
 

 

 

 

 

 

 

Ocean Systems Engineering, Vol. 9, No. 2 (2019) 111-133 

DOI: https:// doi.org/10.12989/ose.2019.9.2.111                                                   111 

Copyright ©  2019 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=ose&subpage=7        ISSN: 2093-6702 (Print), 2093-677X (Online) 
 
 

 

 
 
 
 

Optimization of a horizontal axis marine current turbine via 
surrogate models 

 

Karthikeyan Thandayutham1, E.J. Avital2,  

Nithya Venkatesan3 and Abdus Samad
1 

 
1
Wave Energy and Fluids Engineering Laboratory (WEFEL), 

Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, India 
2
School of Engineering and Material Science, Queen Mary University of London, London, U.K. 

3
School of Electrical Engineering, VIT University, Chennai, India 

 
(Received December 12, 2018, Revised May 7, 2019, Accepted May 10, 2019) 

 
Abstract.  Flow through a scaled horizontal axis marine current turbine was numerically simulated after 
validation and the turbine design was optimized. The computational fluid dynamics (CFD) code Ansys-CFX 
16.1 for numerical modeling, an in-house blade element momentum (BEM) code for analytical modeling 
and an in-house surrogate-based optimization (SBO) code were used to find an optimal turbine design. The 
blade-pitch angle (θ) and the number of rotor blades (NR) were taken as design variables. A single objective 
optimization approach was utilized in the present work. The defined objective function was the turbine’s 
power coefficient (CP). A 3x3 full-factorial sampling technique was used to define the sample space. This 
sampling technique gave different turbine designs, which were further evaluated for the objective function 
by solving the Reynolds-Averaged Navier–Stokes equations (RANS). Finally, the SBO technique with 
search algorithm produced an optimal design. It is found that the optimal design has improved the objective 
function by 26.5%. This article presents the solution approach, analysis of the turbine flow field and the 
predictability of various surrogate based techniques. 
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1. Introduction 
 

Marine current energy began to draw global attention during the 1970s. Marine current turbine 

(MCT) have several design variations to harvest such energy (Bahaj and Myers 2003) and 

classification is shown in Fig. 1. An axial flow MCT results in higher power coefficient (CP) owing 

to the fact that each and every blade contribute to the power output. However, MCT needs design 

optimization studies to improve overall performance. Early stage experiments were conducted for 

a 0.8 m MCT and performance characteristics were captured (Myers and Bahaj 2007). Numerical 

and experimental investigations to design a hydro spinnal turbine resulted low CP values (Rosli et 

al. 2016). According to the Betz limit, the maximum value attainable by a turbine is CP=0.593, 

while a modified MCT design fixed in a waterway can cross Betz limit (Vennell 2013). 
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RANS equations were solved for an actuator disk kept in water as a preliminary analysis 

(Nishino and Willden 2012). A 0.4 m horizontal axis MCT was numerically studied to predict the 

performance and identify the effects of cavitation (Bal et al. 2015). The change in number of rotor 

blades (NR) and blade-pitch angle (θ) alters the lift-to-drag ratio. A notable reduction in overall 

drag can be seen while incorporating positive blade-pitch angle and fewer number of blades (Amet 

et al. 2009). Blade twist angle (ß) in MCT leads to effortless self-starting which is advantageous in 

using twisted blades. It is also found that modifications in NR and θ have increased the turbine’s 

CP (Chini et al. 2011). Blockage ratio, solidity, and chord length were also considered to improve 

the performance (Priegue and Stoesser 2016, Schluntz and Willden 2015, Subhra Mukherji et al. 

2011). Table 1 highlights different parameters, turbine diameter, methods chosen and performance 

achieved by various authors 

There are several optimization approaches and in many cases surrogates assists in reducing 

computational costs. Table 2 shows various authors using different parameter and methods to 

improve the objective functions. A single surrogate may not predict an efficient optimal point 

using the optimizer and thus different surrogates are considered. The efficiency of the surrogates 

depends on the nature of the problem. Thus the applicability of the surrogates needs to be 

evaluated for individual problem (Samad et al. 2008). 

The current work deals with the selection of parameters (NR & θ) and the MCT optimization 

through various surrogate methods. Methodologies like BEM and CFD analysis incorporated with 

surrogate techniques are also presented. The performance and fluid flow behavior are discussed. 

 

 
Table 1 Parametric study of horizontal axis MCT 

Authors Turbine Parameter Method/Model Performance 

(Bahaj et al. 2007) D=0.8 m, NR=3 θ Lab test CP = 0.45 

(Batten et al. 2007) D=0.8 m, NR=3 θ BEM CP = 0.45 

(Liu et al. 2017) D=1 m, NR=3 
ß & nacelle 

shape 

BEM & CFD - 

Realizable k-𝜀 

Thrust increased 

by 7.8% 

(Barber 2017) D=20 m, NR=2 θ BEM CP = 0.48 

(Zhu et al. 2017) D=0.8 m, NR=3 θ & winglet 
CFD – Spalart 

Allmaras 
CP = 0.51 

(Ren et al. 2017) D=0.8 m, NR=3 Winglet CFD - k-ω SST CP = 0.425 

(Wei et al. 2015) 
D=20 m, 

NR=3&5 
θ & Da Lab test & BEM CP = 0.44 

(Schleicher et al. 2015) D=0.53 m NR CFD - k-ω SST CP = 0.43 

(Tian et al. 2016b) D=3 m, NR=3 Yaw angle CFD - k-ω SST CP = 0.46 

(Goundar et al. 2012) D=10 m, NR=3 θ & NR Lab test CP = 0.47 

(Morris et al. 2016) D=10 m, NR=3 NR CFD - k-ω SST CP = 0.46 
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Table 2 Study on MCT optimization 

Author Parameter Method Objective 
Performance 

 

(Kolekar and Banerjee 

2013) 
c & β GA Maximize CP CP increased by 17% 

(Coiro et al. 2016) θ & diffuser GA Maximize CP CP increased by 6.1% 

(Huang and Kanemoto 

2015) 
θ & NR 

GA 

 

Maximize CP 

 
CP = 0.425 

(Zhu et al. 2012) θ 
NSGA II 

 

Maximize CP, 

Maximize CT 
CP = 0.34 

(Tahani et al. 2015) c & β GA Maximize CP CP = 0.486 

 

 

 

 

Fig. 1 Current turbine classification 

 

 

2. Numerical methodology 
 

A three-blade horizontal axis MCT with pitch angle θ=25
o
 was numerically simulated using 

CFD and BEM codes. The tip diameter and hub diameter are 0.8 and 0.1 m respectively. Rotor 

blades are formed from 63-812, 63-815, 63-818, 63-821 and 638-24 NACA profiles series for 17 

stations along the blade (Batten et al. 2007, Blackmore et al. 2016) which is given in Table 3. 

 

2.1 Blade element momentum theory 
 

The BEM method used for the current study is taken from the work of Glauert (Hansen 2015) 

and coded in FORTRAN. The rotor is modeled as an infinitesimally thin porous disk having a 

continuous velocity. Both velocity and pressure are taken as radially dependent but not 

azimuthally-dependent in the steady BEM approach. The rotational effect of the blades is modeled 

through tangential and axial induction factors (𝑎′, 𝑎) 

𝑢(𝑟) = 𝑈𝑇[1 − 𝑎(𝑟)] , 𝑣 = 𝛺𝑟 [1 + 𝑎(𝑟)′]          (1) 
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Table 3 Turbine blade profile data 

 

 

where, u denotes axial velocity and v is the tangential velocity at the disk. The disk is divided to 

radial rings where arguments based on the integral continuity and momentum equations find the 

thrust and torque. The thrust denotes the axial force acting in the direction of the incoming flow. 

The BEM method also finds the thrust and torque that acts on the blade radial elements, assuming 

to know the angle of attack variations with the profile’s CL and CD. Thrust and torque expressions 

from the momentum and blade element methods are the same and provides non-linear equations 

for a and 𝑎′ for each of the radial elements. The equations are solved using a linear iterative 

solver. Once a and 𝑎′ are known, the torque and the thrust for each radial element is calculated 

and then radially integrated to yield the overall thrust and power. Prandtl’s and Goldstein’s tip and 

hub loss factors have also been incorporated. At a post-stall condition, the CL and CD were 

calculated using the empirical relations of Viterna and Janetzke (Moriarty and Hansen 2005). 

Snel's model was used to account for the delay effect of the rotation on the stall. The code used in 

this study has already been successfully used in its steady and unsteady versions for MCT (Ai et al. 

2016). 

 

2.2 Computational fluid dynamics 
  

A 3D periodic single blade passage CAD model (Fig. 2) was implemented to reduce the CFD 

simulation time (Karthikeyan et al. 2017). The periodic domain had refined mesh near the blade 

and hub. The periodic boundary surfaces measures 120
o
 for the turbine with 3 blades (NR=3). 

Similarly, the angles were 180
o
 and 90

o
 for NR=2 and 4, respectively. To resolve the strong 

r/R R c/R θ t/c 

0.20 0.08 0.1250 15.0 24.0 

0.25 0.10 0.1203 12.1 22.5 

0.30 0.12 0.1156 9.5 20.7 

0.35 0.14 0.1109 7.6 19.5 

0.40 0.16 0.1063 6.1 18.7 

0.45 0.18 0.1016 4.9 18.1 

0.50 0.20 0.0969 3.9 17.6 

0.55 0.22 0.0922 3.1 17.1 

0.60 0.24 0.0875 2.4 16.6 

0.65 0.26 0.0828 1.9 16.1 

0.70 0.28 0.0781 1.5 15.6 

0.75 0.30 0.0734 1.2 15.1 

0.80 0.32 0.0688 0.9 14.6 

0.85 0.34 0.0641 0.6 14.1 

0.90 0.36 0.0594 0.4 13.6 

0.95 0.38 0.0547 0.2 13.1 

1.00 0.40 0.0500 0 12.6 
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transverse gradients within the boundary layer, 18 inflated prism layers with unstructured 

tetrahedron mesh were created (Fig. 3). The cell growth ratio was maintained at 1.1 throughout the 

boundary layer thickness to minimize numerical diffusions. The RANS equations represent the 

time-averaged continuity and momentum equations that govern the fluid flow. For a steady 

incompressible flow, the equations are 

𝛻 ∙ 𝑢𝑖 = 0          (2) 

𝜌
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) =

𝜕

𝜕𝑥𝑗
[−𝑝𝛿𝑖𝑗 + 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] + 𝜌

𝜕

𝜕𝑥𝑗
(−𝑢𝑖

′𝑢𝑗
′)          (3) 

The grid independent test (Fig. 4) shows that the difference in CP values between 10 million 

and 13 million tetrahedrons was insignificant. Hence 10 million tetrahedron elements were chosen 

for further simulations. RANS equation with k-ω SST turbulence closure model (Menter 1994) is 

chosen and y
+
 =~ 1 was maintained. 

 

 

 

Fig. 2 Fluid domain extraction 

 

 

 

Fig. 3 Mesh with inflated prism layers 
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Fig. 4 Grid independent study 

 

 
Table 4 Boundary conditions 

Parameter Description 

Fluid flow domain Single blade 

Number of elements 10 million 

Mesh type Hybrid 

Fluid medium Water 

Turbulence model K-ω SST 

Inlet condition Velocity inlet 

Outlet condition Pressure outlet 

Residual convergence value 1x10
-5

 

Mass imbalance 0.00001 

 

 

The high-resolution advection scheme was used for better accuracy. Table 4 has the details about 

boundary conditions, convergence criterion for the velocity and pressure components and mass 

imbalance. IBM iDataPlex dx360 M4 high-performance computing (Virgo) facility, which is 

available at Indian Institute of Technology Madras, was used for simulation. A single simulation 

takes around 50 hours. The performance of the MCT is governed by the tip speed ratio (TSR) (Bai 

et al. 2014) and the performance is identified by the CP. 

Tip speed ratio:    TSR =
𝛺𝑅

𝑈𝑇
               (4) 

Power coefficient:  𝑐𝑃 =  
𝑄𝛺

0.5𝜌𝜋𝑅2𝑈𝑇
3          (5) 
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3. Numerical optimization 
 

The initial optimization process involves selecting design variables, objective function and 

setting the design space. Later, it involves identifying the sample points and solving in CFD to find 

the optimal point (Fig. 5). The two variables, the objective function (CP) were selected and a 

three-level full-factorial sampling scheme was utilized. This sampling scheme gave 9 different 

design points containing all possible combinations which were used for CFD analysis. The results 

from the CFD code were fed as input data for the surrogate models to predict the optimal design. 

The problem dependent surrogates cannot generate the initial data and depend on high fidelity 

CFD results. 

 

 

 

Fig. 5 Methodology for optimization 

 

 
Table 5 Design space for optimization 

Variable Lower Upper 

θ 15
o
 25

o
 

NR 2 4 

 

 
Table 6 Design points 

S.N θ NR 

1 15
o
 2 

2 15
o
 3 

3 15
o
 4 

4 20
o
 2 

5 20
o
 3 

6 20
o
 4 

7 25
o
 2 

8 25
o
 3 

9 25
o
 4 
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Multiple surrogates produce different optimal points using the same set of initial data 

(Badhurshah and Samad 2015). This finds a better alternative and increases the robustness of 

surrogates. Finally, a search algorithm identifies optimal points from the surrogates (Koo et al. 

2014). 

The upper, lower limit for variable 1 (θ) was chosen and found to be that θ>25
o
 or <15

o
 is 

inefficient (Bahaj et al. 2007). The design space and design points are shown in Tables 5 and 6. 

 

3.1 Response surface approximation model (RSA) 
 

It is an assortment of a mathematical and statistical approach to build an empirical model 

(Ezhilsabareesh et al. 2018). It has been used in the field of turbomachinery optimzation to fit the 

objective function using minimal sample points. Response surface approximation (RSA) model 

evaluates the response using a second order polynomial fit and the same is expressed as 

𝐹 =  𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑛
𝑗=1 + ∑ 𝛽𝑗𝑗𝑋𝑗

2𝑛
𝑗=1 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑛
𝑗>𝑖𝑖           (6) 

Here, 𝑋′𝑠 and n denotes design variables and number of design variables. 𝛽′𝑠 are the regression 

coefficients obtained by least square regression.  

 
3.2 Radial basis function (RBF) 

 
It performs a nonlinear transformation of input vectors using a Gaussian function (ψ) as an 

activation function. It has a linear output layer with hidden and output layer (Gong et al. 2016). A 

real-valued function produce for each input vectors, and radial basis neurons are fed to the linear 

output layer to produce the output(Ezhilsabareesh et al. 2018, Samad et al. 2008). X is design point, 

t represents sample point, 𝑤0 is weight coefficient and 𝑤𝑖 is the bias term. The approximation 

produced by RBF is expressed as 

𝑦(𝑥) = 𝑤0 + ∑ 𝑤𝑖𝜓(𝑋 − 𝑡)𝑁
𝑖=1            (7) 

 

3.3 Kriging model 

 
Kriging (KRG) is based on interpolation. KRG is defined as the sum of deviation and mean 

terms (Lee et al. 2016). The KRG model estimates the unknown function as a combination of two 

parts; a stable global model of design space g(x) for capturing large scale variation and small scale 

variations are captured by 𝑍(𝑥). KRG is a consolidation of global model and departures (Samad et 

al. 2008) of the following form 

𝑦(𝑥) = 𝑔(𝑥) + 𝑍(𝑥)       (8) 

The predicted residual error sum of squares (PRESS) is a form of cross-validation that provides 

a measure of fit. Weights are determined based on the error. The surrogates with high error 

contribute to low weight. In the present work, the global weights are chosen by PRESS or 

leave-one-out cross-validation, which is a global data-based measure of goodness. The weights are 

estimated and are calculated as 

𝑤𝑖 = 𝑤𝑖
∗/ ∑ 𝑤𝑖

∗
𝑖        (9) 
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𝐸𝑎𝑣𝑔 =
1

𝑁
∑ 𝐸𝑖

𝑁
𝑖=1          (10) 

𝑤𝑖
∗ = (𝐸𝑖/𝐸𝑎𝑣𝑔 + 𝛼)𝛾      (11) 

Ei and N are the errors from the PRESS and the number of surrogates. The parameter α=0.05 

and γ=-1 are determined analytically and reported (Goel et al. 2007). The same were used in the 

present work. Sequential quadratic programming (SQP) is the local search method which is 

incorporated to acquire optimal points. The SQP uses initial guess values to find an optimal point. 

 

 

4. Results and discussion 
 

A constant UT =1.54 m/s is used for simulations and the results are compared with experiments 

(Batten et al. 2007). The 2D BEM results have a closer value to the experimental data in Fig. 6.  

BEM is unable to introduce swirling action into the flow, thus the turbulence effects are neglected 

while predicting the CP (Batten et al. 2013, Turnock et al. 2011). The 3D effect of a finite number 

of blades and its rotational effects introduce complex flow which comprises fluid model separation, 

stall, blade tip vortex and all these cannot be predicted by the BEM. The BEM is based on 

numerical CL, CD and generally overestimates power extraction (Guo et al. 2015). Thus BEM 

results closely matches with the experiment. The CFD results include all the losses caused which 

reduce the CP values and follows a similar trend to experimental data. Moreover, several authors 

have proven that the CFD values fall below the experimental values while using RANS and 

commercial tools (Kinnas et al. 2012, Leroux et al. 2019; Rahimian et al. 2018, Tian et al. 2016a). 

The experimental uncertainties which were around 2% (Bahaj et al. 2007), could also lead to 

deviation between experimental and CFD results.  

The k-ω SST turbulence model performs better than the k-ε model with a deviation of 8.04%. 

The high-resolution advection scheme was used for better accuracy. The experimental and the 

CFD results produce CP(Peak)=0.375 and 0.346, respectively. 

 

 

 

Fig. 6 CFD and BEM Validation curve for TREF (θ=25º and NR=3) 
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Fig. 7 CFD curves for different θ and NR 

 

 

The turbine with NR=4 and θ=20
o
 has a CP(Peak)=0.351. While, NR=2 and θ=20

o
 gave 

CP(Peak)=0.454, which is a significant increase in CP(Peak). Fig. 7 shows that θ=20
o
 produces high CP 

for NR=2 to 4 at TSR=5.5. The turbine with NR=3 and θ=20
o
 has a CP(Peak)=0.43. The overall drag 

increases as NR increases (Delafin et al. 2016) and thus the turbine with NR=4 yields low CP. RBF 

gives a high PRESS and lower weight which is tabulated in Table 7. RSA and KRG gave low 

PRESS and high weights. 

 

 
Table 7 PRESS and weights 

Model PRESS Weights 

RBF 0.115 0.226 

RSA 0.046 0.389 

KRG 0.048 0.383 

 

 
Table 8 Design optimization results 

Model θ NR FSUR FCFD FERR 

RBF 17.48
 o
 2 0.630 0.542 0.139 

RSA 18.29
 o
 2 0.561 0.535 0.046 

KRG 19.47
 o
 2 0.566 0.543 0.042 

  
Table 9 BEM results 

θ NR CP(Peak) 

19.47
 o
 2 0.391 

19.47
 o
 3 0.401 

19.47
 o
 4 0.370 
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Table 8 shows the surrogates predicted objective function values. KRG yields CP=0.566, for 

NR=2 and θ=19.47
o
. KRG predicted design was simulated and it was found that the error in CP 

between the surrogate and CFD (FERR) is 0.042, which is the lowest of all the surrogates. The 

design point is fed into the BEM code to further evaluate the objective function. The CP(peak) for 

θ=19.47
o
 and NR=2 to 4 was evaluated using the BEM code. The BEM result from Table 9 

confirms that NR=4 has the lowest CP(Peak) which is similar to the CFD results. The performance 

between TREF and TOPT were compared for the complete working range in Fig. 8. The maximum 

CP value of TREF is close to TSR=5.5. The change in θ from 15
o
 to 30

o
 has been reported and the 

optimal TSR changes from 4.8 to 6 respectively (Bahaj et al. 2007). Even a small change in θ 

leads to change in CL values of the MCT. Also, the change in NR will lead to a shift in optimal 

TSR value and the working range of the MCT. The TOPT works effectively between TSR=5 to 8. 

Table 10 compares the power output that can be produced by the TREF and TOPT. TREF 

produced a Pout(peak)=343.84 W, whereas TOPT produced 497.85 W. However, the UT could 

typically vary from 0.5 to 2 m/s in real sea condition. Thus it is important for the TOPT to work 

effectively in this range. To examine the same, CFD simulations of TOPT were carried on for 

UT=0.5, 1 and 2 m/s. Fig. 9 compares the CP vs. TSR for UT=0.5, 1, 1.54 and 2 m/s. The CP 

achieved by UT=0.5 m/s is low for the complete working range due to its low corresponding torque. 

UT=2 m/s has achieved high CP values. However, there is minimal difference between UT=1.54 

and 2 m/s. This convinced that TOPT is optimal for the varying UT.  

The pressure coefficient (CPR) contours for the TREF and TOPT are compared in Fig. 10. The 

CPR on MCT blade varies from hub to tip. The gradual change on local θ from hub to tip causes a 

difference in pressure and alters the CL and CD characteristics. The CPR at the suction side (SS) is 

relatively lower near the tip of TOPT than TREF. It also states that the fluid velocity varies 

gradually from hub to tip in TOPT. 

 

 

Fig. 8 Comparison of TREF and TOPT 

 

 
Table 10 CFD results 

Design θ NR Pout(Peak) 

TREF 25
 o
 3 343.84 W 

TOPT 19.47
 o
 2 497.85 W 
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Fig. 9 Different free stream velocities comparison (TOPT) 

 

 

 

Fig. 10 Pressure coefficient contour on MCT 

 

 

Fig. 11 compares the blade loading between TREF and TOPT at three different location (x/c = 

0.25, 0.5, 0.75). The area circumscribed by the CPR curves determines the blade loading that 

delivers the work on MCT shaft. A better blade loading can be noticed for the optimized turbine in 

all three locations. TREF’s CPR vs. x/c curve is different from TOPT which experiences reduced 

pressure values at SS. This shows that high fluid velocity is achieved at SS of the blade. The 

region of the adverse pressure gradient is shifted in TOPT. The PS CPR(max) values are similar for 

TREF and TOPT, however, the SS values are varying. The TOPT has a lower CPR value at the SS 

trailing edge (TE) due to its change in θ near the blade tip. 

Fig. 12 compares the MCT’s non-dimensional velocity variation from the root to the tip. A 

higher blade velocity is seen in TOPT due to a gradual change in local θ. Also, the change in θ 

delayed the fluid separation from the blade which is advantageous. The streamlines given in Fig. 

12 is evident to state the early separation of fluid from the blade in TREF. The early separation 
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happens at the root till r/R=0.8 which causes high drag and downstream wake. This decreases the 

overall performance of TREF. 

Fig. 13 shows the fluid velocity near the blade tip (r/R=0.99) comparing the normalized 

average velocity of TREF and TOPT. The blade tip reaches high fluid velocity at TSR=4, 6 and 8 

for TOPT at SS. A low-velocity region at the pressure side (PS) of the TOPT was also noticed. 

Unlike TOPT, TREF has a different velocity contour. TREF creates high fluid velocity in the PS 

which affects the pressure acting on the blade to create lift. This is an unfavorable condition for the 

MCT. 

The 3D streamlines in Fig. 14 shows a helicoidal shape due to the rotational velocity of the 

turbine. The increase in NR on TREF intervenes the fluid passing by and converts some energy of 

incoming free stream to swirls. The wake recovery delays in TREF and affects the performance of 

the turbine. Fig. 15 shows the surface streamline of TREF and TOPT at r/R=0.1, 0.5, 0.9. A wider 

fluid recirculation region at r/R=0.1was noticed. The vortices formed near the root of the blade are 

diminished near the tip. 

 

 

 

Fig. 11 Blade loading curve comparison between TREF and TOPT 
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Fig. 12 Surface streamlines on blade SS with velocity contours 

 

 

Fig. 13 Normalized average velocity contours of different TSR at r/R=0.99 

 

 

Fig. 14 3D Streamlines comparison 
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Fig. 15 Surface streamlines for TSR=6 

 

 

Fig. 16 compares the surface streamlines for both TREF and TOPT at r/R= 0.1. A wider fluid 

recirculation region was noticed on the TREF. The fluid recirculates in both clockwise and 

anticlockwise directions near the TE. The counter-rotating vortices were formed at the TREF at 

TSR=4 which experiences high variations in pressure gradients. The region of counter-rotating 

vortices was gradually reduced at TSR=8 due to the increased fluid velocity. The change in θ from 

25
o 

to 19.5
o
 has reduced the incidence angle and the sudden pressure variations which avoided 

counter-rotating vortices in TOPT. Thus TOPT was noticed with a comparatively smaller fluid 

recirculation at the SS. In TOPT, a smaller recirculation region was noticed and there is a delay in 

the fluid separation irrespective to any TSR. 

Fig. 17 compares the non-dimensional axial velocity of TREF and TOPT. The axial velocity 

decreases at the downstream of TREF and a larger region of axial deficit can be noted. The 

low-velocity region is significantly reduced in TOPT. This is due to the mixing of fluid at the 

downstream of the turbine. The vortex cores at SS and PS is larger at the tip of TREF
 
than TOPT 

(Fig. 18). The TE of TREF produces an additional vortex which is wider at SS and PS. The change 

in θ reduces vortex at the TOPT LE. The TREF PS has a larger vortex core region. 

Fig. 19 compares the streamwise vorticity of the TREF and TOPT. The tips of the blades are 

highlighted to discuss the tip vortex. The strength of counter-rotating pairs is high and unstable 

near the tip in TREF. This channels a way for tip leakage losses in TREF which is due to the 

change in local θ at the blade tip. The mass flow that escapes through the tip of TREF causes loss 

in power production. A weaker vortex is seen in TOPT which is bound to faster dissipation.  
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Fig. 16 Surface streamlines at r/R=0.1 

 

 

 

Fig. 17 Axial velocity contours at the downstream of MCT 

 

 

 

Fig. 18 Vortex core region comparison 
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Fig. 19 Streamwise vorticity comparison 

 

 

 

Fig. 20 Cavitation ratio comparison 

 

 

Finally, it is important to understand that the cavitation inception of TREF and TOPT. The ratio 

of critical cavitation (σCritical) and local cavitation (σLocal) is the cavitation ratio (σ*). It is found that 

σ*<1 faces cavitation. It was observed that the cavitation on TREF is 15% of the total blade span if 

TSR>8. While using the AeroDyn model, it was predicted to increase by 2 to 9% (Murray 2017). 

Hence calculating σ* at TSR>8 shows the extreme possibility of cavitation at the blade tip. 

Fig. 20 shows the σ*=0.7, however, σ*= 0.99 to 0.79 did not face any cavitation. The region of 

cavitation has slightly increased in TOPT and it can be reduced if fouling and angular velocity are 

chosen correctly. The cavitation at the blade tip can also be reduced by introducing serrated tips. 

The design point used in the present study does not face cavitation inception which keeps TOPT 

safe from cavitation. All these fluid phenomena have contributed TOPT to achieve higher CP 
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values. The reduction in the number of rotor blades on TOPT reduces the material cost and MCT 

becomes lighter, which is advantageous to operate at a lower UT. 

 

 

5. Conclusions 
 

For the design optimization of a marine current turbine (MCT) with CFD, blade element 

momentum theory and surrogate-based optimization are reported. The power coefficient (CP) was 

improved by adjusting the blade-pitch angle (θ) and the number of blades (NR). The conclusions 

are: 

 The optimized MCT has a lesser number of rotor blades (NR=2) and the blade-pitch angle 

is reduced from θ=25º to 19.5º. The blade-pitch angle was more sensitive in altering the 

turbine’s CP.  

 Vortex cores and recirculation regions were reduced in the optimized turbine due to the 

change in the angle of incidence. The optimized turbine gave a maximum CP=0.543 at 

TSR=6. 

 The CFD results of the MCT with θ =20
o
 and NR=3 achieved a maximum CP=0.43, 

However, the optimized turbine has a further 26.5% increase in CP.  

 The power produced by the optimized turbine is 154.01 W higher than the reference 
turbine and is capable of working in a varying free stream velocity (UT=0.5 to 2 m/s).  

 Increase in power coefficient can increase the region of cavitation inception in TOPT if TSR 

exceeds the design TSR.  

 Kriging was the chosen surrogate due to its low error (FERR=0.042). The multiple surrogates help to 

predict and improve the MCT performance. 
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Nomenclature 

 

Abbreviations 
 

BEM  Blade element momentum 

CAD  Computer-aided design 

CFD  Computational fluid dynamics 

KRG  Kriging 

GA  Genetic algorithm 

LE  Leading edge 

MCT  Marine current turbine 

NSGA II Non dominated sorting genetic algorithm  

PRESS Predicted error sum of squares 

PS  Pressure side 

RANS  Reynolds-averaged Navier-Stokes 

RBF  Radial basis function 

RSA  Response surface approximation 

SBO  Surrogate-based optimization 

SS  Suction side 

SST  Shear stress transport 

TE  Trailing edge 

TOPT Optimized turbine 

TREF Reference turbine 

TSR  Tip speed ratio 

 

 

Symbols 

 

a  Axial induction factor 

𝑎′  Tangential induction factor 

CD  Drag coefficient 

CL  Lift coefficient 

CP  Power coefficient 

CP(Peak) Peak power coefficient 

CPR  Pressure coefficient 

CPR(max) Maximum pressure coefficient 

c  Chord (m)  

F  Objective function 

k  Turbulent kinetic energy 

NR  Number of rotor blades 

Pout  Power output (W) 

Q  Torque (N-m) 

R  Rotor radius (m) 

r  Local radius (m) 

t  Thickness (m) 

UT  Free stream velocity (m/s) 
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𝑤0  Weight coefficient  

𝑤𝑖   Bias term 

α  Angle of attack (
o
) 

ß  Twist angle (
o
) 

ρ  Density (kg/m
3
) 

σ*  Cavitation ratio 

Ω    Angular velocity of rotor (rad/s) 

θ  Blade-pitch angle (
o
) 

ω  Specific rate of dissipation 

𝜀  Turbulent dissipation 

 

Subscripts 
 

ERR  Error 

SUR  Surrogate 
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