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Abstract.  Large numbers of submarine pipelines are laid as the world now is attaching great importance to 
offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, 
change of topology, artificial supports, etc. By combining Iwan’s wake oscillator model with the differential 
equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling 
equation is developed and solved in order to study the effect of both internal and external fluid on the 
vibration behavior of free-span submarine pipelines. Through generalized integral transform technique 
(GITT), the governing equation describing the transverse displacement is transformed into a system of 
second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. 
The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE 
system. The good convergence of the eigenfunction expansions proved that this method is applicable for 
predicting the dynamic response of free-span pipelines subjected to both internal flow and external current. 
 

Keywords:  free-span submarine pipeline; vortex-induced vibration; internal flow; integral transform; 

pinned-pinned 

 
 
1. Introduction 

 
The crucial works of a small number of disparate researchers in the late 19th and early 20th 

centuries marked the beginnings of a concerted attempt to understand the phenomenon of vortex 

shedding which continues to this day. A great amount of work has been done to study the 

vortex-induced vibration (VIV) behavior of underwater structures, such as cable arrays, drilling 

risers, offshore platforms and pile-supported structures. 

During the early days, the effect of the internal flow was often ignored. Iwan (1981) proposed a 

vortex-induced oscillation model that can be used to solve problems involving non-uniform 

structures and flow profiles. Xu, Lauridsen et al. (1999) developed the fatigue damage models for 

multi-span pipelines detailed both in time and frequency domain approaches. Pantazopoulos, 

Crossley et al. (1993) put forward a Fourier Transformation based methodology to study the VIV 

of free-span submarine pipelines. Bryndum and Smed (1998) carried experiments in the VIV of 

submarine free spans under different boundary conditions. Furnes (2003) formulated time domain 
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model of a free-span pipeline subjected to ocean currents where the in-line and cross-flow 

deflections are coupled.  

Recently, a significant number of achievements have been gained in understanding the dynamic 

characteristics of submarine risers and pipelines conveying internal fluid. Shen and Zhao (1996) 

studied the impact of internal fluid on the fatigue life of submarine pipelines under vortex-induced 

vibration while simplifying the action of the external flow on the pipe as a type of load, and 

ignoring the coupling effect of the two. Guo, Wang et al. (2004) and Lou (2005) studied the 

coupled effect of internal and external fluid on the response of VIV of marine risers by using the 

method of Finite Element Method (FEM). 

In addition, an increasing amount of interest is paid to the phenomenon of VIV that concerns 

the influence of soil. Xing, Liu et al. (2005) developed a VIV model for the span segment of 

buried submarine pipelines. In an experimental study conducted by Yang, Gao et al. (2008), the 

cross-line VIV of a submarine pipeline near an erodible sandy seabed under the influence of ocean 

currents was investigated. By using Visual Basic tools, Xie, Chen et al. (2011) developed a VIV 

fatigue analysis program for submarine pipeline span based on a non-linear pipe-soil coupling 

modal. Wang, Tang et al. (2014) proposed a prediction model for the VIV of deepwater steel 

catenary risers considering the riser-seafloor interaction. 

Finite Difference Method (FDM), Finite Element Method (FEM) and some other methods have 

been taken for the numerical solution of coupled nonlinear oscillator models. However, there exist 

no previous researches adopting the generalized integral transform technique (GITT) approach to 

solve such coupled fluid and structural equations. GITT is still in its starting stage in the area of 

structure mechanics. Ma, Su et al. (2006) applied GITT to solve a transverse vibration problem of 

an axial moving string and the convergence behavior of integral transform solution was examined. 

An and Su (2011, 2014) employed GITT to obtain a hybrid analytical-numerical solution for 

dynamic response of clamped axially moving beams, and afterwards the axially moving 

Timoshenko beams. Recently, Gu, An et al. (2012, 2013) used GITT to prove that variation of 

mean axial tension induced by elongation should not be neglected in the numerical simulation of 

VIV of a long flexible cylinder, and in addition, they predicted that the dynamic response of a 

clamped-clamped pipe conveying fluid, where the convergence behavior was thoroughly 

examined. 

It is against this backdrop that the research presented in this article was undertaken. To this end, 

the remainder of this paper is organized as follows. In Section 2, the mathematical model of the 

coupled structure and wake oscillator model is put forward. In Section 3, the hybrid 

numerical-analytical solution is obtained through integral transform. Section 4 presents the 

numerical results and parametric studies, where the convergence behavior of the present approach 

is assessed and the influence of some parameters are discussed. Finally, Section 5 concludes this 

article. 

 

 

2. Description of mathematical model 
 

As is shown in Fig. 1, a Cartesian coordinate system is adopted to depict the vibration behavior 

of a submarine free span under the influence of both the internal and external fluid. The x-axis is 

the initial axis of the pipe; the y-axis is in the same direction as the current, horizontally orthogonal 

to the x-axis; and the z-axis is in the opposite direction of gravity. Consider a free-span pipeline 

that is horizontally pinned at 0x   and x L . The pipeline is cylindrical with a constant outer 
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diameter D and inner diameter Di. The axial tension is Ta and the internal pressure is P. Assume 

that: 

 (1) The internal fluid flows at a constant velocity of V. 

(2) The effect of waves is ignored and the current is at a constant speed of U. 

(3) The property of the pipe is linear and the pipe is elastic. 

Considering the movement of the free-span pipeline with pinned-pinned boundary conditions in 

the xoz  plane subject to internal and external fluid, tension and the pressure from the internal 

fluid, according to Guo, Wang et al. (2004), Lou, Ding et al. (2005) and Faccinetti, Langrea et al. 

(2004), the coupled structure and wake oscillator model of the pipe vibration can be described as 

4 2 2 2

4 2 2
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2 2
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       (1) 

The model here is constraint to cross-flow vibrations, where, 

EI -- flexural stiffness; P -- internal pressure; Ai -- area of the inner cross section of the 

pipeline; aT -- axial tension; e -- density of external fluid; D -- outside diameter of the pipeline; 

Di -- inner diameter of the pipeline; sr -- structural damping; fr -- fluid added damping, equaling 

to 2

f ew D , of which   is a coefficient related to the mean sectional drag efficient of the pipe -

DC , and = / (4 )DC St  (here St  is the Strouhal number); and for unit length of the pipeline,

i p em m m m   , with im  being the internal fluid mass, pm being the mass of the pipeline, 

em  being the added mass due to external fluid, and
2 / 4e M em DC  , in which MC  is the 

added mass coefficient; q  is the reduced fluctuating lift coefficient, and 0( , ) 2 ( , ) /L Lx xCq t t C , 

and LC  is the lift coefficient, 0LC  the reference lift coefficient which can be obtained from 

observation of a fixed structure subject to vortex shedding; 2 /f S Dw tU  denotes the 

vortex-shedding frequency; parameters   and   can be derived from experimental results by 

Faccinetti, Langrea et al. (2004), with the former being 12 and the latter 0.3. 

 

 

 

Fig. 1 Free Span of a Submarine Pipeline 

365



 

 

 

 

 

 

Tongtong Li, Menglan Duan, Wei Liang and Chen An 

 

As the free span considered in this article is pinned-pinned, the boundary conditions is as 

follows 
2 2

2 2
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z t z L t
z t z L t

x x
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Then the following dimensionless variables are introduced 
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    (3) 

By combining Eq. (3) into Eq. (1), two dimensionless equations are obtained (leaving out the 

asterisks for simplicity) 
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  (4) 

along with the boundary conditions being changed to 
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and 

2 2

2 2

(0, ) (1, )
(0, ) 0  0  (1, ) 0  0

q t q t
q t q t

x x

 
   

 
， ， ，               (5b) 

The initial conditions is defined as 
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3. Integral transform solution 
 

According to the idea of GITT, the next step is to select the auxiliary eigenvalue problem and 

propose the eigenfunction expansion for Eq. (4) under the boundary conditions (5). For the 

transverse displacement of a free span, the eigenvalue problem is chosen as 

4
4

4

d ( )
( )

d

i
i i

X x
X x

x
 , 0 1x                        (7a) 

with the boundary conditions being 
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(0) 0iX  , 
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d (0)
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where iX  and i  are respectively the eigenfunction and the eigenvalue of problem (7), 

satisfying the following orthogonality 

1

0
( ) ( )di j ij iX x X x x N                         (8) 

where ij  is the Kronecker delta, and for i j , 0ij  ; for i j , 1ij  . 

The normalization integral is evaluated as 

1
2
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Problem (7) is now readily solved analytically to yield 

( ) sin( )i iX x x                            (10) 

where the eigenvalue is obtained by 

,  1,2,3...i i i                           (11) 

and the normalization integral is evaluated as 

1
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2
iN i                           (12) 

Therefore, in this case, the normalised eigenfunction coincides with the original eigenfunction 

itself, i.e. 

1/2
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i

i

X x
X x

N
                             (13) 

This solution proceeds by putting forward the integral transform pair – the integral 

transformation itself and the inversion formula. Through integral transform, the spatial coordinate 

x  is eliminated. 

For the transverse displacement 

1

0
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with the boundary conditions being 
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where 
kY  is the eigenfunction of problem (15) and k  the corresponding eigenvalue. And 

similarly 
1

0
( ) ( )dk l kl kY x Y x x N                          (16) 

The same mathematical manipulation is carried here as Eqs. (8)-(13), and the eigenvalue 

problem (15) defines the integral transform pair for the wake variable as follows 
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To perform GITT, the dimensionless equation system (4) is multiplied by operators 
1
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where the coefficients are analytically determined by the following integrals 
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In a similar manner, the boundary and the initial conditions are also transformed to omit the 

spatial variable, yielding 
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For computational purposes, the expansions for the transverse displacement ( , )z x t  and the 

reduced lift coefficient ( , )q x t  are truncated to finite N order. The equation system (18), in 

truncated series, are subsequently calculated by the NDSolve routine of MATHEMATICA. Once 

( )iz t  and ( )
k

q t  are numerically evaluated, the inversion formulas Eqs. (14) and (17) are than 

applied in order that the explicit analytical expressions for the dimensionless ( , )z x t  and ( , )q x t  

are obtained. 

 

 

4. Results and discussion 
 

In this Section, the numerical results of the transverse displacement ( , )z x t  of a free-span 

submarine pipeline subject to both internal and external fluid under pinned-pinned boundary 

condition are presented.  

The main parameters used in the present work is set as follows 

Assume P = 0, Ta = 50 kN. The dimensionless transverse deflection ( , )z x t  is calculated with 

two different values of dimensionless internal fluid velocity, i.e., V =0.5, 1, and two different 

values of dimensionless current velocity, i.e., U = 0.05, 0.1. The convergence behavior of the 

integral transform solution is examined for an increasing truncation terms N = 4, 8, 16, 24 at t = 5, 

20, 50. The results of (i) V = 0.5, U = 0.05, (ii) V = 1, U = 0.05, (iii) V = 0.5, U= 0.1, and (iv) V = 

1, U = 0.1, are displayed in Tables 2 and 3. Results show that convergence can be achieved even 

with a low truncation order (N ≥ 16). (See Tables 2 and 3)  

The Figs. 2-4 present respectively the GITT solution for the dimensionless ( , )z x t  under 

different internal and external fluid velocities in 3-D diagrams; the time history curve and the 

corresponding frequency domain analysis of the vibration of the span midpoint; and the 

configuration of the free span at t = 25. Results gives that the maximum displacement-to-diameter 

ratio of the above mentioned situations i.e. (i) V = 0.5, U = 0.05, (ii) V = 1, U = 0.05, (iii) V = 0.5, 

U= 0.1, and (iv) V = 1, U = 0.1, respectively are 0.5022, 0.5191, 0.3089, 0.2771. Frequency 

analysis indicates that there is only one single mode contributing to the vibration of the free span; 

and the change of internal flow velocity does not necessarily change the vibration amplitude of the 

pipeline significantly, while as the current velocity changes, the vibration amplitude also changes. 

However, in order to get a thorough understanding the mechanism of how both the internal flow 

and current impact the dynamic response of free-spanning pipelines, further studies need to be 

conducted in future. 

 

 
Table 1 Main Parameters of the Pipeline and the Fluid 

L 

(m) 

D 

(m) 

Di 

(m) 

ρp 

(kg/m3) 

ρe 

(kg/m3) 

ρi 

(kg/m3) 

EI 

(Nm2) 
CM CD CL0 St 

40 0.35 0.325 8200 1025 908.2 3.779×107 1 1.2 0.3 0.2 
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Table 2 Convergence Behavior of ( , )z x t  for V = 0.5, 1 and U = 0.05 

V = 0.5; U = 0.05 V = 1; U = 0.05 

x N=4 N=8 N=16 N=20 x N=4 N=8 N=16 N=20 

t=5 t=5 

0.1 -0.0836 -0.0846 -0.0848 -0.0848 0.1 -0.0604 -0.0611 -0.0612 -0.0612 

0.3 -0.2197 -0.2220 -0.2225 -0.2225 0.3 -0.1610 -0.1627 -0.1630 -0.0614 

0.5 -0.2732 -0.2761 -0.2766 -0.2766 0.5 -0.2042 -0.2065 -0.2069 -0.2069 

0.7 -0.2228 -0.2252 -0.2257 -0.2257 0.7 -0.1701 -0.1720 -0.1723 -0.1723 

0.9 -0.0857 -0.0866 -0.0868 -0.0868 0.9 -0.0663 -0.0672 -0.0673 -0.0673 

t=20 t=20 

0.1 0.0540 0.0581 0.0600 0.0603 0.1 0.0397 0.0390 0.0384 0.0383 

0.3 0.1392 0.1499 0.1550 0.1559 0.3 0.1093 0.1074 0.1059 0.1056 

0.5 0.1675 0.1808 0.1871 0.1882 0.5 0.1448 0.1427 0.1409 0.1405 

0.7 0.1311 0.1419 0.1469 0.1478 0.7 0.1258 0.1243 0.1229 0.1225 

0.9 0.0488 0.0528 0.0547 0.0550 0.9 0.0505 0.0501 0.0496 0.0494 

t=50 t=50 

0.1 0.0505 0.0426 0.0375 0.0364 0.1 -0.0485 -0.0531 -0.0557 -0.0562 

0.3 0.1344 0.1136 0.1002 0.0974 0.3 -0.1217 -0.1339 -0.1407 -0.1421 

0.5 0.1706 0.1449 0.1285 0.0973 0.5 -0.1406 -0.1556 -0.1641 -0.1658 

0.7 0.1423 0.1218 0.1085 0.1057 0.7 -0.1049 -0.1170 -0.1238 -0.1252 

0.9 0.0557 0.0479 0.0429 0.0419 0.9 -0.0376 -0.0420 -0.0444 -0.0451 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2 GITT Solution for the dimensionless ( , )z x t . (a) V = 0.5, U = 0.05, (b) V = 1, U = 0.05, (c) V = 

0.5, U= 0.1 and (d) V = 1, U = 0.1 (N = 16) 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Fig. 3 Time history curve of the vibration of the span midpoint. (a) V = 0.5, U = 0.05, (b) V = 1, U = 

0.05, (c) V = 0.5, U= 0.1 and (d) V = 1, U = 0.1 (N = 16) 
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Table 3 Convergence Behavior of ( , )z x t  for V = 0.5, 1 and U = 0.1 

V = 0.5; U = 0.1 V = 1; U = 0.1 

x N=4 N=8 N=16 N=20 x N=4 N=8 N=16 N=20 

t=5 t=5 

0.1 -0.0201 -0.0174 -0.0229 -0.0223 0.1 -0.0116 -0.0110 -0.0156 -0.0152 

0.3 -0.0495 -0.0418 -0.0560 -0.0545 0.3 -0.0245 -0.0229 -0.0346 -0.0332 

0.5 -0.0562 -0.0467 -0.0643 -0.0623 0.5 -0.0212 -0.0194 -0.0336 -0.0319 

0.7 -0.0424 -0.0350 -0.0492 -0.0475 0.7 -0.0111 -0.0098 -0.0213 -0.0198 

0.9 -0.0156 -0.0130 0.0186 -0.0179 0.9 -0.0029 -0.0026 -0.0071 -0.0065 

t=20 t=20 

0.1 0.0227 0.0150 0.0673 0.0667 0.1 -0.0836 -0.0542 -0.0422 -0.0365 

0.3 0.0562 0.0357 0.1736 0.1718 0.3 -0.2216 -0.1502 -0.1183 -0.1035 

0.5 0.0645 0.0396 0.2117 0.2086 0.5 -0.2764 -0.1960 -0.1557 -0.1390 

0.7 0.0491 0.0296 0.1687 0.1653 0.7 -0.2230 -0.1636 -0.1301 -0.1168 

0.9 0.0181 0.0110 0.0639 0.0622 0.9 -0.0846 -0.0634 -0.0500 -0.0454 

t=50 t=50 

0.1 0.0268 0.0466 0.0892 0.0869 0.1 0.0825 -0.0767 -0.0762 -0.0850 

0.3 0.0672 0.1207 0.2373 0.2316 0.3 0.2192 -0.2010 -0.1967 -0.2219 

0.5 0.0782 0.1469 0.2969 0.2908 0.5 0.2743 -0.2473 -0.2391 -0.2723 

0.7 0.0602 0.1171 0.2398 0.2361 0.7 0.2215 -0.1985 -0.1898 -0.2179 

0.9 0.0223 0.0445 0.0909 0.0901 0.9 0.0840 -0.0754 -0.0715 -0.0824 

 

 

 

  
(a) (b) 

  

(c) (d) 

Fig. 4 Span configuration at t = 25. (a) V = 0.5, U = 0.05, (b) V = 1, U = 0.05, (c) V = 0.5, U= 0.1 and (d) 

V = 1, U = 0.1 (N = 16) 
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Fig. 5 Displacement-to-diameter ratio under different internal & external flow velocity (N = 16) 

 

 

Fig. 5 shows the influence of different internal flow velocity on the vibration amplitude of the 

free span in cross-flow direction. When the dimensionless current velocity is low, the higher the 

internal flow velocity is, the larger the vibration amplitude of the span will be; on the contrary, 

when the dimensionless current velocity reaches a certain point, the higher the internal flow 

velocity is, the smaller the amplitude will be. 

During the above mentioned calculation, the internal pressure is neglected. In fact, the internal 

pressure cannot simply be assumed to be zero. The influence of the internal pressure is calculated 

and manifested in Fig. 6. It shows that, as the internal pressure increases, the vibration amplitude 

of the free span midpoint also increases. However, the influence is quite subtle and can be ignored. 

 

 

 

Fig. 6 Influence of the internal pressure on the displacement-to-diameter ratio at span midpoint with V = 

0.5, U = 0.05 (N = 16) 
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Fig. 7 Influence of the axial stress on the displacement-to-diameter ratio at span midpoint (N = 16) 

 

 

 

In most cases, submarine pipelines are laid by pipe-laying vessel, and it is inevitable that 

pipelines are subject to the axial residual stress. The influence of the axial stress on the vibration of 

free-span pipelines are discussed below. Fig. 7 gives the results of how different axial stress affect 

the vibration amplitude of free spans. The dimensionless internal flow velocity and current 

velocity are 0.5 and 0.05 respectively, with the internal pressure taken as zero. Results show that, 

as the axial tension (Ta > 0) increases, the vibration amplitude of the free span midpoint decreases, 

while as the axial pressure (Ta < 0) increases, the vibration amplitude also increases. 

 

 

5. Conclusions 
 

It is proved in the present studies that GITT is feasible and fast approach for analyzing the 

dynamic response of free-span submarine pipelines under the influence of both the external current 

and the internal flow. This method can be employed for benchmarking purposes, yielding sets of 

reference results with controlled accuracy. Due to the limit of time, this article only cover the work 

presented above. It is suggested that results are to be verified against previous literature or by other 

methodologies. 
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