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Abstract.  Corrosion of prestressed concrete structures is one of the main challenges that engineers face 
today. In response to this national need, this paper presents the results of a long-term project that aims at 
developing a structural health monitoring (SHM) technology for the nondestructive evaluation of prestressed 
structures. In this paper, the use of permanently installed low profile piezoelectric transducers (PZT) is 
proposed in order to record the acoustic emissions (AE) along the length of the strand. The results of an 
accelerated corrosion test are presented and k-means clustering is applied via principal component analysis 
(PCA) of AE features to provide an accurate diagnosis of the strand health. The proposed approach shows 
good correlation between acoustic emissions features and strand failure. Moreover, a clustering technique for 
the identification of false alarms is proposed. 
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1. Introduction 
 

Prestressed concrete (PC) is widely used for applications ranging from commercial buildings 

and bridges, to pressure vessels, tanks and containment vessels for nuclear power plants. Due to 

the increasing use of PC and the large number of PC structures in the US inventory, the corrosion 

of the steel strands is a concern for designers, owners and regulators. Indeed, the integrity of these 

structures could be seriously compromised by the strand failure due to corrosion (Naito et al. 

2010). Extensive inspection and maintenance/repair programs have been established in the last few 

years, with attendant direct manpower, materials costs and significant indirect costs due to traffic 

and related business interruption.  

Evaluation of strands in PC structures is challenging. Their general inaccessibility makes 
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evaluation difficult, costly and often inconclusive. Visual inspection is the simplest, oldest and 

most common form of evaluation. However there may be no outward signs that the strand has 

broken (Salamone et al. 2012). Several nondestructive evaluation (NDE) techniques for evaluating 

the condition of strands have been developed to address these issues in the past few years. 

Electrochemical methods, such as half-cell potential have been used to help understand the 

corrosion state within a concrete structure (ASTM 2009); however these methods can be highly 

affected by external conditions, leading to erroneous judgments (Li et al. 1998) and requiring long 

operations and deployment of specialized personnel (Mangual et al. 2013). In addition, they have 

been validated in reinforced concrete elements rather than for PC structures (Andrade et al. 2004, 

Choi et al. 2008, Elsener et al. 2003). Techniques based on guided ultrasonic waves (GUWs) have 

been used to monitor the evolution of the corrosion deterioration in reinforced mortar specimens 

(Ervin et al. 2009) as well as in post-tensioned systems. 

The results presented in this paper are part of a long-term project that aims at developing a 

structural health monitoring (SHM) technology for the nondestructive evaluation of PC structures. 

Overall it is proposed to use permanently installed low profile piezoelectric transducers (PZT) to 

receive acoustic emissions (AE) along the length of the strand. A statistical approach based on 

Principal Component Analysis (PCA) and K-means clustering is proposed to detect the onset of 

failure of the strand during an accelerated corrosion test. Some considerations on the capability of 

the proposed approach are also reported in order to underline some possible future developments. 

The paper is organized as follows. A brief introduction to the AE technique and the proposed 

statistical approach (i.e., PCA and k-means) is given in the next section. Then, the experimental 

setup of the accelerated corrosion test is described, followed by the results. Finally conclusions are 

provided. 

 

 

2. Background 
  

2.1 Acoustic emission 
 

The Acoustic Emission (AE) method is a nondestructive technique based on propagation of 

stress waves generated by sudden strain relief, such as cracking in structural materials. Acoustic 

emissions are elastic transient waves that can be detected by one or more piezoelectric sensors. 

The signals are preamplified, recorded, filtered, and representative features are extracted. Data 

analysis approaches are usually based on AE features and they are called parametric methods. In 

the following a brief summary of the main parameters of AE is reported. 

The AE parameters can be divided in two categories: hit-driven and time-driven data. The 

hit-driven parameters are evaluated for each AE hit, i.e. for each signal voltage exceeding a 

pre-defined threshold (dash-dot line in Fig. 1). The most common features are illustrated in Fig. 1 

and summarized in Table 1. On the contrary, the time-driven data are evaluated by recording the 

signal at a constant rate for intervals of pre-determined length, independent of any threshold 

setting (Table 1). These parameters are very useful since they represent a continuous AE signal, 

independent of threshold. 

The AE method was first introduced in the early 90
th
 as a monitoring technique for the 

corrosion detection in structural materials (Li et al. 1998, Mazille et al. 1995). Mazille et al. (1995) 

investigated the AE technique for the corrosion in austenitic steel, finding a good correlation 

between the AE activity (number of events) and the pitting corrosion damage. Moreover, the 
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authors presented the specific values of some main AE features, representing a first reference on 

the characteristics of these emissions. Li et al. (1998) reported the results of a systematic study on 

feasibility of AE in detecting rebar corrosion in either HCl solution or in concrete. Concerning the 

performed tests on single steel bars, all the experiments demonstrated that the AE activities have a 

high correlation with the corrosion process and rate in the rebar. According to these works on the 

corrosion of single steel reinforcing elements, AE is expected to be a plausible technique for 

corrosion damage detection. In the following years several studies were conducted to investigate 

this technique at the aim of evaluating the damage characteristics (Farhidzadeh et al. 2013b, Ohno 

and Ohtsu 2010) and the damage location (Niri et al. 2013).  

Concerning PC elements, several studies were recently developed. Mangual et al. (2013) 

examined a series of PC elements under accelerated corrosion tests up to the pitting damage in the 

steel strands. The capability of AE in detecting the corrosion damage was demonstrated; however, 

the definition of the damage was highly dependent on other monitoring systems. In this work, the 

authors also proposed a method for the corrosion damage localization as a very interesting damage 

assessment tool that should be improved in order to evaluate its efficiency in terms of quantitative 

identification criteria. Elfergani et al. (2013) studied the Acoustic Emission (AE) technique in 

order to detect and locate the early stages of corrosion in PC elements. The authors demonstrated 

the capability of AEs in both identifying macro-cracks and crack propagation and classifying 

different crack types (i.e., shear and tensile cracks). Acoustic emission was also used to detect the 

onset of corrosion as well as the different levels of corrosion, as reported in ElBatanouny et al. 

(2014b). 

In the past few years, the AE technique was investigated as a SHM system; however, 

unanswered questions have been posed regarding their reliability and accuracy. The inherent 

uncertainty in AE measurements, caused, for instance, by the presence of noise due to vibration, 

fretting, electromagnetic interference may hamper their reliability in terms of automatic damage 

detection. In many cases, traditional signal processing techniques, such as filtering and spectrum 

analysis, are insufficient to discriminate the events of interest, that is, those due to crack growth or 

imminent failure, from noise of various natures in a large dataset; therefore new alternatives have 

to be explored (Behnia et al. 2014). In many cases, hence, the noise is not identified by specific 

features values, such as a range of frequency, as it can happen in more common filters used in 

earthquake engineering applications (i.e., acceleration signals). Therefore, the definition of a 

unique and specific filtering criterion cannot be easily defined.  

 

2.2 Principal component analysis 
 

Principal Component Analysis (PCA) is a multivariate statistical procedure that transforms a set 

of correlated parameters in a set of new linearly uncorrelated variables, called principal 

components. The input vector X is a p-n dimension vector, where n is the dimension of the 

observations (number of samples) and p the number of variables. By performing a linear 

transformation, a new k-dimensional vector Z is defined as 

1 1

n n

PCA

X

X Z

Z

   
   
  

   
      

            (1) 
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Fig. 1 Main features of the AE waveform 

 
 
 
Table 1 Main features of the AE waveform (Physical Acoustics 2009) 

Typology Feature Description 

Hit-driven 

Energy 
Integral of the rectified voltage signal over the duration of the AE hit, e.g. 

the voltage-time units 

Average 

Frequency 

Average frequency on the entire hit. It is evaluated as the ratio between the 

AE counts and the duration 

Signal 

Strength 

(SS) 

Integral of the rectified voltage signal over the duration of the AE waveform 

RA Ratio between rise time and peak amplitude 

Time-driven 

Absolute 

Energy 

(AbE) 

True energy measure of the AE hit. It is derived as the integral of the 

squared voltage signal divided by the reference. resistance over the duration 

of the AE waveform packet  

RMS 
Root Mean Square is a measure of the variation of the AE activity along the 

time. It is defined as the rectified, time averaged AE signal. 

ASL 
Average Signal Level is a measure of the variation and averaged amplitude 

of the AE signal. 

 

Duration

Rise Time

Peak

Amplitude
Threshold

First Threshold 

Crossing

Counts

Energy
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If [x1j, x2j, x3j, …, xpj,] is the input values of the j-th sample, the element zkj is the k-th principal 

component at the j-th sample, evaluated as 

1

p

kj kh hj

h

z x


                    (2) 

The coefficient 𝛽𝑘ℎ in (2) are defined in such a way that the first combination (first principal 

component) has the maximum variance among the other infinite linear combination of the data set. 

The number of principal components is equal to the number of original variables in the vector 

X. However, the study of the first few components can take into account the most of variability in 

the data; as a consequence, it is possible to develop a deeper understanding of the investigated 

phenomenon by examining a reduced number of data; this procedure would not induce a reduction 

of the information from the raw data. 

In this paper, the PCA was used to determine correlation interdependencies between AE 

features and corrosion damage in the steel strand. PCA has been generally used as a clustering 

method for investigation of AE features. For example, the characteristics of reduced data vector 

was adapted to detect damage phases under corrosion attacks (Manson et al. 2001). It is worth 

mentioning that the results of a PCA are highly dependent on the input features. The selection of 

representative features depends on the type of damage, applied load and type of material (Degala 

et al. 2009). 

 

2.3 K-means clustering 
 

K-means clustering method is a widely used data clustering technique for unsupervised learning 

tasks (Godin et al. 2005, Godin et al. 2004). This technique aims at dividing a n-dimension data 

set X into k clusters by minimizing a clustering criterion. In this study the adopted clustering 

criterion is the Euclidean distance (Likas et al. 2003), defined as 

   
2

1 2

1 1

, ,...,
N k

k i j i j

i j

E m m m I x C x m
 

         (3) 

In Eq. (3) mj is the centroid of j-th cluster, Cj; and I(Y) is equal to 1 if Y is true and 0 otherwise. 

The minimization of the criterion is an iterative procedure, consisting of the following steps. 

1. Definition of arbitrary centroids of the k clusters. 

2. Identification of the cluster for each data xi in the input vector, in such a way that the data 

belongs to the cluster with the closest centroid (minimum value of the Euclidean 

distance). 

3. The centroids for k clusters are evaluated again as the mean of the cluster data. 

4. The procedure is repeated until the change in the clusters centroids is less than a certain 

threshold. 

The main disadvantage of the k-means algorithm is that the number of clusters, k, is not known 

a priori. Many criteria have been developed and in this study the proper value k of clusters is 

defined by means of the Davies-Bouldin (D-B) index (Davies and Bouldin 1979). This index is 

defined as 
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1

1
max

k
h i

ihi

e e
DB

k d

 
   

 
        (4) 

in which k is the number of the cluster, ei and eh are the distances between the data and the 

centroids of the classes i and h and dih is the distance between the centroids that identify clusters i 

and cluster h. According to the definition, the best index is the smallest one, since it correspond to 

clusters that are compact, and far from each other. 

In this paper, K-means clustering method allows a more rational study of PCA results. The 

adopted principal components should describe the damage stages and the K-means clustering 

method can allow individuating the different stages by defining different clusters of data. 

 

 

3. Experiments 
 

An accelerated corrosion test was carried out on a prestressed seven-wires strand (Fig. 2). Table 

2 summarizes the main properties of the tested strand. The test aimed at describing the behavior of 

a prestressed cable during its lifetime, i.e., under corrosion attack and under very large tensile 

loadings. 

A loading apparatus was designed in order to corrode the strand under axial tensile load. The 

apparatus consists of two I-shape rigid beams (web: 76.2 cm×7.6 cm×1.9 cm, flanges: 50.8 

cm×1.3 cm), located at the opposite sides of the tank and connected by two 28 mm all-thread steel 

bars. The strand passes through the middle of the I-beams and is tightened by the nuts and the 

anchorage, as shown in Fig. 3. The initial load applied to the strand was 89 kN (20 kips), while the 

actual load, recorded before the accelerated corrosion test, was 83 kN (18 kips). These load losses 

were mostly caused by the steel relaxation. 

 

 

 
 

Fig. 2 Seven-wires steel strand 

 

 
Table 2 Main characteristics of the steel strand 

Helicoidal wire diameter (dw) [mm (inches)] 5 (1.97) 

Core wire diameter (dc) [mm (inches)] 5.2 (2.05) 

Young modulus E  [GPa] 196 

Poisson’ ratio  [-] 0.29 

Yielding load [kN] 203 

Ultimate tensile strength  [MPa] 1860 

Linear weight  [kg/m] 1.10 
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Fig. 3 The loading apparatus for the corrosion test (Farhidzadeh and Salamone 2014) 

 

 

The accelerated corrosion test was performed by immersing the strand in a 3.5% sodium 

chloride solution (NaCl), and impressing a direct current by a power supply (Austin et al. 2004), 

as shown in Fig. 4 (Farhidzadeh and Salamone 2014). The test consisted of 13 steps that lasted 25 

days (see Table 3). For each step the following protocol was performed: 1) immersion of the 

specimen in the salt solution; 2) applying voltage; 3) washing with tap water, drying and cleaning 

the specimen. The applied voltage was 0.16 V until the 11
th
 step and doubled to 0.32 V until the 

test end. The deriving current started from 0.5 A and increased to about 1.5 A after doubling the 

potential. The three times higher value after the doubled voltage is justified by the decreased 

resistance due to the presence of the corroded particles in the salt water. The test was interrupted 

when three helicoidal wires failed. The core wire remained pristine. 

 

 

 

Fig. 4 Corrosion test with impressed current technique on a single steel strand in a salt solution 

(Farhidzadeh 2014) 
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Table 3 Testing time of the steps 

Step Start day End day 

1 Oct 3
rd

 Oct. 4
th

 

2 Oct. 4
th

 Oct. 6
th

 

3 Oct. 6
th

 Oct. 7
th

 

4 Oct. 7
th

 Oct. 8
th

 

5 Oct. 8
th

 Oct. 9
th

 

6 Oct. 9
th

 Oct. 10
th
 

7 Oct. 10
th
 Oct. 11

th
 

8 Oct. 11
th
 Oct. 14

th
 

9 Oct. 14
th
 Oct. 16

th
 

10 Oct. 16
th
 Oct. 18

th
 

11 Oct. 18
th
 Oct. 21

th
 

12 Oct. 22
nd

 Oct. 24
th
 

13 Oct. 25
th
 Oct. 27

th
 

 

 

 

Fig. 5 Installed PZT transducers (Farhidzadeh 2014) 
 

 

The strand was instrumented with two permanently attached PZT (Lead Zirconate Titanate) 

transducers to receive AE signals. The PZTs were attached on one of the helicoidal wires using 

epoxy glue along the length of the strand, as shown in Fig. 5. Specifically, one PZT (PZT-1) was 

installed close to the immersed part of the steel strand while the second one (PZT-2) was placed far 

from the tank, as shown in Fig. 3. Acoustic emissions data were recorded with an eight-channels 

data acquisition system (Physical Acoustic Corporation 2005), and a dedicated software for signal 

processing and storage (AEwin). Preamplifiers were set to 40 dB gain.  

 

 

4. Results 
 

During the test the corrosion damage on the strand was visually monitored. Fig. 6 shows the 

corrosion progression which includes an initial deterioration of the protective layer, a severe 
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cross-section reduction, and eventually the failure of three helicoidal wires (marked by white 

arrows). The failure of the wires was caused by the severe corrosion, which induced a loss of cross 

section of the wires. It is worth mentioning that, negligible damage was observed on the central 

wire. Fig. 7 shows the tensile load versus the time, expressed in terms of the experimental steps. 

The decrease of load was slow up to the 12
th
 step, wherein a drop to the value of 68 kN (15.29 kips) 

was recorded; at the end of the 12
th
 step the load decreased to 54.2 kN (12.18 kips). The first wire 

broke in the last testing step and the 2
nd

 and 3
rd

 wires simultaneously failed a few minutes later. 

Both the failures corresponded to two sudden drops in the load curve: 1) from 54.2kN (12.18 kips) 

to 46.2 kN (10.39 kips) and 2) from 44.8kN (10.07 kips) to 26.4kN (5.93 kips). The second load 

drop was almost twice the first one, demonstrating that each wire sustained almost equal load 

values. 

Before analyzing the AE data, a filtering process was performed in order to remove the possible 

noise contained in the raw data. In particular, all the AE data corresponding to some manual 

operations (i.e., drying and cleaning actions) on the specimen were removed. Other data were also 

removed since they had some peculiar features; e.g., they were isolated data with very large 

amplitude values, which do not correspond to any large variations in the load; or significant 

oscillations in the load values were recorded at those time instants. The initial filtering also 

removes: i) all the data with very low amplitude, i.e., very close (5%) to the mean threshold, and ii) 

data points with amplitudes smaller than the threshold.  

Moreover, the modified Swansong II filtering procedure (Association of American Railroads 

1999, ElBatanouny et al. 2014a) was applied (Table 4). 

One of the most common ways to infer damage conditions by using AE is by using cumulative 

plots of some features (see Table 1). In general, the onset of damage, such as cracking, corrosion, 

and failures, may be identified by sudden changes in the rate of these plots (Di Benedetti et al. 

2013, Farhidzadeh et al. 2013a) . 

Fig. 8 shows the cumulative RMS distribution versus time for PZT-1 and PZT-2. A number of 

sudden changes were observed on these curves. For instance, concerning the PZT-1 (black solid 

line in Fig. 8), two significant changes were observed between the 9
th
 and 10

th
 steps, along with a 

smaller one at the end of the test. By comparing these results with the damage progression shown 

in Fig. 6, it can be observed that the cumulative RMS cannot follow the damage deterioration in 

the strand. Therefore, if the monitoring system would be based on the reading of such a plot, some 

false alarms could occur. The same conclusion can be drawn by the PZT-2 data (gray solid line in 

Fig. 8).  

 

 

  

  

 
 

Fig. 6 Corrosion damage stages in the steel strand (Farhidzadeh and Salamone 2014) 
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Fig. 7 Load curve during the performed accelerated corrosion test (Farhidzadeh and Salamone 2014) 
 

 

 

Fig. 8 Cumulative RMS (blue solid curve) versus time (steps) during the corrosion test for PZT-1 (gray 

solid line) and PZT-2 (black solid line) 
 

 
Table 4 Adopted modified Swansong II filtering 

Amplitude  Duration 

[dB] [usec] 

< 60 - 

60-67 > 2000 

68-75 > 4000 

76-83 > 6000 

84-91 > 8000 

92-100 > 10000 
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(a) (b) 

  
(c) (d) 

Fig. 9 AE features for PZT-1: (a) counts, (b) duration, (c) rise time and (d) peak amplitude 

 

 

Fig. 9 shows some AE features, including, rise time, duration, peak amplitude and counts for 

PZT-1. It can be seen that, a significant AE activity was also recorded in correspondence of steps 

9
th
 and 10

th
, which can be considered as false alarms (no significant damage was observed by 

visual inspection).  

 

4.1 PCA application 
 

In order to select a set of AE features capable to identify changes in the strand health (e.g., wire 

failures), and reduce the number of false alarms, a PCA was applied. The AE features used to 

populate the vector X defined in Eq. (1), included: rise time, amplitude, duration, counts, RMS, 

energy, absolute energy (AbE), and RA-value. It should be mentioned that, all the features were 

normalized before the PCA because of their heterogeneous dimensions. A parametric study was 

carried out to identify a set of AE features capable to discriminate damage conditions (e.g., wire 

breakages) from the undamaged state. Fig. 10(a) shows the results of the PCA for the PZT-1 using 

three features as input variables, that is, amplitude, rise time and duration. Fig. 11 depicts the 

results of PCA when two more features (i.e., energy and counts) were addeded into the input 

vector X. These results are plotted in terms of the first two principal components because the sum 

of the variances of these two components (e.g., Fig. 10(b)) is quite large (>78%) and, hence, they 

are considered reasonably representative of the total variance of the data set. It can be observed 

that, the selected features do not allow distinguishing different data clusters. Similar results were 

obtained for PZT-2; however these results were not reported here for the sake of brevity. 
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(a) (b) 

Fig. 10 (a) PCA results for PZT-1 in the first two PCs plane. (b) PC variances (histogram) and sum of the 

variances (black dash line) 

 

 

  
(a) (b) 

Fig. 11 PCA results for PZT-1 in the first two PCs plane 

 

 

Fig. 12 shows the PCA results for PZT-1, using RMS, absolute energy (AbE), and RA-value, as 

input variables. Fig. 13 shows the results for the PZT-2. It can be observed that this set of features 

can clearly identify two distinct clusters (see Figs. 12(a) and 13(a)). In order to investigate the 

properties of these two clusters, the data within the Cluster 2 (red circle markers) were 

superimposed on the load curve (Fig. 7), as shown in Figs. 12(b) and 13(b). Interestedly, these data 

corresponded to AE signals recorded during the last step, that is, they were generated from the 

wires failure (load drops). The points of the Cluster 1 belong to all the other time instants of the 

experimental test; they cannot be correlated to any specific damage change in the strand. 

Furthermore, it was observed that the points of the Cluster 1 with the larger value of the 1
st
 

component (>20), were associated to the unwanted noisy AE data (false alarms); i.e. they belong to 

the hits in both the 9th and the 10th steps with the abrupt changes in the RMS values. According to 

this first evidence, the PCA allows identifying the failure moment of the wires from all the other 

data; on the contrary, the method does not allow identifying other damage levels during the strand 

deterioration. However, the layout of the no-failure data (values of the points in the Cluster 1) can 

be used to discriminate the noise in the raw data. 

 

 

-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

2
n

d
 P

C

1
st

 PC

Duration - Amplitude -Rise Time

1 2 3
0

20

40

60

80

100

Principal Component

V
a
ri

a
n

ce
 (

%
)

-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

2
n

d
 P

C

1
st

 PC

Duration - Amplitude

Rise Time - Energy

-30 -20 -10 0 10 20 30

-20

-10

0

10

20

30

2
n

d
 P

C

1
st

 PC

Duration - Amplitude

 Rise Time - Energy - Counts

350



 

 

 

 

 

 

Detection of onset of failure in prestressed strands by cluster analysis… 

  
(a) (b) 

Fig. 12 (a) PCA results for PZT-1 with RMS, absolute energy (AbE) and RA as input variables and (b) 

identification of the Cluster 2 (red circle markers) on the load curve (black solid line) 

 

 

  
(a) (b) 

Fig. 13 (a) PCA results for PZT-2 with RMS, absolute energy (AbE) and RA as input variables and (b) 

identification of the Cluster 2 (red circle markers) on the load curve (black solid line) 

 

4.2 K-means method 
 

Figs. 14(a), and 15(a) show the results of the k-means method applied to the first two principal 

components, for the PZT-1 and PZT-2. Three input parameters were used, that is, RMS, absolute 

energy and RA value. As expected, according to the D-B index (Eq. (4)) the best fit clusters 

number was equal to 3 (see Figs. 14(b) and 15(b)). Three clusters can be identified: 1) Cluster 1, 

that contains values distributed along the whole corrosion test (black circle markers); 2) Cluster 2, 

which mostly include data associated to the false alarms (noisy data, gray diamond markers); and  

3) Cluster 3 which corresponds to data generated to the wires breakages (red triangle markers). 

In this last part of the section, some cluster features are investigated in order to propose an 

automatic method for the characterization of the data in the identified clusters (i.e., noise or 

failure). The studied features are: the distance between the clusters centroids (cluster distance) and 

the distance between the points in a cluster and its centroid (error), evaluated according to Eq. (3).  

Fig. 16 shows the distance between the clusters centroids (cluster distance) and the distance 

between the points in a cluster and its centroid (error), evaluated according to Eq. (3), for PZT-1 

and PZT-2. The histograms heights represent the distance of the i-th cluster from the other two 

clusters (j-th clusters), then the error is plotted as a function of the number of clusters. The failure 

cluster (Cluster 3) had the smallest error value and the biggest centroids distances. On the contrary, 

Cluster 2 shown small values of distance from the “no-damage” cluster (Cluster 1) and it had the 

largest errors for both the PZTs. 
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(a) (b) 

Fig. 14 (a) PCA results for PZT-1 and clusters identification by means of the k-means method. The input 

parameters are: absolute energy, RMS and RA and (b) Davies-Bouldin index 

 

 

  
(a) (b) 

Fig. 15 (a) PCA results for PZT-2 and clusters identification by means of the k-means method. The input 

parameters are: absolute energy, RMS and RA and (b) Davies-Bouldin index 

 

  
(a) (b) 

Fig. 16 Centroid distances of the i-th cluster from the j-th clusters (histograms) and cluster errors (black 

line) for (a) PZT-1 and (b) PZT-2. 
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These evidences show that the study of the AE with the PCA and the k-means method could be 

also an efficient way to distinct the failure/damage cluster from the noise data during the 

monitoring of the element. Hence, during the AE monitoring the identified clusters could be 

analyzed in terms of both errors and cluster distances: if both the centroid distances of a cluster are 

larger than distance threshold and its error is lower than an error threshold, the procedure identifies 

the failure/damage achievement in the element and a health alarm occurs. It is worth to note that 

the described results are referred to the filtered AE records: some noise data have already been 

removed from the raw data in a preliminary phase (see Section 3.1). However, the proposed 

approach is still valid since the adopted filter (Swansong) can also be used during the real 

monitoring of structural elements. The approach should allow the identification of the other likely 

noise data, which cannot be easily removed and recognized by standard filtering methods. 

However, additional tests need to be conducted to verify the robustness of the proposed approach, 

for instance by means of non-accelerated corrosion test.  

 

 

5. Conclusions 
 

This paper presented the results of an accelerated corrosion test on a seven-wire steel strand 

under a constant tensile force. The strand was instrumented with two permanently attached PZT 

transducers to receive AE signals. The PZTs were attached on one of the helicoidal wires using 

epoxy glue along the length of the strand. The strand experienced significant corrosion damage, 

that is cross-section loss and eventually wire breakages. A preliminary study on traditional AE 

features was performed, and it was observed that although these features were able to identify the 

failure of the strand, a number of false alarms were triggered. In order to find a more reliable and 

efficient way to correlate the AE data to the corrosion damage, and reduce the number of false 

alarms, the k-means method was applied via PCA of AE features. It was shown that the capability 

of the PCA method is highly affected by the input variables. If time-driven parameters (Absolute 

energy or RMS) and low-noise sensitive features (RA values) are used, the method gives a very 

good correlation between the failure and the AE clusters. On the contrary, if very noise sensitive 

parameters (e.g., counts, rise time) are used, the PCA does not allow defining any correlation 

between the data and the damage in the material. Moreover, this study shows that the noise data 

could be identified by studying some features of the clusters, defined by the PCA and the k-means 

method. However, additional tests need to be conducted in order to verify the robustness of the 

proposed approach, for instance by means of non-accelerated corrosion test. 
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