
 

 

 

 

 

 

 

Ocean Systems Engineering, Vol. 6, No. 1 (2016) 61-97 

DOI: http://dx.doi.org/10.12989/ose.2016.6.1.061                                                   61 

Copyright ©  2016 Techno-Press, Ltd. 

http://www.techno-press.org/?journal=ose&subpage=7         ISSN: 2093-6702 (Print), 2093-677X (Online) 
 
 

 

 
 
 
 

Impacts of wave and tidal forcing on 3D nearshore processes on 
natural beaches. Part II: Sediment transport 

 

R. Bakhtyar
1, A. Dastgheib2, D. Roelvink2,3 and D.A. Barry4 

 
1
Davidson Laboratory, Stevens Institute of Technology, Hoboken, NJ 07030, USA  

2
UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands 

3
Technical University of Delft, PO Box 5048, 2600 GA, Delft, The Netherlands, and Deltares, PO Box 177, 

2600 MH, Delft, The Netherlands   
4
Laboratoire de technologie écologique, Institut d’ingénierie de l’environnement, Faculté de l’environnement 

naturel, architectural et construit (ENAC), Station 2, Ecole polytechnique fédérale de Lausanne (EPFL), 1015 
Lausanne, Switzerland 

 
(Received July 1, 2015, Revised February 2, 2016, Accepted February 9, 2016) 

 
Abstract.  This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. 

In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we 

consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment 

transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach 

models were used with four turbulence closures (viz., k-ε, k-L, ATM and H-LES) to solve the 3D Navier-Stokes 

equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed 

load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine 

control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each 

case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results 

showed that the k-ε and H-LES closure models yield similar results that are in better agreement with existing 

morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing 

drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides 

modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on 

longshore suspended sediment transport fluxes, relative to wave action alone. The model’s ability to predict sediment 

transport under propagation of obliquely incident wave conditions underscores its potential for understanding the 

evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave 

characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore 

sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, 

the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution 

is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of 

onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, 

which is the dominant factor controlling the beach face shape. 
 

Keywords:  beach profile changes; longshore sediment transport; bed load; suspended load; on/offshore 

sediment transport 
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Effective and economical design of beach protection schemes need to account for 

sediment-flow interactions in the surf and swash zones, in particular the simulation of such 

interactions in 3D (Elfrink and Baldock 2002, Polome et al. 2005, Roelvink and Reniers 2012). 

Oceanic forcing in the nearshore zone produces sediment transport in both cross- and longshore 

directions, and thereby induces foreshore profile changes (Longuet-Higgins 1970, Chen et al. 2003, 

Johnson and Smith 2005). When waves propagate obliquely towards the shore, longshore currents 

occur, as well as cross-shore and return flows (Celikoglu et al. 2004). The wave-current 

interactions are important as they affect nearshore circulation, as well as sediment transport 

(Feddersen et al. 1998, Garcez Faria et al. 1998, Reniers et al. 2004, 2009, Newberger and Allen 

2007a,b).  

Both longshore and cross-shore sediment transport control beach morphology (Kamphuis 1991, 

Kumar et al. 2003, Lee et al. 2007, Garnier et al. 2008). Numerical process-based morphological 

models have been used more extensively in 1D, 2DV and 2DH modes, but with increasing 

computational capacities and acceleration techniques currently 3D numerical models have the 

potential to simulate the nearshore zone more realistically (Liang et al. 2007). Reliable quantitative 

analyses of the morphodynamic processes taking place in the nearshore zone, including the rates, 

fluxes and directions of sediment transport, have yet to be fully developed (Masselink and Puleo 

2006). Only a few numerical studies have been conducted, most of which used relatively strong 

simplifying assumptions. In particular, they ignored the impact of longshore currents on sediment 

transport, although such currents can have strong effects on beach morphology (Elfrink and 

Baldock 2002, Masselink and Puleo 2006, Bakhtyar et al. 2009a, Razmi et al. 2011). 

Notwithstanding that some of the existing models include the swash zone (van Wellen et al. 2000), 

in most Longshore Sediment Transport (LST) models, the swash transport contribution is either 

completely ignored or merely accounted for as part of the total sediment transport budget. In 

addition, most studies are based on empirical relations in the surf zone. 

Recently, Antuono et al. (2007) investigated the integral properties of the swash zone and found 

that two main terms contribute to the longshore current velocity: (i) short-wave interactions and 

non-breaking wave nonlinearities, and (ii) momentum transfer due to wave breaking. Baba and 

Camenen (2008) implemented a LST model for the swash zone in a beach evolution model and 

found that sediment transport in the swash zone has an important effect on beach profile changes. 

Because of complex flow processes involved in sediment transport, most of the existing sediment 

transport models consider cross-shore and longshore processes individually and are thereby 

limited in predicting LST (Ellis and Stone 2006, Esteves et al. 2009). In addition, existing 

empirical models are often derived from steady flow conditions (Elfrink and Baldock 2002). They 

are not necessarily applicable to oscillatory flow, such as found in the swash and surf zones, and 

combined flows (where both waves and currents are significant) (Warner et al. 2008). Despite 

much research on this topic, less attention has been paid to numerical modeling of LST, which is 

subject to dynamic effects of vortices and turbulence under breaking waves, for example 

(Bakhtyar et al. 2009b). Comprehensive 3D numerical models provide a means to investigate the 

effects of aforementioned factors on the foreshore morphodynamics, and to provide guidance for 

the understanding of the nearshore zone processes. 

Due to the complexity and uncertainty of flow velocity and sediment dynamics, there is an 

extensive range of available models (Hanson et al. 2003). Three approaches have been used to 

investigate the morphodynamics of coastal systems driven by sea-level oscillations: (i) 

behavior-oriented models (Reeve and Fleming 1997, Hanson et al. 2003); (ii) two-phase flow 
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modeling (Drake and Calantoni 2001, Bakhtyar et al. 2009b, e, 2010a, 2013c); and (iii) 

process-based models (Karambas 2006, Pedrozo-Acuna et al. 2007, Dastgheib et al. 2008, 

Bakhtyar et al. 2009c, 2011, Roelvink et al. 2009). 

Behavior-oriented models reproduce the behavior of bed morphology using governing 

equations that are simplified to preserve only the main processes (Reeve and Fleming 1997). 

Hanson et al. (2003) presented models describing coastal evolution on yearly to decadal time 

scales and suggested that forthcoming efforts should be focused on model integration rather than 

improvement of individual model concepts. Eulerian two-phase flow models treat separately the 

sediment and fluid phases. Bakhtyar et al. (2010a) investigated the performance of 2D two-phase 

flow models based on Navier-Stocks (NS) equations, a turbulence closure model and the 

Volume-Of-Fluid approach. Although the model is relevant to understanding morphology in the 

surf and swash zones, it is not applicable to 3D field applications. Process-based numerical models 

(such as Delft3D) simulate major processes in the nearshore zone combining hydrodynamic, 

sediment transport and foreshore evolution models. Roelvink et al. (2009) used a process-based 

model to assess the coastal response under storm and hurricane circumstances, including dune 

erosion and breaching, and showed the potential of such a modeling strategy in a number of 

analytical, laboratory and field cases. 

Delft3D is a widely used tool for simulating field-scale coastal engineering problems. 

Delft3D-Flow has been verified in several practical test cases of 3D modeling of hydrodynamics 

and sediment transport (Lesser et al. 2004, Harcourt-Baldwin and Diedericks 2006, Morelissen et 

al. 2010, van Rijn 2011). It was used in Part I, which described a 3D process-based model for 

simulating wave and tidal motions on an impermeable beach. Nearshore hydrodynamic behavior 

through the two-way coupling of hydrodynamic and morphodynamic 3D models (Delft3D and 

XBeach) were computed and analyzed. The model and the setup used to represent the nearshore 

area were validated using field data. Good agreement was found considering different conditions, 

in particular water level elevations, wave height and properties of longshore flows. The main 

purpose of the present paper is to investigate and describe the sediment transport processes and 

beach profile changes in the nearshore zone using that model and setup. The same numerical 

experiments as in Part I are exploited, covering a range of oceanic conditions and beach 

characteristics. The specific objectives of this study are to: 

 Use the model to evaluate the importance of wave characteristics, sediment grain size, beach 

shape, bed slope and oceanic forcing on 3D beach profile changes in a field setup, and to 

consider the results in the light of the existing understanding of beach evolution; 

 Simulate the effect of longshore flows on the sediment transport and beach morphology; 

 Evaluate the feasibility of field-scale sediment transport modeling under mixed and variable 

conditions of oceanic forcing; 

 Examine the overall on/offshore and cross-shore/longshore sediment circulation and dynamics. 

 

 

2. Methodology 
 

2.1 Model description 
 

In this study, the effect of oceanic forcing on the nearshore morphodynamics was simulated. 

The three processes (i.e., wave motions, tide motions and sediment movements) were coupled 

using a sequential approach. Our approach was based on Delft3D (for simulating hydrodynamic 
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and morphodynamic processes) and XBeach
*
 (for generating wave motion) models. The Delft3D 

uses a finite difference-method to solve the governing equations on a curvilinear grid, and includes 

a flooding and drying technique. XBeach resolves wave motion containing waveshoaling, wave 

refraction, wave breaking and current refraction. We simulated wave and tidal motions in the 

nearshore area, and flow based on the 3D NS equations and different turbulence closure models 

(viz., k-ε, k-L, ATM and H-LES). The Delft3D (Delft3D-FLOW: User manual, 2009) sediment 

transport and beach evolution modules were used to simulate foreshore profile changes. The 

hydrodynamic model was run to produce the 3D hydrodynamic characteristics. These results and 

those of XBeach were used as input to calculate the sediment transport and morphology changes. 

Changes in bed morphology were fed back into the hydrodynamics.  

Kinematic boundary conditions were used at the free surface, whereas at the bottom a quadratic 

bed stress equation was used. Zero normal velocities were applied at the landward boundary. A 

weakly reflecting boundary condition was used at the open boundaries. Oceanic forcing was 

generated via postulating the velocity, surface elevation, and wave angle. The driving forces were 

the incident waves that arrived perpendicular and obliquely or to the beach, and the tide, which 

propagated from south to north. The seaward boundary was controlled by a time series of water 

elevations, while lateral boundary conditions (i.e., Neumann boundary condition) were applied as 

the longshore water level gradient, which corresponds to a progressive wave (Roelvink and 

Walstra 2004). 

Simulations used a non-uniform grid size ranging from 5 m in the nearshore area to 75 m in the 

offshore region. In all cases, models were run for one month and started from a constant beach 

face slope. The initial bathymetry of the numerical experiments is alongshore uniform. The final 

bathymetry is after the one month simulations. After one month, the simulations reach the state 

that the bed level averaged over a tidal cycle is steady. A detailed description of the model 

equations, boundary conditions and numerical scheme was given in Delft3D-manual.  

 

2.1.1 Sediment transport and beach morphology models 
Both bed load and suspended load transport of non-cohesive sediment were considered in the 

sediment transport and morphology models. Transport of suspended sediment was calculated using 

the advection-diffusion equation (van Rijn 2011) 

   ,.. ccU
t

c
d







                          (1) 

where c is the sediment concentration,  U , , sU V w w    is the velocity vector, ws is the 

sediment settling velocity, and
 d  

is the sediment eddy diffusivity. 

Bed load transport was calculated using an approximation technique developed by van Rijn 

(2001). The direction and magnitude of the bed load at the cell centers was computed, followed by 

transport rates at the cell interfaces. The calculations took account of the effects of bed-slope, 

sediment availability and upwind bed composition. The sediment transport equations were solved 

by finite-volume methods. 

 

                                                      
* http://oss.deltares.nl/web/xbeach/. A model developed by the US Army Corps of Engineers, UNESCO-IHE, Deltares, 

Delft University of Technology and the University of Miami. Last access: 02 Feb 2016. 
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Sediment transport formulation of Van Rijn (2011) 
 

There may be significant differences if different sediment transport relations are chosen, but 

adding another parameter to the set of tests here would only increase the complexity of the case so 

we decided to go with default relation of Delft3D (Van Rijn equation: VR). 

,SbT SSS 
                                (2)

 

,ρ006.0 7.05.0

50 essb MMDwS 
                        (3)

 

,ργ007.0 50 esASUSWS MDUfS 
                       (4)

 

where ST , Sb, SS are the total, bed load and suspended sediment transport flux, respectively, D is the 

sediment diameter, M is the sediment mobility number due to waves and currents, Me is the excess 

sediment mobility number, SUSWf
 

is a user-defined tuning parameter, γ  ( = 0.2)
 
is the phase 

lag coefficient, and UA is the velocity asymmetry value. 

 

Boundary conditions 
 

At the water surface, zero vertical diffusive flux of sediment was applied. At the bottom 

boundary, the net flux of sediments from the bed was calculated. The net flux in each 

computational cell was introduced to the bottom computational layer by means of a sediment 

source/sink term. At the lateral boundaries, the local equilibrium sediment concentration profile 

was used. 

 
2.2 Numerical model setup 
 

The model simulates a region of 1.3 km × 2.5 km in the cross-shore and longshore directions 

with constant initial cross-shore slope equate to alongshore uniform bathymetry at a site near 

Egmond aan zee (central part of the Dutch North Sea coast). The maximum water depth was 13 m 

and the maximum wind speed was about 20 ms
-1

 (perpendicular to shore). Figure 1 displays plan 

views of study area, bathymetry and computational mesh used in in the model domain. The van 

Rijn sediment formula (van Rijn 1993) and Chezy roughness formula with a Chezy value of 65 

m
1/2

s
-1

 were used. The horizontal diffusivity and eddy viscosity were 0.5 and 1 m
2
s

-1
, 

correspondingly. The sediment density was 2.65 × 10
3
 kg m

-3
 and the density of seawater was 

1.025 × 10
3
 kg m

-3
. The size of grid was not constant (i.e., larger in the offshore area than near the 

beach). In the longshore direction, a smaller grid was selected in the central of the model domain, 

leaving a coarser grid in the outer areas on both sides. Based upon the rate of convergence, the grid 

cell size was selected to guarantee that the dependency of the numerical results on grid size is 

insignificant. The grid size selected changed between 10 m and 75 m per grid cell that allowed 

taking of alongshore currents. The initial time step was 3 s and it was decreased throughout the 

simulations based upon stability and convergence limitations. 

Simulations were conducted using three initial bed slopes, four various turbulence models, and 

three oceanic forcing conditions. The median sediment diameters were 200, 500, 800, 1000 µm. In 

all cases, the model was run to simulate a one-month period. The figures display the final 
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bathymetry afterward the one month numerical simulations. A summary of the parameters for the 

scenarios simulated in the numerical experiments is reproduced in Table 1, where H is the wave 

height, A is the tidal amplitude, T is the wave period, D is the grain size,   is the bed slope, and 

  is the direction of wave propagation. 

 

 

 
Table 1 Characteristics of the oceanic forcing and beach conditions in the numerical experiments (from Part 

I). Bold face indicates the base case and the parameter that is varied in each given subset of cases. 

The Van Rijn sediment transport formula was used in all cases 

Case Hs (m) 
Tidal 

range (m) 
D (μm) T (s) 

Oceanic 

condition
 

 
Turbulence 

closure model 


 
 

1 (base 

case) 
2 2 200 7 wave + tide 1:100 k-ε 260 

2 2 2 200 7 wave + tide 1:100 H-LES 260 

3 2 2 200 7 wave + tide 1:100 k-L 260 

4 2 2 200 7 wave + tide 1:100 ATM 260 

5 2 - 200 7 wave 1:100 k-ε 260 

6 - 2 200 - tide 1:100 k-ε - 

7 0.5 2 200 7 wave + tide 1:100 k-ε 260 

8 1 2 200 7 wave + tide 1:100 k-ε 260 

9 1.5 2 200 7 wave + tide 1:100 k-ε 260 

10 2 2 200 7 wave + tide 1:100 k-ε 240 

11 2 2 200 7 wave + tide 1:100 k-ε 280 

12 2 2 200 7 wave + tide 1:100 k-ε 300 

13 2 0.5 200 7 wave + tide 1:100 k-ε 260 

14 2 1 200 7 wave + tide 1:100 k-ε 260 

15 2 3 200 7 wave + tide 1:100 k-ε 260 

16 2 2 200 7 wave + tide 1:50 k-ε 260 

17 2 2 200 7 wave + tide 1:75 k-ε 260 

18 2 2 500 7 wave + tide 1:100 k-ε 260 

19 2 2 800 7 wave + tide 1:100 k-ε 260 

20 2 2 1000 7 wave + tide 1:100 k-ε 260 
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3. Results 
 

We examined sediment transport processes and beach evolution by applying the 3D numerical 

model to various ocean and beach conditions. In §3.1, the simulated nearshore morphodynamics 

for the reference case are presented (Case 1), with nearshore morphologies predicted using 

different turbulence closure models given in §3.2 (Cases 1-4). The simulated morphodynamics for 

different oceanic forcing (Cases 1, 5, 6), various wave and tide characteristics (Cases 1, 7-15), and 

different beach characteristics (Cases 1, 16-20) are discussed in §3.3 to 3.5, respectively. The total 

sediment transport fluxes and volume changes in beach sediment for all the simulated cases are 

summarized in Table 2. 

 

3.1 Predictions of nearshore morphodynamics: reference case 
 

Fig. 2 shows a plan view of (a) cumulative erosion/sedimentation, (b) total sediment transport, 

(c) suspended sediment transport, and (d) vertical profile of sediment elevation for case 1. The 

primary morphodynamic response of the beach system consists of erosion in the wave-breaking 

zone and the deposition of sediment transported offshore to form a bar near the depth of closure 

(Fig. 2(a)). Sediment transport is mainly confined to the surf zone (Fig. 2(b)), with the breaking 

zone located at a cross-shore position of about 102.2 km [Part I]. High sediment concentrations in 

the water column occur in the inner surf zone where the entire water column is sediment-laden 

(Fig. 2(d)). Sediment concentrations reach maximal values near the bottom in the region, due to 

strong undertow [Part I]. The net change in sediment level over the offshore bar is comparable to 

level changes other sections of the foreshore (Fig. 2(a)), and sediment transport is less intense in 

the shoaling zone than in the surf zone (Figs. 2(b) and 2(d)). 

Longshore variability is observed with the occurrence of a region of enhanced erosion at the 

breaking zone, just to the south of the seaward intrusion of the coastline at about 512.8 km north 

(Fig. 2(a)). A marked increase in significant wave heights and in current velocities was also 

observed at this location [Part I]. The occurrence of enhanced erosion in the breaking zone is 

accompanied by a reduction in the size of the offshore bar and the development of an intertidal bar 

at the same cross-shore location. The intertidal bar is discontinuous in the longshore direction. At 

the cross-shore position where the erosion zone extends furthest onshore, a low-relief area is 

observed between two sections of higher elevation. The formation of the intertidal bar is associated 

with erosion further up the beach face. The onshore extension of the beach is only apparent 

because the intertidal bar acts as a berm. The trough onshore of the intertidal bar is isolated from 

the rest of the nearshore zone and is characterized by quiescent hydrodynamics [Part I] and low 

sediment concentrations (Fig. 2(d)). Other intertidal bar and trough structures of smaller size are 

observed further north along the upper beach (Fig. 2(a)). 

The cross-shore width of the zone of most intense sediment transport varies in the longshore 

direction (Fig. 2(b)) in a similar fashion to the current velocities (Figs. 6(a) and 6(b) of Part I) and 

surf zone width. The location of the maximum sediment transport rate along a cross-shore profile 

fluctuates with the longshore position. The cross-shore maximum is displaced onshore at the 

longshore position where the intertidal bar is formed (Fig. 2(b)). The intertidal bar also 

corresponds to the sediment transport maximum over the simulated domain. Bed load transport 

constitutes the main contribution to the total sediment transport over the intertidal bar (Figs. 2(b) 

and 2(c)), while suspended load constitutes most of the total load in the rest of the nearshore 

region. 
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Table 2 Sediment transport and beach evolution for all cases 

Case 

Cross-shore transport 

flux (m2s-1) 

Longshore transport 

flux (m2s-1) 

Cross-shore sediment volume (m3) 

Bed 

load 

Suspended 

load 

Bed 

load 

Suspended 

load 

Erosion 

(offshore: 

below the 

SWL) 

Erosion 

(% of 

overall 

profile 

volume) 

Deposition 

(onshore: 

above the 

SWL) 

Deposition 

(% of 

overall 

profile 

volume) 

Net 

Net  

(% of 

overall 

profile 

volume) 

1 2.96 37.77 0.016 -1.12 -8798 0.01872 3915 0.00833 -4883 0.01039 

2 2.69 34.97 0.017 0.09 -10366 0.02206 3789 0.00806 -6578 0.01399 

3 2.81 12.60 0.002 -1.08 -2891 0.00615 70310 0.14959 67418 0.14344 

4 2.97 14.03 0.014 0.13 -5762 0.01226 78533 0.16709 72771 0.15483 

5 3.30 35.48 0.018 0.97 -19587 0.04167 1273.1 0.00271 -18314 0.03897 

6 0 0 0 0 -12 2.5 × 10-5 0.4 8.5 × 10-7 -11 2.3 × 10-5 

7 0.79 1.11 0.002 0.06 -2072.2 0.00441 1871.4 0.00398 -200.8 0.00043 

8 1.95 7.20 0.007 0.36 -4584.8 0.00976 3790.3 0.00806 -794.5 0.00169 

9 2.62 17.86 0.011 0.76 -6844.1 0.01456 5019 0.01068 -1825.1 0.00388 

10 3.81 57.18 0.05 6.71 -29731 0.06326 1711 0.00364 -28020 0.05962 

11 2.49 17.23 0.002 -2.10 -9652 0.02054 8870 0.01887 -782.2 0.00166 

12 3.26 5.98 -0.006 1.24 -16193 0.03445 22726 0.04835 6532.5 0.01389 

13 2.70 35.53 0.01 -2.69 2726 0.00580 6095 0.01297 3369 0.00717 

14 2.88 36.74 0.016 0.33 -6270 0.01334 4645.1 0.00988 -1624.4 0.00346 

15 3.57 33.42 0.019 1.92 -13361 0.02843 5136.4 0.01093 -8224.6 0.01749 

16 3.89 42.72 0.017 -0.46 -7466 0.01589 27861 0.05928 20395 0.04339 

17 3.51 41.35 0.02 1.09 -10616 0.02259 4163 0.00886 -6452 0.01373 

18 3.72 2.46 0.017 0.06 -5611.9 0.01194 7416.2 0.01578 1804.3 0.00384 

19 3.48 0.70 0.018 -0.001 -5228.5 0.01112 4829.3 0.01027 -399.2 0.00085 

20 4.28 0.26 0.026 0.03 -2238 0.00476 1202.9 0.00256 -1035.1 0.00220 
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Fig. 1 (a) Plan view of study area (Egmond aan Zee, ©  Google 2015), and (b) bathymetry and 

computational mesh used in the case study at Egmond beach with the constant bed slope alongshore (after 

Part I) 
 

 

The cross-shore distribution of bed load and suspended load in cross-shore and longshore 

directions is given in Fig. 3. Transport mainly occurs in the surf zone, with maxima on the upper 

beach and smaller fluxes in the shoaling zone. Cross-shore transport is almost exclusively offshore, 

with a maximum near the intertidal bar (Figs. 3(a) and 3(b)). The contribution of the suspended 

load to the total sediment flux is one to two orders of magnitude greater than the contribution of 

the bed load for both cross-shore (Figs. 3(a) and 3(b)) and longshore (Figs. 3(c) and 3(d)) fluxes. 
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Bed load transport is mostly cross-shore (Figs. 3(a) and 3(c)). The magnitude of the localized peak 

in longshore bed load transport at the intertidal bar is still only a small proportion of the average 

cross-shore bed load transport. The longshore suspended load flux in the upper beach region, near 

the intertidal bar, is more intense than and in the opposite direction to the longshore suspended 

flux in the outer surf zone, near the breaking zone (Fig. 3(d)). The reversal in the direction of 

suspended load longshore transport is likely related to the effect of nearshore recirculation cells on 

the distribution of horizontal velocity near the bottom. 

 

 

 
 

Continued- 
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Fig. 2 Plan view of (a) cumulative erosion/sedimentation (m
3
), (b) cross-shore distribution of vertical 

velocities (m/s, after Part I), (c) total sediment transport (m
2
s

-1
), (d) suspended sediment transport (m

2
s

-1
). 

(e) Vertical profile of sediment (m
3
) for case 1 (  = 1:100, A = 2 m,   = 260 °, H = 2 m, combined 

wave and tide, k-ε turbulence model, D = 200 μm) 

 

 

Fig. 3 Spatial distribution of (a) bed load in cross-shore, (b) suspended load in cross-shore and (c) bed 

load in longshore and (d) suspended load in longshore directions for case 1. Flux units are m
3
s

-1
m

-1
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Fig. 4 Cross-shore variations of depth-averaged velocity and bed shear stress for case 1 
 

 

The cross-shore variations of depth-averaged velocity and bed shear stress for case 1 are shown 

in Fig. 4. The velocity increases shoreward, incrementally in the shoaling zone and at a faster rate 

in the surf zone until it drops sharply at the base of the intertidal bar. The bed shear stress follows 

the same trend up to the intertidal bar, consistent with the observed return flow [Part I], but 

remains high shoreward of the intertidal bar and velocity peak. While the hydrodynamics in the 

trough onshore of the intertidal bar are, as expected, rather quiescent compared to the surf zone, 

the near-bottom velocity is still sufficiently large to generate a high bed shear stress. This is 

consistent with the large contribution of bed load transport to the overall sediment transport at that 

location (Figs. 3(b) and 3(c)). The entrainment threshold is exceeded by near-bottom flow but low 

velocities in the rest of the water column limit the suspended load.  

 

3.2 Modeling of foreshore changes using different turbulence closure models 
 

In this section, the numerical model was run with the four aforementioned turbulence closure 

models (cases 1-4). Nearshore morphodynamics predictions change with the turbulence model 

used (Elfrink and Baldock 2002, Bakhtyar et al. 2009d, 2010a, b). Turbulence is generated as 

waves reach shallow water and break, during which most of their energy is dissipated. Turbulence 

can stir up large quantities of sand, which remain in suspension for a number of seconds (van Rijn 

2001). This sediment is carried along by the alongshore current. Littoral drift is particularly 

significant in the swash zone where re-suspended sediment tend to follow a zig-zag transport 

pattern (Masseling and Puleo 2009), resulting in beach drifting. 

Changes in beach profile and cross-shore profile of sediment concentration are shown in Fig. 5. 

Sediment transport fluxes are displayed in Fig. 6 (Fig. 3 is for the reference case). Cross-shore and 

longshore fluxes are shown in the top and bottom panels, respectively. Bed load is on the left-hand 

panels and suspended load on the right. Where appropriate, the same two-figure presentation will 
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be used subsequently. 

The beach profile evolution predicted with the H-LES model exhibits the same features as 

observed with the k-ε model: erosion in the breaking zone, deposition to form the offshore bar and 

formation of intertidal bar and trough structures (Fig. 5(a)). The intertidal bar for the H-LES model 

is not as developed as for the k-ε model, and the beach elevation is slightly higher in the rest of the 

foreshore profile. In fact, the upper beach profile after 500 h simulation with the k-ε model (Fig. 2) 

is closest to the profile predicted at the end of the simulation (720 h) with the H-LES model. 

Sediment concentration profiles (Fig. 5(b)) and sediment fluxes (Fig. 6) are similar between the 

two closure models. The only differences are the absence of a sharp peak in sediment 

concentration just over the intertidal bar in the H-LES case (Fig. 5(b)), a much lower longshore 

suspended load flux over the intertidal bar for H-LES compared to k-ε (Fig. 6(d)) and a minor 

offshore displacement of the maximum in concentration and peak fluxes. Such differences are 

consistent with the difference in size of the intertidal bar between the two cases. 

 

 

Fig. 5 Simulated (a) foreshore profile changes and (b) sediment concentration in the cross-shore direction 

for cases 1-4 (different turbulence models: listed in figures). The sediment concentration unit is mgl
-1

 

 

73



 

 

 

 

 

 

R. Bakhtyar, A. Dastgheib, D. Roelvink and D.A. Barry 

 

 

Fig. 6 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1-4 

(different turbulence models: listed in figures). Cross-shore distribution of (c) bed load and (d) suspended 

LST for cases 1-4. Flux units are m
3
s

-1
m

-1
 

 

 

The morphodynamics predicted by the k-L and ATM turbulence closure models are very 

different from the results with k-ε and H-LES. Both k-L and ATM predict extensive accretion along 

most of the beach profile, with the exception of a narrow erosion zone in the upper beach (Fig. 

5(a)). The accretion zone covers the equivalent of the entire beach profile from the wave-base up 

to the location of the intertidal bar that was obtained with the k-ε model. The erosion zone extends 

the immersed beach shoreward. Beach profile changes are more significant for ATM than for the 

k-L closure. The resulting profile is not concave upwards, but flat or slightly concave downwards, 

with a notch at the upper beach and a slope break offshore. Transport dynamics are dominated by 

the processes occurring over the accretion zone. The maximum sediment concentration is not a 

well-marked peak but rather a broad plateau spanning most of the beach (Fig. 5(b)). The 

cross-shore fluxes reach a maximum over the beach slope break (Figs. 6(a) and 6(b)). There is no 
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maximum in suspended longshore flux in the upper beach as with k-ε and H-LES (Fig. 6(d)). 

Longshore fluxes are different between ATM and k-L, which otherwise yield similar predictions. 

Bed load longshore fluxes are smaller in the k-L case compared to ATM, and they are in opposite 

directions offshore of the beach break (Fig. 6(c)). Suspended longshore fluxes are either in 

opposite directions or smaller in the ATM case compared with k-L, except offshore of the beach 

break (Fig. 6(d)). The fluxes predicted at the offshore boundary of the simulated domain tend 

toward non-zero values, sometimes even increasing. On the contrary, in the k-ε and H-LES cases, 

fluxes gently decay to zero and do not require being forced to zero at the boundary. 

In applying the numerical models to real cases, there are a number of uncertainties, one of them 

is indeed the sedimentology of the study area and how it is represented in the model. Some 

research has been done on the effect of sediment mixtures on the (long term) morphological 

simulations and has provided suggestions and methods how to deal with these effect (Dastgheib et 

al. 2009, Van der Wegen et al. 2011). But including this effect in the paper will increase the 

complexity of the case to the extent that no knowledge can be gained for comparing all cases. In 

this paper, we have tried to use an idealized case to isolate the effects as much as possible to make 

the comparisons more reliable. 

The k-ε and H-LES closure models yield similar results that are in better agreement with 

existing morphodynamic observations than the results of the other turbulent models investigated. 

Consistent with Part I, the 3D model associated with the k-ε model is used in the rest of present 

paper, as it is the most widely used (Lemos 1992, Christensen et al. 2002). 

 

3.3 Modeling of foreshore changes for different oceanic forcing 
 

This section examines the individual (cases 5 and 6) and combined (case 1) effects of tides and 

waves on nearshore morphodynamics. In the absence of waves, the numerical model predicts that 

the beach profile is unchanged (Fig. 7(a)) as there is no sediment transport (Figs. 7(a) and 8). This 

result is consistent with the predicted hydrodynamics where negligible flow velocities were 

observed in the tide-only case [Part I]. The numerical implementation of tidal forcing as an 

oscillation in the water level at the offshore domain boundary explains that tide alone has no effect 

on nearshore morphodynamics. Tidal currents generated as the tide propagates in coastal waters 

are not taken into account here. 

Under wave forcing, the tidal fluctuations modulate the predicted nearshore sediment dynamics. 

Without the tide, the beach elevation is higher than under combined tide and wave forcing along 

most of the beach profile except in the upper beach (Fig. 7(a)). There is more accretion at the 

offshore bar, which is displaced onshore, and the erosion is reduced in the breaking and surf zones. 

The intertidal bar is replaced by a trough, thus extending the immersed beach. The berm in the 

wave-only case is located further onshore than the intertidal bar in the combined wave and tide 

case. The beach profile under waves only is similar to the profile predicted at 500 h simulation 

time with combined wave and tide forcing and to the profile in the H-LES case. The cross-shore 

profiles of sediment concentration and cross-shore fluxes of sediment transport are displaced 

onshore (Figs. 7(b), 8(a) and 8(b)), consistent with the shoreward shift observed in the overall 

beach profile and in the associated hydrodynamic characteristics (flow velocities, eddy viscosity, 

TDR, TKE, and flow setup) [Part I]. The reduction in the sediment concentration maximum 

observed in the upper beach (Fig. 7(b)), in addition to the overall onshore shift, indicates that the 

intensity of the peak in the combined case can be attributed to the presence of the intertidal bar. 

 

75



 

 

 

 

 

 

R. Bakhtyar, A. Dastgheib, D. Roelvink and D.A. Barry 

 

 

Fig. 7 Simulated (a) foreshore profile changes and (b) sediment concentration in the cross-shore direction   

for cases 1, 5 and 6 (different oceanic forcing: listed in figures). Sediment concentration units are mgl
-1

 

 

 

The addition of tidal forcing to wave action has a notable effect on longshore suspended 

sediment transport fluxes. The intense flux in the upper beach with a direction opposite to the flux 

around the breaking zone is no longer observed in the absence of the tide (Fig. 8(c)). This could be 

related to the asymmetry in the tidal signal that is noticeable in Figs. 3(a) and 4(a) of Part I. The 

difference in the intensity of the suspended longshore flux matches the reduction in sediment 

concentration noted on the upper beach. However, the reversal in longshore direction of the 

suspended load transport is not necessarily directly associated with the presence of the intertidal 

bar because the flux reversal in the upper beach is still observed in the H-LES case. With H-LES, 
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the intertidal bar is not developed and the sharp peak in sediment concentration is not observed, as 

in the wave-only case where there is no reversal. 

These findings are consistent with existing understanding of the sediment transport processes in 

the nearshore zone (e.g., Cartier and Héquette 2011a): Laboratory observations showed that 

variation of LST is mainly controlled by obliquely wave breaking-induced currents (Komar and 

Inman 1970, Kamphuis 1991). However, in macrotidal areas (where the tidal range is 3 ~ 4 m), in 

addition to longshore currents generated by obliquely breaking waves, interactions of tidal currents 

with wave motions are important for sediment transport (Davidson et al. 1993, Cartier and 

Héquette 2011b). 

 

 

 

Fig. 8 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1, 5 

and 6 (different oceanic forcing: listed in figures). Cross-shore distribution of (c) bed load and (d) 

suspended LST for cases 1, 5 and 6. Flux units are m
3
s

-1
m

-1
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3.4 Effect of tide and wave characteristics on nearshore morphodynamics 
 

One of the most important factors that govern the surf-swash motions and thus sediment 

transport is oceanic forcing energy (Karunarathna et al. 2005, Bakhtyar et al. 2012b). This energy 

is related to the wave and tide characteristics (viz., wave height, wave angle, and tidal range). In 

this section, nearshore morphodynamics are investigated numerically with different oceanic 

forcing characteristics (cases 1, 7-15). 

Fig. 9(a) shows that, with increasing wave height, there is an increase in the change in 

foreshore profile, berm size and volume of transported sediments. Beach profile patterns for cases 

7-9 are the same, with erosion above the SWL and generation of a bar below it, while the beach 

profile for case 1 (largest wave height) shows a different pattern (deposition above the SWL and 

large erosion area below). Fig. 9(b) reveals that maximum sediment transport and sediment 

concentration take place near the breaking area, and then decrease towards the shore (compare 

maximum sediment concentrations for various cases in panel b). Moreover, waves break sooner 

for larger wave heights.  

 

 

Fig. 9 Simulated (a) foreshore profile changes and (b) sediment concentration for cases 1 and 7-9 

(different wave heights: listed in figures). Sediment concentration units are mgl
-1
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Fig. 10 depicts the spatial distribution of bed load and suspended cross/longshore sediment 

transport for different wave heights. It can be observed from Fig. 10(b) that the maximum of the 

bed load cross/longshore sediment flux shifts upward and off-shoreward with increasing wave 

height (Fig. 10(a) and 10(c)). Fig. 10(b) and (d) show that the suspended cross/longshore sediment 

fluxes are noticeably greater for case 1 (largest wave height corresponded to higher wave energy). 

For the smaller wave height (low wave energy conditions), the surf zone width is decreased and, 

beyond the breaker zone, sediment fluxes generally consist of LST driven by tidal currents (Cartier 

and Héquette 2011a). Therefore, because of less tidal-induced sediment resuspension, low 

sediment transport occurs. These outcomes are consistent with prevailing understanding of the 

nearshore morphodynamics (USACE, 1984, Bayram et al. 2007). The highest sediment flux for 

case 1 is an order of magnitude greater than that for case 7, which displays the significance of 

wave height on the beach morphodynamics. 

 

 

 

Fig. 10 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1 

and 7-9. Cross-shore distribution of (c) bed load and (d) suspended LST for cases 1 and 7-9 (different 

wave heights: listed in figures). Flux units are m
3
s

-1
m

-1
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Wave motions and breaking that propagate obliquely to the beach generate both 

cross/longshore currents and play a substantial role in sediment transport (Longuet-Higgins 1970). 

These processes are strongly dependent on wave angle. Fig. 11 displays that, with increasing wave 

angle, foreshore profile changes, berm size and volume of transported sediments decrease. Fig. 12 

shows that both bed- and suspended sediment fluxes in both cross- and longshore directions 

decrease with increasing wave angle. 

 

 

 

Fig. 11 Simulated (a) foreshore profile changes and (b) sediment concentration for cases 1 and 10-12 

(different wave angles: listed in figures). Sediment concentration units are mgl
-1
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Interactions between tide and wave can affect the nearshore hydrodynamics and 

morphodynamics (Pattiaratchi and Collins, 1984). The main effect of tide in the morphodynamics 

of this case is the changing location of the breaking wave during different phases of the tide; the 

wave imposed in the model breaks in different cross-shore locations, and affects the morphological 

evolution of the beach. As it is seen in Fig. 7(a), the tide with the low amplitude, similar to what is 

used in this simulation, do not have a lot of effect on the beach morphology; but when wave is 

added the tide shows its effect by moving the breaker zone onshore and offshore, resulting in a 

wider breaking zone, and higher nearshore bar. In spite of its significance, detailed simulation of 

combined waves and tides is not often conducted. This is because hydrodynamics of waves and 

tides are complex and act on different time scales (Xin et al. 2010, Bakhtyar et al. 2013a).  

 

 

 

Fig. 12 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1 

and 10-12 (different wave angles: listed in figures). Cross-shore distribution of (c) bed load and (d) 

suspended LST for cases 1 and 10-12. Flux units are m
3
s

-1
m

-1
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Foreshore profile changes and sediment concentration for cases with different tidal ranges are 

given in Fig. 13. Fig. 7, in agreement (Trim et al. 2002), shows that tidal forcing alone is not 

sufficient to drive sediment circulation and formation of the bar and berm. However, Fig. 13 shows 

that tidal amplitude is important for the combined wave and tide cases. Fig. 14 shows that, with 

increasing the tidal amplitude, both bed load and suspended sediment flux decrease. A comparison 

of Figs. 11 and 13 shows that the wave height is a more important factor than tidal range to 

determine the beach profile changes. Sediment transport in the nearshore region is dependent on 

wave energy (Karunarathna et al. 2005, Bakhtyar et al. 2010, 2012b). Since wave energy is 

proportional to the square of wave height, higher waves induce a greater sediment flux. 

Furthermore, the surf zone width increases as the wave height and wave energy increase, and a 

larger bar is generated (Hughes and Chiu 1981). For the tidal case, a very small volume of material 

was transported and did not cause considerable changes in the beach profile. This is because, under 

tidal forcing, TKE, flow velocity, and energy are low during both flood- and ebb- tide, and 

sediment resuspension is less. However, simulations that neglect the effects of tides are unable to 

reproduce accurately beach evolution when waves are present. 

 

 

Fig. 13 Simulated (a) foreshore profile changes and (b) sediment concentration for cases 1 and 13-15 

(different tidal ranges: listed in figures). Sediment concentration units are mgl
-1
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Fig. 14 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1 

and 13-15. Cross-shore distribution of (c) bed load and (d) suspended LST for cases 1 and 13-15 (different 

tidal ranges: listed in figures). Flux units are m
3
s

-1
m

-1
 

 

 

3.5 Influence of beach characteristics on nearshore morphology 
 

Beach type and corresponding wave breaking type can be classified into two categories 

(Aagaard and Hughes 2006): (i) intermediate beach and plunging breakers (steep beaches) and (ii) 

dissipative beach and spilling breakers (gentle beaches). Two major parameters that determine the 

beach type are sediment grain size and beach slope (Miles et al. 2006, Bakhtyar et al. 2012a, b). 

Numerical simulations were run for different beach slopes and for a range from coarse to fine sand 

beaches (cases 1, 16-20). 

 

83



 

 

 

 

 

 

R. Bakhtyar, A. Dastgheib, D. Roelvink and D.A. Barry 

 

 

 

Fig. 15 Simulated (a) foreshore profile changes and (b) sediment concentration in the cross-shore 

direction for cases 1, 16 and 17 (different bed slopes: listed in figures). Sediment concentration units are 

mgl
-1

 

 

 

Predicted beach profiles for different bed slopes (cases 1, 16 and 17) in the cross-shore 

direction are shown in Fig. 15. The results show that, in the cross-shore direction and for steeper 

beaches relative to milder beaches, the berm and bar sizes and beach profile change and are greater, 

and sediment transport flux is larger. This is due to several factors such as (Trim et al. 2002): (i) on 

the steeper beach, wave breaking occurs further onshore, therefore the wave energy is increased in 

the nearshore zone, (ii) as beach slope increases, the return flow and undertow velocity increases, 

which is important for sediment transport in the surf zone (Masselink and Black 1995), (iii) on 
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steeper beaches, the required velocity magnitude for initiation of sediment motion decreases 

(because bed slope is close to sediment angle of repose), (iv) on steeper slopes, the swash depth is 

larger than that on milder slope; therefore the governing mode of sediment transport is in 

suspension, so that sediments remain in the water column and are transported offshore by the 

undertow (Horn and Mason 1994). In the longshore direction, the sediment transport flux is larger 

for more gentle beaches. The zig-zag pattern in the swash zone is most relevant under low-energy 

conditions, generally associated with a gentle beach profiles. 

 

 

 

Fig. 16 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1 

and 16-18. Cross-shore distribution of (c) bed load and (d) suspended LST for cases 1, 16 and 17 

(different bed slopes: listed in figures). Flux units are m
3
s

-1
m

-1
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Fig. 17 Simulated (a) foreshore profile changes and (a) sediment concentration in the cross-shore direction 

for cases 1 and 18-20 (different grain sizes: listed in figures). Sediment concentration units are mgl
-1

 

 

 

Figs. 17(a) and 17(b) show foreshore profile changes and sediment concentration in the 

cross-shore direction for different grain sizes. Simulated beach profiles show different deposition 

and erosion shapes on the beach face. The predicted profile for the finest sand (case 1) reveals 

deposition and generation of a berm above the SWL and erosion and formation of bar beneath it. 

By increasing the sediment size, the volume of sediment transport and changes in beach profile 
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decrease. For coarser grain sizes, erosion occurs on the upper beach face and bars form on the 

lower part of beach face. Furthermore, a comparison between the four grain sizes shows that when 

the sediment diameter is small, the sediment transport rate is large (panel b). The maximum 

sediment transport is found near the breaking point and close to shoreline (cross-shore distance 

near 1.025 × 10
5
 m, Fig. 17(b)). 

 

 

 

 

Fig. 18 Spatial distribution of (a) bed load and (b) suspended cross-shore sediment transport for cases 1 

and 19-21. Cross-shore distribution of (c) bed load and (d) suspended LST for cases 1 and 18-20 (different 

grain sizes: listed in figures). Flux units are m
3
s

-1
m

-1
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A comparison between the sediment transport flux in cross-shore and longshore directions 

shows that the sediment flux in the cross-shore direction is two orders of magnitude larger than 

that in the longshore direction (Fig. 18). In addition, in both directions, the suspended sediment 

flux is larger than the bed load flux. This may due to the different settling velocities: Small grains 

are entrained after wave breaking and swash motion, but they do not have enough time to return to 

the bed. Therefore, through the long/cross-shore currents, the grains in the water column are 

suspended and transported. While bed load and suspended sediment flux for the four grain size 

show a similar pattern, there are dissimilarities in the magnitude and position of maximum 

sediment flux. Sediment concentration and suspended sediment fluxes are significantly larger in 

the reference case than in the other three cases with larger grain sizes, for which concentration and 

fluxes are comparable (Figs. 17(b), 18(b) and 18(d)). Conversely, bed load transport occurs over a 

reduced section along the upper beach profile for the smaller grain size compared to the larger 

sizes where significant bed load fluxes are sustained over wider portion of the beach profile (Figs. 

18(a) and 18(c)). Coarser grain sizes form a group that is distinct from the reference case with 

respect to sediment transport. 

Sediment travel distance depends on sediment size. Coarser sediments move less and are more 

often transported as bed load than suspended load. An indication of the horizontal to vertical travel 

ratio, Δx/Δy, is given by (Le Méhauté, 1970) Up/ws, where Up is the horizontal peak velocity and 

ws is the terminal velocity. Stokes law is not valid to estimate the terminal (settling) velocity. Here, 

the expression of Ferguson and Church (2004) was used, which expresses settling velocity as a 

function of sediment size 
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                           (5)

 

where R is the submerged specific gravity, g is the magnitude of gravitational acceleration and v is 

the kinematic viscosity of the fluid. For natural sand grains, Ferguson and Church (2004) 

recommend C1 = 20 and C2 = 1.1. For the different sediment sizes used in the present study (i.e., D 

= 0.2, 0.5, 0.8, 1 mm), Δx/Δy = 32.25, 11.11, 7.52, 6.41, respectively. The ratio for the reference 

case is 3 to 4 times larger than for all the other simulated cases, which have similar ratios. This is 

consistent with model predictions. There seems to be a threshold value for the travel ratio (roughly 

between 10 and 30, and thus between 0.2 and 0.5 mm for grain sizes) separating two distinct types 

of sediment transport configurations. Finally, within the group of coarser grains, the travel ratio 

varies very little as the grain size increases. The results for suspended load fluxes show no 

discernible differences between the largest two sizes.  

 

 

4. Discussion 
 

Summary plots showing the effects of selected parameters on sediment transport fluxes and 

flux ratios are presented in Figs. 19 and 20. Flux predictions for all the numerical experiments of a 

given series are plotted against the varying parameter in the series. The best linear fit to each series 

is provided for physical variables. Sediment transport fluxes are mostly occurring in the 

cross-shore direction (Fig. 19(f)). Waves are the dominant forcing controlling sediment transport 

fluxes (Fig. 19(f)). Consistently, wave height yields the best fit of all parameters with both 

cross-shore and longshore sediment fluxes (Fig. 19(b)), as well as a good fit with onshore to 
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offshore and longshore to cross-shore flux ratios (Fig. 20(a)). Net fluxes increase with increasing 

wave height (Fig. 19(b)). Decreasing wave height increases the proportion of onshore to offshore 

fluxes, almost reaching a neutral net balance (Fig. 20(a)). Seasonal variability in wave climate is 

known to affect the equilibrium beach profile (Saravanan and Chandrasekar 2010, Ruggiero et al. 

2010). Steep profiles are observed in winter under large waves with high erosive power while 

summer profiles are gentler as smaller waves induce onshore sediment transport (Dail et al. 2000, 

Yates et al. 2011). 

 

 

Fig. 19 Cross-shore and longshore sediment flux vs. (a) sediment diameter, (b) wave height, (c) beach 

slope, (d) wave angle. Cross and longshore sediment fluxes for (e) different turbulence closure models, 

and (f) different oceanic forcing. Blue circles are cross-shore sediment and red squares are longshore flux. 

Flux units are m
3
s

-1
m

-1
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Fig. 20 Onshore/offshore and longshore/cross-shore sediment flux ratio vs. (a) wave height, (b) tidal 

amplitude, (c) beach slope, (d) wave angle, (e) sediment diameter. (f) Onshore/offshore and 

longshore/cross-shore sediment flux ratio for different oceanic forcing. Blue circles are cross-shore 

sediment and red square symbols are alongshore flux 
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Under wave action, tidal forcing affects the beach sediment budget by increasing the 

predominance of offshore over onshore transport (Fig. 20(f)) by a factor of 10. Accordingly, the 

increasing linear fit of the tidal range to the onshore-to-offshore flux ratio is convincing (Fig. 

20(b)). Large tidal ranges enhance longshore with respect to cross-shore fluxes, although the latter 

remains predominant (Fig. 20(b)). 

The dependence of cross-shore sediment fluxes on wave angle is well described by a 

decreasing linear fit (Fig. 19(d)). Net cross-shore fluxes revert from offshore to onshore with 

increasing wave angle. The relative contribution of longshore versus cross-shore fluxes increases 

(Fig. 20(d)). As the wave angle increases, the longshore flux varies non-monotonically, perhaps 

indicating some symmetry around a direction of maximum longshore flux near the normal 

incidence to the shoreline (Fig. 19(d)). Sediment fluxes have a non-linear dependence on grain size 

(Fig. 19(a)), with a threshold between 0.2 and 0.5 mm. Fluxes strongly increase below the 

threshold, as expected with sediment entrainment laws following Bagnold’s energetics approach 

where transport is a high-order function of excess Shields number (ratio of shear stress to gravity 

effects, inversely proportional to grain size). Beach slope has a consistent effect – there is a 

well-defined increase in cross-shore sediment transport flux as the beach gets steeper. 

 

 
5. Conclusions 
 

Part I of this paper describes 3D hydrodynamic models under different beach types and oceanic 

forcing. Part II presents results of this model for sediment transport and beach morphology.  

The simulations showed that wave forcing alone is sufficient to drive a sediment circulation 

pattern that results in bar and berm formation. The addition of tidal forcing to wave action has a 

notable effect on longshore suspended sediment transport fluxes. Numerical results showed that 

the k-ε and H-LES closure models give more reasonable results (consistent with existing 

morphodynamic understanding) than the results of the other turbulence models. The results of the 

3D model confirmed that the wave energy, beach grain size and bed slope are main factors 

affecting erosion/deposition, bed load and suspended load, and cross-shore and LST in the 

nearshore zone. In addition, for the same type of oceanic forcing, the beach morphology exhibits 

different erosive characteristics depending on grain size. Coarse- and fine-sand beaches differ 

significantly in their erosive characteristics (e.g., foreshore profile evolution is erosive and 

accretionary on the fine and coarse sand beaches, respectively), while net cross-shore fluxes revert 

from offshore to onshore with increasing wave angle. Decreasing wave height increases the 

proportion of onshore to offshore fluxes, almost reaching a neutral net balance. After one month 

(simulation time), the bathymetry is strongly non-uniform. The non-uniform resulting bathymetry 

is due to generation of two bars, and as soon as the initial bars start to grow it affects the flow field 

which again feeds back to the morphological changes. Beach profile steepness modifies the 

nearshore circulation pattern, significantly enhancing the vertical component of the flow. As the 

steepness increases; TKE, sediment concentrations and transport increase and there are several 

occurrences of plunging flow in the upper half of the water column in the foreshore. The numerical 

model results show that present process-based model is capable of simulating the hydro- and 

morpho-dynamics in both cross- and along-shore directions, providing results in reasonably good 

agreement with current understanding of beach processes. 
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Abbreviations 
 

ATM  Algebraic turbulence model 

H-LES Horizontal Large Eddy Simulation 

LST Longshore Sediment Transport 

NS Navier-Stokes 

SWL Still Water Level 

TKE Turbulent Kinetic Energy 

TDR Turbulence Dissipation Rate 

 

 

Nomenclature 
 

Variable Description Dimensions 

A tidal amplitude L 

c sediment concentration - 

C Chezy coefficient L
1/2

T
-1 

CD drag coefficient due to currents - 

D sediment diameter L 

SUSWf  
user-defined tuning parameter - 

h total water depth L 

g  
gravitational acceleration LT

-2
 

H wave height L 

k turbulent kinetic energy L
2
T

-2
 

M sediment mobility number due to waves and currents - 

R submerged specific gravity - 

ST, Sb, SS total, bed load and suspended sediment transport ML
-3

 

t time  T 

T wave period T 

U, V depth-averaged velocity in the horizontal, 

and curvilinear co-ordinates, respectively 

LT
-1
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UA velocity asymmetry value LT
-1

 

ws sediment settling velocity LT
-1

 

 
Greek 

 

β  local beach slope - 

μ dynamic viscosity ML
-1

T
-1 

ν kinematic viscosity L
2
T

-1 

Vν  
vertical eddy viscosity L

2
T

-1 

ε turbulence dissipation rate L
2
T

-3 

d  eddy diffusivity of sediment L
2
T

-1 

ρ f , ρs  
fluid and sediment densities, respectively ML

-3
 

δ  
water level above reference (datum)  L 

γ  phase lag coefficient   - 
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