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Abstract.    Declutching control is applied to a hemispherical wave energy converter with direct linear 
electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The 
direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time 
domain model is applied to dynamics of the hemispherical wave energy converter in both regular and 
irregular waves. And state space model is used to replace the convolution term in time domain equation of 
the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the 
converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin’s 
maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show 
that the wave energy converter with declutching control captures more energy than that without control and 
the former’s amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed 
power by declutching control is only slightly larger than 1. This may indicate that declutching control 
method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off 
systems in real random sea state, considering the error of prediction of the wave excitation force. 
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1. Introduction 
 

Floating oscillating bodies constitute a large class of wave energy converters, especially for 
offshore deployment (Falcao 2010). The oscillating motion of a floating body or the relative 
motion between two moving bodies is converted to electricity by the Power-Take-Off (PTO) 
system. Among various power conversion systems, two typical PTO systems are hydraulic 
cylinders driving a hydraulic motor and direct linear electric PTO (Lopez et al. 2013). For the 
hydraulic cylinders PTO system, the body motion is converted into hydraulic energy. And then the 
hydraulic energy is converted into electrical energy by electrical generator that is driven by a fast 
hydraulic motor. For the direct linear electric PTO system, the oscillating motion of the body is 
converted into electricity directly by linear permanent magnet generators. Like mechanical 
oscillators, the oscillating wave energy converter is characteristic of frequency-dependent response 
showing the phenomenon of resonance. The maximum power is obtained when the wave period 
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agrees with the natural period. However, the conversion is less powerful with wave periods off 
resonance, in particular so if the resonance bandwidth is narrow. 

Thus control strategies have been applied to the oscillating wave energy converter in order to 
enhance the power capture efficiency. Early work focused on the use of mechanical impedance 
matching schemes to maximize the velocity and hence the captured power from regular waves 
(Falnes, 2007). However, this method leads to unrealistically large oscillation amplitude, which is 
not applicable for physical constraint handling or nonlinear PTO systems (Falnes 2002a). Then 
latching control strategies were introduced to the realm of wave energy utilization. Hoskin and 
Nichols (1986) studied the latching control strategy and first converted determination of latching 
and releasing time into an optimal problem and made use of the Pontryagin’s maximum principle 
to solve it. Babarit and Clement (2006) studied latching control of wave energy converters in 
irregular waves and applied the strategy of latching control to SEAREV wave energy converter.  

Falcao (2008) applied latching control to the oscillating-body converters equipped with a 
high-pressure hydraulic power take-off (PTO) mechanism. As an alternative to latching control 
strategies, Babarit et al. (2009) considered another strategy of declutching control or unlatching 
control to SEAREV wave energy converters with hydraulic cylinders driving hydraulic motors. 
Declutching control strategy consists in switching on and off alternatively the wave energy 
converters’ PTO systems, which can be achieved practically using a simple by-pass valve for the 
hydraulic cylinder PTO system. Their results showed that declutching control strategy can lead to 
energy absorption performance equivalent to that of pseudo-continuous control, improving the 
power capture performance in both regular and irregular waves.  

In present study, the declutching control strategy is applied to a hemispherical wave energy 
converter with direct linear electric PTO system. The linear electric PTO system can be simplified 
as a linear spring and a linear damper. As for the direct linear electric PTO system, declutching 
control can be obtained by adding a power-electronics switch. The converter is a single 
degree-of-freedom body oscillating in heave direction with other degrees-of-freedom restricted. 
Time domain model, which was first introduced to ships in wavy seas by Cummins (1962), is 
applied to analyze the dynamic response of the hemispherical wave energy converter in both 
regular and irregular waves. Due to the complexity and inconvenience of convolution term for 
calculation in time domain model, state space model is used to replace the convolution one. The 
optimal command theory based on Pontryagin’s maximum principle is used to determine the 
controlled sequences of PTO forces. Comparisons are made between power capture by the 
hemispherical wave energy converter with and without declutching control. And the response of 
the converter’s displacement and velocity is also presented. 

 
 
2. Description of the model 

 
A hemisphere floating under the water surface is adopted as the geometry for the converter (Fig. 

1). The floater is rigidly connected to the direct linear electric Power-Take-Off (PTO) system, 
which is simplified as a linear damper and a linear spring. Due to the symmetry of the hemisphere, 
only one-directional wave is adopted to analyze the interaction with the converter. Only heave 
oscillation of hemisphere is considered with other degrees of freedom ideally constrained. It 
should be mentioned neither the viscous effect of the fluid nor the frictions in the PTO system are 
considered. 

In this paper, the water depth is assumed to be infinite. The following values of parameters of  
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Fig. 1 The sketch of a hemispherical oscillating wave energy converter 
 
 

the converter are adopted for analysis of oscillating wave energy converters with latching control. 
The radius of the hemisphere is R =5 m. The density of water is ρ=1025 Kg/m3. The gravity 
acceleration is g = 9.81 m/s2. The mass of the hemispherical converter is the same as the mass of 
displaced water in calm surface, m=2πR3ρ/3. The area of the cross section of the hemisphere is S 
=πR2. As indicated by Vicente et al. (2013), the equivalent stiffness of the PTO system is 
K=0.1ρgS, with a 25% variation. 

The equivalent damping coefficient of the PTO system is chosen as the same value of 
radiationdamping of the converter in resonance condition (Evans 1980), which satisfies the 
following conditions 

1/2{ }
( )z

gS K

m A







                                
 (1) 

 ( )zC B                                     (2) 

here, ω is the circular frequency of the incident waves. Az(ω) and Bz(ω) is the hydrodynamic 
coefficients of added mass and radiation damping of the hemisphere for heave oscillation. C is the 
equivalent damping coefficient of the PTO system. According to Eq. (1), the natural (resonance) 
frequency of the hemispherical wave energy converter studied is about 1.4 rad/s. And in our 
calculation, the value of C is 91000 kg/s with a 25% variation.  
 

 
3. Analysis in regular waves 

 
In regular waves, wave absorption by the oscillating wave energy converter can be analyzed 

using the time-domain model, which was first introduced to ship motion in wavy seas by Cummins 
(1962). The equation of motion in heave direction of the hemispherical wave energy converter 
(shown in Fig. 1) can be expressed as  

0

( ( )) ( ) ( ) ( ) ( ) ( ) ( )
t

z z dzregularm A z t k t z d Cz t gS K z t f            

             

(3) 

here, Az (∞) are the limiting value of the added mass for =  . ( )zk t is the retardation function.
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dzregularf is the wave excitation force of the hemispherical converter in regular waves.  

The moduli of wave excitation force dzF , which includes Froude-Kriloff force and diffraction 

force (Faltisen 1990), is proportional to the amplitude of the incident waves Aω. This can be 
written as ( )dz zF A   , where ( )z  is the excitation force coefficient, dzF is the complex 

amplitude of the wave excitation force dzf . Falnes (2002b) studied the excitation force coefficients 

of heave oscillation for an axisymmetric body in deep water and related the excitation force 
coefficients with radiation damping, known as Haskind’s relation  

3
1/2

3

2 ( )
( ) ( )z

z

g B 


 
                            

(4) 

From mathematical view, declutching control is conducted by introducing a control variable u, 
which is a sequence of binary value of 0 or 1, to the damping force of the PTO systems 

,d PTOF uCz  
                               

(5) 

here,
,d PTOF is the damping force of PTO system. 0u  means declutching control is applied, and 

the PTO system is disengaged from the oscillating body. Then the controlled equation of motion in 
heave direction of the converter can be written as  

0

( ( )) ( ) ( ) ( ) ( ) ( ) ( )
t

z z dzregularm A z t k t z d uCz t gS K z t f            

              

(6) 

 
3.1 State space model  
 
The convolution terms in Eqs. (3) and (6) indicate the memory effect of fluid in the radiation 

forces. The kernel (also called retardation function) can be written as  

0

2
( ) ( )cosz zk t B td  





                             (7) 

Hulme (1982) gave the tabulated values, as well as asymptotic expressions, for the coefficients 
of added mass and radiation damping of a floating hemisphere oscillating in deep water in 
dimensionless form. These theoretical values of radiation damping are taken for our calculation. 

The convolution terms in the time domain equation makes it inconvenient for analysis of 
motion control of the converters. Thus the state-space model (Alves 2012) is used to replace the 
convolution term. A general state-space model has the form 

( ) ' ( ) ' ( )

( ) ' ( )

X t A X t B u t

y t C X t

 




                             
(8) 

where ( )u t and ( )y t are called the input and output respectively of the state-space. ( )X t  is the 

state vector. 'A , 'B and 'C are the coefficients of the state space. The convolution term in Eq. (3) is 
replaced by state-space model as  
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0
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( ) ( ) ( )
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z
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I t k t z d

I t C X t
  

 
  


 

                    (9) 

The problem now is to solve the matrix 'A , 'B and 'C to approximate the convolution model, 
which is also called system identification (Taghipour et al. 2008). In frequency domain, the kernel 
has the relationship with the coefficients of added mass and damping, expressed as follows 

0

( ) ( ) ( ) ( ( ) ( ))j
z z z z zk j k e d B j A A     


    

                  

(10) 

here ( )zk j is the frequency response of the convolutions using Fourier transform. j  is the 

imaginary unit. The least square technique is then used to find a rational function ˆ
zk that 

approximates ( )zk j for the given set of circular frequencies following the restrictions given by 

Perez and Fossen (2011). This approximation is restricted to imaginary values, the rational 
function is defined, using s j , as 

1 2
1 2 1

1
1 0

ˆ ( , )
n n

n n
z n n

n

p s p s p s
k s

s q s q


 
 




   


                          
(11) 

here, n is the order of the system. pi(i=1,2,…,n-1) and qi(i=0,1,…n-1) are coefficients of the 
numerator and denominator respectively. Eq. (11) is also called transfer function. As long as the 
coefficients 1 2 1 1 2 0[ , , , , , , , ]n n n np p p q q q       are found using the least square method, the 

matrix and vectors of state space model which approximate the convolution integral can be written 
as  

1 2 3 1 0
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
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1

0

' 0

0

B

 
 
 
 
 
 
  



;  1 2 1' , , , , 0n nC p p p  
     

(12) 

 

 

Fig. 2 The identification of the retardation function in frequency domain: the upper one is the amplitude 
of ( )zk j ; the lower one is the angle of ( )zk j  
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Fig. 3 The identification results of the added mass and radiation damping in frequency domain: the upper 
one is the radiation damping; the lower one is the added mass 

 
 
For the hemispherical wave energy converter in this study, by the method of iteration, the order 

of the system is chosen n=5, providing a rather good identification of the retardation function in 
frequency domain. The identification results of the order 5n  are shown in Figs. 2 and 3.  

As shown in these two figures, the identification results agree well with the original data. The 
results of coefficients for state space model in Eq. (12) are 
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As a result, the Eq. (3) can be replaced by  

( ( )) ( ) ' ( )+ ( ) ( ) ( )z dzregularm A z t C X t Cz t gS K z t f        

( ) ' ( ) ' ( )X t A X t B z t                             (14) 

Denote a vector  with the dimension of 7 1 , and [ ]'z z X   . Then 
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Then Eq. (15) can be calculated using the 4th order Runge-Kutta method. 
 
3.2 The optimal command theory  
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The optimal command theory based on Pontryagin’s maximum principle, which is proposed by 
Hoskind and Nichols (1986), is used to conduct declutching control on the hemispherical wave 
energy converter in regular waves. Consider wave excitation forces on the hemispherical converter 
over a long duration [0, T], the objective is to gain the maximum energy in this duration 

0

max ( , , )
T

u
E W t u dt 

                           

(16) 

here, E is the absorbed energy. W(t,λ,u)is the instantaneous power. For the hemispherical wave 
energy converter, W(t,λ,u)=uCż2=uCλ2

2. And u =1 indicates declutching control is applied and u
=0 means no control is applied. The state vector satisfies Eq. (14), which can be rewritten as  

( , , )f t u                                 (17) 

A Hamiltonian function is defined as 

( , , ) ( , , )TH W t u f t u                            (18) 

 is the adjoint state vector with the same dimension as , which can be obtained by  

i
i

H



 




                                  
(19) 

The state vector and the adjoint state vector have the initial and final condition respectively 

(0) 0  ;   ( ) 0T                              (20) 

The optimal command theory based on Pontryagin’s maximum principle, transform the 
objective of gaining the maximum energy E to maximizing the value of the Hamiltonian function
H based on choosing the optimum value of u for every time step. The calculation is an iterative 
process: the device motion (without control) is numerically calculated by Eq. (15). Then the 
adjoint state vector can be computed by Eq. (19). After both and are obtained, the optimum 
value of control variable u at every time step can be calculated by maximizing the value of H . 
And then iterate the process until the results converge to a steady state.  

The declutching control strategy needs the knowledge of the future of the excitation force, 
which requires prediction of incoming waves. Some promising results of short-term wave 
forecasting have been obtained by Fusco and Ringwood (2010) using linear AR (auto-regressive) 
models. By modelling the wave height at a single point using AR systems of varying orders, 
predictions are made up to ten seconds in the future. However, these considerations are beyond the 
scope of this study, in which the time sequences of wave excitation force is supposed to be already 
known.  

 
3.3 Comparison of motion with and without declutching control 
 
For the declutching control based on optimal command theory, the averaged power captured by 

the hemispherical converter is calculated for regular waves of several circular frequencies. And the 
wave amplitude is chosen 1m with a 50% variation.  

The controlled motion of the hemispherical wave energy converter approximated by state space 
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model in regular waves is expressed as  
( ( )) ( ) ' ( )+( ) ( ) ( ) ( )z dzregularm A z t C X t C Gu z t gS K z t f         

( ) ' ( ) ' ( )X t A X t B z t                              (21) 

here, G is a coefficient with constant value. And the Hamiltonian function is  
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(22) 

here, Cj' is the jth element of the vectorC'. Bj' is the jth element of the vector B'. Aij' is the element at 
row i, column j of the matrix 'A . 
 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 4 Absorbed power as a function of the number of iteration with Aω=1 m 0.1K gS , 91000 /C kg s  

(a) srad /7.0 ; (b) srad /4.1 and (c) srad /96.1  
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By Eq. (19), the adjoint vector satisfies 
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



                   

(23) 

From Eq. (22) we find the Hamiltonian function H is a linear function of the control variable 
u . So the optimum value of u can be only the extreme ones 0 or 1, which follows the principle 

2 2 2
20 0

1

if
m Au

otherwise

 


    
                           

(24) 

As determination of control variable is an iterative process, the averaged power is chosen as the 
criteria for convergence. The duration for calculation is chosen as T = 4000s. Figs. 4(a)-4(c) are 
some illustrated examples of convergence studies with regular waves of several frequencies with 
Aω=1 m, K=0.1ρgS, C=91000 kg/s. It can be found that the calculation reaches to a steady state 
within 10 iteration steps. Generally, almost all the iterations for the selected circular frequencies 
converged within 10 iteration steps.  

Figs. 5(a)-5(g) show the comparison of absorbed power by the hemispherical wave energy 
converter with and without declutching control. From the left figure, it can be seen that 
declutching control can slightly increase the power capture by the oscillating wave energy 
converter with direct linear Power-Take-Off systems, majorly in the frequency region near the 
natural period of the converter. An interesting phenomenon can be found that declutching control 
becomes destructive at the incident frequency equaling 1.54 rad/s, as shown in the right figure of 
Fig. 5. For a given time interval, declutching control amplifies the oscillation amplitude of the 
converters, which is constructive to power capture performance. Whereas the control strategy 
reduces the time during which the PTO system is working as u=0 indicates no energy is converted 
by the PTO system. Thus the destructive effects near 1.54rad/s may indicate that the benefit of 
amplification of the oscillation amplitude of the converter by declutching control is counteracted 
by reduction of the time of work by the PTO systems of the converter. The amplification ratio of 
the averaged power by declutching control is slightly larger than 1, which indicates that 
declutching control may be inapplicable for the wave energy converter with direct linear electric 
Power-Take-Off systems if the error of prediction of wave excitation force is considered. Variation 
of values of stiffness (Figs.5 (a), 5(d) and 5(e)) and damping coefficient (Figs. 5(a), 5(b) and 5(c)) 
of the PTO system changes the absorbed power with and without declutching control, as well as 
the amplification ratio of power. As the system is linear, it can be found that variation of wave 
amplitudes does not influence the amplification ratio of power, as shown in Figs. 5(a), 5(f) and 
5(g). 

Figs. 6(a)-6(i) are some examples of time series of wave elevation and controlled heave motion 
of the oscillating wave energy converter, together with time sequences of controlled variables, 
based on optimal command method. Obviously the motion is slightly magnified by the control 
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strategy. Compare 
the controlled variable u in Figs. 6(c), 6(f) and 6(i), it can be observed that a larger portion of 

declutching time indicates a larger value of amplification ratio of the power with and without 
declutching control. Generally, the declutching time of the oscillating wave energy converter only 
takes a small portion of the whole duration, which implies that the optimal case works very closely 
to the original uncontrolled condition. Thus declutching control seems to slightly affect power 
capture performance of the converter with direct linear electric PTO systems. 
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Fig. 5 Comparison of the power obtained by the hemispherical wave energy converter with and without 
control , the left one is the averaging absorbed power and the right one is the ratio: (a) Aω=1m,

0.1K gS , 91000 /C kg s ; (b) Aω=1m, 0.1K gS , 68250 /C kg s ; (c) Aω= 1 m, 0.1K gS , 

113750 /C kg s ; (d) Aω=1m, 0.075K gS , 91000 /C kg s ; (e) Aω=1m, 0.125K gS , 

91000 /C kg s ; (f) Aω=0.5m, 0.1K gS , 91000 /C kg s  and  (g) Aω=1.5m, 0.1K gS , 

91000 /C kg s ; 
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(l) 

Fig. 6 Time series of wave elevation and response of amplitude and velocity (red line represent that with 
declutching control, and black line means no control), together with time sequences of controlled 
variable u , Aω=1 m, 0.1K gS , 91000 /C kg s : (a), (b), (c) and (d): =0.7 rad/s; (e), (f), (g) 

and (h):  =1.4 rad/s; (i), (j), (k) and (l):  =1.96 rad/s 
 
 

4. Analysis in irregular waves 
 

Real irregular waves may be represented, in a fairly good approximation, as a superposition of 
regular waves, by defining a wave spectrum. As the semi-sphere oscillating body is axisymmetric 
and insensitive to wave direction, the wave spectrum is assumed to be one-dimensional. 
JONSWAP spectrum distribution is adopted in the calculation, which is defined by  

2

2

(0.159 1)2 exp[ ]
/3 2

4 5 4

1948
( ) 319.34 exp

( )

pT

w

p p

S
T T



 
 


 

   
                      

(25) 

where /3w is the significant wave amplitude and pT is the peak period of the spectrum.   is the 

peak lifting factor, the value of which is 3 in our calculation.  is the peak shape parameter, when

P  , σ=0.07; when P  , σ=0.09. P  is the peak frequency, which is related to peak 

period by 2 /P PT  . The spectral distribution has the unit of m2/s.  

For time-series calculations in irregular waves, the spectral distribution in Eq. (25) should be 
discretized as the sum of a large number N of regular waves with frequency 0n n     , where 

0 is the lowest frequency considered,  is a small frequency interval. In our calculation,

0 0.14 /rad s  , 0.00042  . The amplitude of the nth wave component is 2 ( )i iA S    . The 

excitation force in irregular waves can be written as  

( ) ( ) cos( )dzirregular z i i i i i
i

f t A t      
                     

(26) 

here, i is the phase response of the excitation force and i is chosen as a random real number in 

the interval (0, 2 ) . In the calculation, the significant wave amplitude is chosen as
/3 1w m  , 

together with K=0.1ρgS, C=91000 kg/s. 
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Fig. 7 Power obtained by the hemispherical wave energy converter without and with declutching control 
in irregular waves of various peak frequencies 
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Fig. 8 Ratio of power obtained by the hemispherical wave energy converter without and with declutching 

control in irregular waves of various peak frequencies 

 
 
Fig. 7 is the averaged power absorbed by the hemispherical wave energy converter with and 

without declutching control in irregular waves. It can be seen that declutching control can slightly 
enhance the performance of power capture for the peak circular frequencies considered. The ratio 
of power with and without declutching control is shown in Fig. 8. For the peak frequency less than 
the natural frequency of the converter, the ratio becomes larger with the value of peak frequency of 
irregular waves increasing. Near the natural frequency region, the ratio slightly decreases. And in 
the high peak frequency region, the ratio increases with the value of peak frequency again. Like 
the results in regular waves, the ratio is less than 1.1 for all peak frequency considered. 

Figs. 9-11 are some illustrated examples of the responses of displacement and velocity, together 
with time sequences of controlled variableu . The amplitude of displacement and velocity of the 
hemispherical wave energy converter with declutching control is slightly larger than that without 
control. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 9 Time series of wave elevation and motion of the oscillating wave energy converter without and 

with declutching control based on optimal command method for P =0.6 rad/s (red line: motion 

with declutching control; black line: motion without control): (a) wave elevation (b) displacement 
of the converter; (c) velocity of the converter and (d)time sequences of controlled variable u  

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
-1

-0.5

0

0.5

1

time (s)

W
av

e 
el

ev
at

io
n 

(m
)

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (s)

H
ea

ve
 (

m
)

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

time (s)

V
el

oc
ity

 (
m

/s
)

3900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000
-1

-0.5

0

0.5

1

1.5

2

time (s)

C
on

tr
ol

le
d 

va
ria

bl
e 

u

78



 
 
 
 
 
 

Declutching control of a point absorber with direct linear electric PTO systems 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10 Time series of wave elevation and motion of the oscillating wave energy converter without and 

with declutching control based on optimal command method for P =1.3 rad/s (red line: motion 

with declutching control; black line: motion without control): (a) wave elevation; (b) displacement 
of the converter; (c) velocity of the converter and (d)time sequences of controlled variable u  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 11Time series of wave elevation and motion of the oscillating wave energy converter without and 

with declutching control based on optimal command method for P =2.0 rad/s (red line: motion 

with declutching control; black line: motion without control): (a) wave elevation; (b) displacement 
of the converter; (c) velocity of the converter and (d)time sequences of controlled variable u  
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5. Conclusions 
 
In the present work, declutching control in both regular waves and random sea state has been 

investigated for a hemispherical wave energy converter with direct linear electric Power-Take-Off 
systems oscillating in heave direction. For the direct linear electric Power-Take-Off system, 
declutching control can be simply applied by adding a power-electronics switch to control 
Power-Take-off forces. 

By means of the optimal command method, it is shown theoretically that declutching control 
strategy can slightly increase power capture by the oscillating wave energy converter in regular 
waves for all circular frequencies considered. The amplification ratio of power with and without 
declutching control is less than 1.1, although larger than 1. For irregular waves of various peak 
frequencies, this strategy leads to the amplification ratio of averaged power absorbed by the 
converter locating in the interval between 1 and 1.1.  

In real random sea state, wave excitation force needs to be predicted for determining the time 
sequences of the controlled variable. Therefore, this declutching control strategy may be 
ineffective for oscillating wave energy converters with direct linear electric Power-Take-Off 
systems in real wavy seas considering the error of prediction, although the strategy has been 
theoretically proved to be effective for an oscillating converter with hydraulic cylinders with 
adequate prediction of the excitation force. 
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