are 

used for damage detection. Results from the grouping strategies evaluated in this article clearly 

identified both the location and extent of the induced damage. 

 

 
Table 1 Comparison of natural Frequencies from the initial FEM and Impact Data from experiments 

 Natural Frequencies fn (Hz) 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 

FE 20.99 25.19 31.68 38.75 61.6 64.85 73.64 73.64 73.77 91.65 93.75 97.1 

Impact 22.75 27.76 34.28 42.3 65.32 68.4 – – – 95.58 98.11 105.3 
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Fig. 4 Damaged support at nodes 7 and 14 
 

 

 
 

Fig. 5 Grouping strategies in the experimental study 

 

 

The robustness of the algorithm to measurement errors was evaluated in a previous article 

(Garcia-Palencia et al. 2014), where the authors assumed 5% simulated random noise. In such 

study, the algorithm was able to detect, locate and quantify damage in boundary conditions with a 

12.9% maximum error. 

 

4.1 Baseline model 
 

The initial FEM of the UCF–Benchmark will be updated using the proposed two–step approach 

introduced in Section 2. In Step one, [K] and [M] are updated by grouping unknown parameters 

that are expected to have similar properties so that the number of unknowns in the optimization 

problem can be reduced. The frame elements were subdivided into six groups (F1 through F6) for 

baseline generation purposes as shown in Fig. 5.  

Such grouping strategy accounts for the inherent variability in the physical properties of the 

frames that occur from element to element. In addition, the measured FRFs must be sensitive to 

changes in the selected groups of unknown parameters in order to ensure successful model 

updating. For illustration purposes, the variation in FRF with respect to changes in ESTEEL, for 

group F1 is presented in Fig. 6. 

In this article, non–dimensional scalar multipliers applied at the element level (Mottershead et 

al. 2011) were used for model updating of the stiffness and mass parameters (αK and βM 

respectively). In other words, if for a given frame element αK = 1.20, this indicates a 20% increase 
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in frame’s stiffness. Frame elements labeled as “C” in Fig. 5 were kept constant during the 

optimization as well as the rotational stiffness RY, as they did not produce significant changes in 

the measured responses. As a result, the grouping strategy adopted in this article consists of six 

groups of frames and six groups of boundary conditions. The grouping strategy was illustrated in 

Fig. 5 and the number of unknowns is presented in Table 2. 

Finally, appropriate selection of frequency points is another crucial aspect for successful 

updating of [K] and [M]. Based upon results from Step 1, damping estimation is performed via 

changes in modal damping ratios using frequency points for updating located at resonance. 

 

 

 

Fig. 6 FRF sensitivity to changes in E, frame group F1 
 

 

 
Table 2 Updated values of stiffness αK , mass βM and boundary conditions for the baseline (healthy) 

condition 

Frame multipliers (unitless) Boundary Conditions  

Group αK 
Change 

(%) 
βM 

Change 

(%) 
Group 

KZ (kN/m) RY (kN∙m/rad) 

Initial Baseline 
Change 

(%) 
Initial Baseline 

Change 

(%) 

F1 1.21 21.0 1.03 3.0 S1 200000 200000 0.00 1.00 1.00 0.0 

F2 1.22 22.0 1.02 2.0 S4 200000 200000 0.00 1.00 23.69 2269 

F3 1.10 10.0 1.01 1.0 S7 200000 200000 0.00 1.00 42.03 4103 

F4 1.11 11.0 1.00 0.0 S8 200000 200000 0.00 1.00 1.00 0.0 

F5 1.15 15.0 1.06 6.0 S11 200000 200000 0.00 1.00 18.70 1770 

F6 1.15 15.0 1.07 7.0 S14 200000 200000 0.00 1.00 1.00 0.0 
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Fig. 7 FRF sensitivity to changes in damping 
 

 

Fig. 8 Selection of frequency points for updating. The shaded regions are away from resonance, 

antiresonance and noisy areas while providing meaningful information for step 1 
 

 

4.1.1 Updating [K] and [M] (Step 1) 
In this step, updating is performed via changes in αK, βM and boundary conditions while 

keeping the initial modal damping ratios constant. Therefore, the presented methodology requires 

the selection of frequency points at locations that provide the most well-conditioned model 

updating scenario for each particular step. The goal of the two-step process is to “uncouple” the 

effects of Stiffness/Mass from damping parameters. For step 1, points should be located away from 

resonance and antiresonance areas, since damping parameters produce significant changes at such 

points (Kwon and Ling 2004, Esfandiari et al. 2009, Garcia–Palencia and Santini–Bell 2013) as 

illustrated in Fig. 7. In addition, noise-suspected regions on the measured FRFs should be avoided 

so that potential convergence issues can be reduced.  

Once resonance, antiresonance and noise-suspected points were identified on each 

experimentally-measured FRF, frequency points located within 0.5 Hz were excluded from 
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updating. The remaining segments, depicted in Fig. 8 with shading, correspond to the potential set 

of frequency points for step 1 as shown with vertical lines in Fig. 8. The protocol is concluded by 

calculating the mid points on each identified segment, which provides sets of frequency points for 

updating promoting convergence to meaningful parameters. 

Six groups of frames were considered in this model updating scenario. As a result, 12 frame 

parameters (6αK + 6 βM) and 12 unknown boundary conditions (6 KZ + 6 RY) are set as unknown 

parameters, for a total of 24 unknowns in Step 1. Final parameter estimates are presented in Table 

2; The updated stiffness parameters for element groups F1 and F2 showed the highest percent 

change during model updating. These element groups are similar in nature, being both external 

continuous members. Overall, maximum differences with respect to the initial values were 22% in 

αK for group F2 and 7% in βM for group F6. As far as boundary conditions are concerned, the values 

of translational stiffness KZ remain fixed with no change with respect to the initial values as 

observed in Fig. 9(a). The stiffness parameters for the boundary condition converged on values 

that reflected the pinned condition observed in the laboratory. 

Finally, the maximum change in rotational stiffness RY occurred in joint 7, with an increase of 

4103% with respect to the initial FEM resulting in a RY of 42.03 kN-m/rad, which is reflective of a 

pinned connection, as shown in Fig. 9(b). This is consistent with the construction observations. Fig. 

10(a) shows the updated and experimental FRFs after Step 1 with predicted stiffness and mass 

parameters able to reproduce the experimental FRFs fairly well for frequencies up to 110Hz. The 

shift in the FRF amplitudes at resonance was corrected in Step 2 by adjusting modal damping 

ratios. 

 

 

 
(a) 

 
(b) 

Fig. 9 Baseline boundary conditions (a) KZ and (b) RY 
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4.1.2 Updating [C] (Step 2) 
Identification of the damping matrix was performed via changes on the modal damping ratios 

while keeping [K] and [M] constant. In this step, minimization of the differences between the 

analytical and experimental FRFs was performed at selected resonant frequencies. As it was 

observed in Table 1, modes 7, 8 and 9 were not identified from the experimental FRFs due to the 

spatial resolution of the accelerometers and therefore the number of unknown modal damping 

ratios was set to 9. 

Fig. 10(a) shows the updated and experimental FRFs that agree reasonably well in the 

frequency range [10–110] Hz. Initial and updated modal damping ratios are presented in Table 3, 

with initial values assumed as 0.15%. The maximum difference in modal damping ratios was 

340.1% and corresponds to ζ12. 

 

 

 

Fig. 10 Experimental and updated FRFs after Step 1 and 2 

 

 
Table 3 Initial and Baseline (Healthy) modal damping ratios from Step 2 

Damping ratio ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12 

Initial (%) 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Baseline (%) 0.511 0.524 0.502 0.457 0.361 0.221 0.150 0.150 0.150 0.145 0.149 0.660 

Change (%) 240.8 249.3 234.9 204.6 140.6 47.0 0.0 0.0 0.0 -3.2 -0.7 340.1 
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Fig. 11 Diagonal FDAC values for the baseline model and impact load at node 9 
 

 

In this research, the quality of fit between experimental and predicted measurements was 

evaluated using the Frequency Domain Assurance Criterion (FDAC) (Pascual et al. 1996). For an 

impact location I the correlation between experimental FRFs {qa} and analytically predicted FRFs 

{qp} is calculated based upon Eq. (17) 
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where Ωe is the frequency at which {qa} was measured experimentally and Ωp is the frequency at 

which {qp} was calculated from the FEM. Eq. (17) was evaluated for different frequency points, 

including those at resonance. FDAC values in the diagonal are presented in Fig. 11 where 1 

indicates a perfect correlation. It is concluded that there exists a good agreement between both sets 

of FRFs, with FDAC values greater than 0.97. Similar plots were obtained for the other impact 

locations. 

 

4.2 Damage detection 
 

As mentioned before, extending this model updating method for damage detection is one of the 

unique contributions of this article. For validation purposes, structural damage was induced on the 

test structure by restraining two corner joints as indicated in Fig. 4. A new set of experimentally 

obtained FRFs (Fig. 12) was collected on the damaged configuration and the updating process will 

be repeated in order to achieve a Level 3 of damage identification (localization and quantification).  

In order to be consistent with a real condition assessment scenario, the strategy for selecting the 

unknown parameters in the optimization should reflect the inability of a bridge inspector to 

identify damage location in advance. This “blind” strategy would suggest keeping the same 

unknown parameters used for baseline model generation. However, based on engineering 

judgment and previous research (Li et al. 2011) damage mostly affects the structure’s stiffness and 

the mass can be excluded from model updating. This reduces the unknown frame parameters to six 

groups of girders’ stiffness αK. 
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Fig. 12 Baseline and damaged FRFs 
 

 

The difference between updated parameters from the baseline and the subsequent damage state 

revealed the location and extent of damage. Constraints on the optimization ensure that the frames’ 

stiffness values αK cannot increase from the undamaged model or decrease below zero. Finally, the 

upper bound for the translational stiffness KZ is the initial value 2 x 10
5
 kN/m as this represents 

fixity against vertical movement, as explained in explained in Section 3. 

 

4.2.1 Updating [K] (Step 1) 
Selection of frequency points follows the same guidelines introduced in Section 4.1.1. Final 

parameter estimates are presented in Table 4 with predicted αK values very similar to those from 

the baseline model with a maximum difference of -4.3%.This is consistent with the actual damage 

scenario as girders did not sustain any damage. As far as boundary conditions concerned, updated 

translational stiffness in all joints remained in their healthy condition (Fig. 13(a)) as well as the 

rotational stiffness in joints 1 and 4 (Fig. 13(b)). 

However, even though joint 8 sought an increase of 482% in stiffness this is not indicative of 

damage as the value of RY for group S8 remains very close to a pinned connection (Fig. 13(b)). 

Likewise, joint 11 sought an increase from 18.7 kN∙m/rad to 42.51 kN∙m/rad, which corresponds 

to a partially restrained joint but the value is still closer to pinned than it is to a fixed joint. 

Regardless of this “false positive”, the algorithm was able to clearly identify the actual location of 

damage in S7 and S14, as shown in Fig. 13(b). This plot revealed that the resulting RY values 

increased to reflect a fixed condition with a change of 697 % and 29393 % respectively. Such 

increase in stiffness is within the expected values for a fixed connection, therefore there is a 

high-confidence in the validity and uniqueness of the updated parameters. Finally, updated and 

damaged FRFs are shown in Fig. 14. 

 

4.2.2 Updating [C] (Step 2) 
For the sake of completeness, model updating is concluded by calibrating the FRFs amplitudes 

at resonance, even though this step is not critical and do not provide any additional information 

that can be related to damage in the structure. Fig. 14 shows the updated and damaged FRFs for 
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Step 2. Again, the FRFs agree reasonably well in the frequency range [10–110] Hz whereas 

updated modal damping ratios are presented in Table 5. Finally, FDAC values are plotted in Fig, 

15, which suggests a good agreement between both sets of FRFs with valued in the diagonal 

greater than 0.90. 

 

 
(a) 

 
(b) 

Fig. 9 Damaged boundary conditions (a) KZ and (b) RY 

 

 
Table 4 Updated values of stiffness and boundary conditions in the damaged conditions 

Frame multipliers αK  (unitless) Boundary Conditions  

Group Healthy Damaged 
Change 

(%) 

KZ (kN/m) RY (kN∙m/rad) 

Group Healthy Damaged 
Change 

(%) 

Healthy Damaged 
Change 

(%) 

F1 1.21 1.25 3.2 S1 200000 200000 0.0 1.00 1.00 0.0 

F2 1.22 1.17 -4.3 S4 200000 200000 0.0 23.69 4.31 -81.8 

F3 1.10 1.10 0.0 S7 200000 200000 0.0 42.03 334.94 697 

F4 1.11 1.10 -1.0 S8 200000 200000 0.0 1.00 5.82 482 

F5 1.15 1.15 0.3 S11 200000 200000 0.0 18.70 42.51 127 

F6 1.15 1.17 1.4 S14 200000 200000 0.0 1.00 294.93 29393 
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Fig. 14 Updated Baseline and damaged FRFs after Steps 1 and 2 

 

 

 

 

Fig. 15 Diagonal FDAC values for the damaged model for impact load at node 9 
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Table 5 Updated modal damping ratios from Step 2 from both GS–1 and GS–2 

Damping ratio ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10 ζ11 ζ12 

Healthy 0.511 0.524 0.502 0.457 0.361 0.221 0.150 0.150 0.150 0.145 0.149 0.660 

Updated 0.618 0.601 0.765 0.531 0.348 0.527 0.150 0.150 0.150 0.175 0.154 0.805 

Change (%) 20.8 14.8 52.3 16.1 -3.5 138.9 0.0 0.0 0.0 20.6 3.2 21.9 

 

 

 

5. Conclusions 
 

This article presented a FRF–based algorithm for damage localization and quantification using 

experimentally collected data from the UCF–Benchmark Structure. The technique uses model 

updating to perform damage identification in two basic stages: First the initial FEM was updated 

via changes in stiffness, mass and damping parameters so that it captures the measured dynamic 

behavior in its undamaged state (i.e., baseline model).  

Then the updating process was repeated using the data collected from the damaged structure 

with damage introduced by using oversized bolts at two corner joints. The difference between 

updated parameters from the baseline and the subsequent damage state was used to locate and 

quantify damage. This algorithm can be used as a complement to the current visual inspection 

protocols in order to improve the damage diagnosis in properly instrumented bridges. In addition, 

these updated models can be utilized for maintenance, retrofit as a result of the changed state of 

the bridge, which is objectively captured using measurements and also reflected in the updated 

models. 

Baseline model updating is performed using a two–step procedure where stiffness and mass are 

calibrated in the first step and followed by damping identification. However, for damage detection 

purposes only stiffness and damping are updated as damage is not expected to affect [M]. 

Selection of frequency points for updating is critical to ensure convergence and it is basically 

dependent on the updating step. For Step 1, frequency points should be located away from 

resonance, antiresonance and noisy areas on the experimentally measured FRFs whereas Step 2 

requires points at resonance where modal damping parameters produce significant changes in the 

response. However, the frequency selection protocol is still dependent on the analyst’s criterion 

which somehow makes the protocol subjective. For future research, a more automated protocol 

could be investigated in order to minimize the analyst’s input. 

The grouping strategy evaluated in this article consisted of six groups of frames and six groups 

of boundary conditions. The algorithm clearly identified the correct location of damage in a blind 

“scenario” by predicting an increase in rotational stiffness RY at the restrained joints with respect 

to the baseline or healthy values. Selection of parameters that produce significant changes in the 

measured FRFs is crucial for successful identification. Other important aspects include an 

appropriate grouping strategy of the unknown parameters and selection of constrains to ensure 

physically meaningful results.  
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