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Abstract. New experiments focusing on the evolution characteristics of nonlinear wave trains were
conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness,
perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental
results show that the increasing wave steepness, increases the speed of sidebands growth. To study the
frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous
frequency of wave trains and the phase functions of each wave component. From the instantaneous
frequency, there are local frequency downshifts, even an effective frequency downshift was not observed.
The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of
instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the
early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier
waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower
sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of
the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large
imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum. 

Keywords: nonlinear waves; evolution; modulation instability; instantaneous frequency; spectra; wavelet
transform

1. Introduction 

Benjamin and Feir (1967) theoretically demonstrated that a deep-water Stokes wave is unstable to

small disturbances due to higher-order de-tuning resonant wave interactions, the amplitudes of the

disturbances growing exponentially along with the wave propagation, and the growth rate of the

sidebands being proportional to the square of the wave steepness. This unstable phenomenon was

experimentally confirmed by Benjamin (1967) and was then called Benjamin-Feir (B-F) instability

or the modulational instability. After the milestone work of Benjamin and Feir (1967), many studies

were carried out to further investigate the characteristics of the modulational instability mainly by

experimental (Lake et al. 1977, Melville 1982, Tulin and Waseda 1999, Hwung et al. 2007) and

theoretical (Chu and Mei 1970, Dysthe 1979, Kharif et al. 2010, Longuet-Higgins 1980, Trulsen
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and Dysthe 1996, Zakharov 1968) approaches.

Zakharov (1968) illustrated that the evolution of deep-water narrow band waves can be described

well by the nonlinear Schrdinger equation (NLS). Currently, most researches regarding the

modulational instability of deep water gravity waves are carried out in the framework of the NLS

equations. Although great progress has been obtained with this approach (Lake et al. 1978, Lo and

Mei 1985, Segur et al. 2005), experimental studies are lacking. 

Lake et al. (1977) was first experimentally verified the B-F instability theory and observed that

the lower sideband amplitude can exceed that of the initial carrier wave (i.e., the frequency downshift

phenomenon) and the evolution of non-breaking wave trains exhibited an approximate recurrence-type.

The prefect recurrence can also be demonstrated by the NLS equations (Lo and Mei 1985). Melville

(1982) conducted experiments with initially uniform wave trains and found that the frequency

downshift occurred after wave breaking. Later, Melville (1983) analyzed the process of deep-water

wave modulation in detail using the Hilbert transform, and used phase reversals (the local large

instantaneous phase change) to explain the frequency downshift that appeared after wave breaking.

This study found that phase reversal corresponded to waves with amplitudes close to zero. 

Tulin and Waseda (1999) systematically analyzed the modulational instability evolution in a large

wave flume using wave trains with initially imposed sidebands. The breaking events during the

wave modulation were discussed in detail in these experiments. Recently, Hwung et al. (2007)

conducted a series of experiments in a long wave flume with a length of 300 m; thus, the

modulation characteristics in the later stage could be observed. Hwung et al. (2007) found that

waves with initial steepness less than 0.11 exhibited a recurrence-type evolution; however, for wave

trains with larger steepness, the modulational instability eventually resulted in breaking.

Additionally, these experiments showed that the frequency downshift that occurred after breaking

was not permanent. 

Although great progress has been made in the previous experimental studies, there are still certain

aspects that have not been clearly understood, such as the instantaneous frequency evolution and the

phase function variations during the evolution process. These aspects are the primary motivation of

this research. The evolution of the instantaneous frequencies and phases is crucial for understanding

the characteristics of the modulational instability. The traditional method to extract the instantaneous

frequency and phase by the Hilbert transform (Melville 1983) cannot obtain the instantaneous

frequency and the phases exactly (Ma et al. 2010). In this study, the Morlet wavelet transform is used

to study the instantaneous frequency and phases. From Hwung et al. (2007) and Ma et al. (2010) the

method based on the Morlet transform can obtain the instantaneous frequency reasonably. 

In this study, a series of wave trains with added sidebands, varying initial steepness, and perturbed

amplitudes and frequencies are physically generated in a long wave flume. Following this introduction,

the experimental set-up and analysis methods are introduced in Section 2. A detailed discussion of the

results is given in Section 3. Lastly, in Section 4, the conclusions of this research are presented. 

2. Experimental set-up and data analysis

2.1 Experimental set-up

2.1.1 Wave flume

The experiments were conducted in the wave flume at the State Key Laboratory of Coastal and
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Offshore Engineering, Dalian University of Technology, Dalian, China. This flume is 65 m long, 2

m wide, 1.8 m high and was used with a water depth of 1 m. The detailed experimental set-up is

shown in Fig. 1. The flume is equipped with a hydraulically driven piston-type wavemaker and in

the following x =0 m is defined as the mean position of the wave maker. At another end of the tank

wave absorbers were installed to mitigate the wave reflection. Prior tests indicated that the reflection

of the flume for the waves used herein is less than 5%, thus the reflection effect can be neglected.

The water surface elevations were recorded simultaneously with 35 capacitance wave gauges, which

are delineated by filled circles in Fig. 1. The absolute accuracy of these wave gauges was of the

order of ±1mm. Before any experiments, these wave gauges were examined for soundness, cleaned

if necessary, and then calibrated.

In a physical wave flume, viscous dissipation due to sidewalls is ubiquitous (Banner and Peirson

2007, Tian et al. 2010). Experiments without breaking show that the energy dissipation along the

flume is approximately 18%. 

2.1.2 Wave generation

In this work, the evolution of wave trains with imposed sidebands are examined. In this way, the

background noise of the flume can be greatly suppressed (Tulin and Waseda 1999). A wave train

with imposed sidebands can be expressed as follows

(1)

(2)

(3)

where η denotes the wave surface elevation, ac, a+ and a- are the amplitudes of the carrier, upper

sideband and lower sideband, respectively, fc, f+ and f
−
 are the corresponding cyclic frequencies, δ f

is the frequency difference between the carrier wave and its sidebands, and φ+ and φ
−
 are the initial

phases of the sidebands. To provide the maximum growth rate, φ± are set to -π/4 (Benjamin and Feir

1967). And a is the equivalent wave amplitude. A number of experimental cases of nonlinear wave

trains with different initial wave steepness ε = ka (k is the wave number) and perturbation amplitudes

were generated. The detailed wave group parameters for certain cases are described in Table. 1. 

To reduce the effect of wave fronts, a finite ramp e (t) is added at the beginning and end of the

wave generation signals, as described by Tulin and Waseda (1999) 
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Fig. 1 Sketch diagram of the experimental set-up 
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(4)

where τ is the ramp duration and T is the total duration of the signal. 

2.2 Data analysis method

2.2.1 Wave spectra 

Wave spectra can describe the energy distribution as a function of frequency. From the spectrum,

the evolution of the frequency components energy can be detected. In this study, wave spectra A (f)

were obtained by fast Fourier Transform (FFT) and then smoothed with the Hanning window. The

frequency resolution of the spectra is approximately 0.012 Hz, which is small enough to distinguish

adjacent wave modes. 

From the wave spectra, the amplitudes of each frequency mode an can be estimated as the square

root of the energy of the spectral peaks by integrating the contributions from the neighboring

frequency bins

(5)

by doing this, the leakage of spectral energy due to finite length of the recorded time series can be

compensated to some extent. 

2.2.2 Instantaneous frequency extraction 

Investigating the variations of instantaneous frequencies of time series is a convenient way to

study the characteristic of the frequency modulation. The method for extracting instantaneous

frequency from the wavelet transform is adopted herein. 

The wavelet transform of a time series x (t) is defined as

(6)
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Table 1 Wave group parameters

Case fc δf (Hz) kh ε a±/a0

SB1 1.00 0.10 4.03 0.13 0.05 No

SB2 1.00 0.10 4.03 0.19 0.05 Yes

SB3 1.00 0.10 4.03 0.23 0.05 Yes

SB4 1.25 0.10 6.30 0.13 0.50 Yes
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where the asterisk denotes the complex conjugate and ψa,τ (t) represents a family of functions called

wavelets that are constructed by translating in time, τ and dilation with scale, a, a mother wavelet

function ψ (t). The scale a can be interpreted as the reciprocal of frequency, f = 1/a. One of the

most extensively used mother wavelets in harmonic analysis is the Morlet wavelet (Massel 2001); it

is a plane analytical wave modulated by a Gaussian envelope and is defined as

(7)

where ω 0 is the peak frequency of the wavelet, usually chosen to be 6.0 (Farge 1992). Due to the

multi-analytical characteristic of the Morlet wavelet transform, the wavelet coefficients at each scale

are actually the corresponding analytical signal, thus, the phase functions of each wave component

can also be obtained. Hence, the process for filter the signal before Hilbert transform used by

Banner and Tian (1998) and Tian et al. (2008) can be ignored. 

The wavelet energy spectrum P(s,t) can be defined as

(8)

At any time tn, the scale with the largest energy can be regard as the reciprocal of the

instantaneous frequency (Ma et al. 2010). An illustration for this method to extract the

instantaneous frequencies can be seen in Fig. 2.  

3. Results discussion

3.1 The effects of initial wave steepness 

Previous studies indicated that the initial steepness of wave trains play an important role in the

modulation evolution. Figs. 3-5 illustrate the evolution of wave trains with the same carrier wave,

perturbed frequency and initial modulation rate ( fc = 1.0 Hz, δ f = 0.1 and a± /a0 = 0.05, respectively),

but different initial wave steepness. For a convenient comparison, wave spectra in both the semi-
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Fig. 2 The surface elevations (upper) and the corresponding wavelet spectrum (lower) for a wave train (ε =
0.13, fc =1.0 Hz and δ f = 0.1) with imposed sidebands. The black solid line in the lower panel
represents the instantaneous frequencies
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logarithmic and the linear coordinates are presented. 

The right panels in Fig. 3 represent the measured surface elevations at select locations of waves

with an initial steepness of ε = 0.13. Breaking was not observed during this evolution. It should be

noted that breaking was observed in the evolution of waves with a similar initial steepness in the

previous experiments (Tulin and Waseda 1999, Chiang and Hwung 2007). The difference in results

is mainly caused by the non-negligible dissipation of the present flume. According to the theory of

Segur et al. (2005), the modulation evolution of the waves train may be bounded by the dissipation.

Thus, breaking events were not observed during the evolution of the wave train. 

With the increase of propagation distance, the amplitude modulation of the wave train is clearer.

At the last location (kx = 187.0), the degree of the modulation still increased; however, because of

the length limitation of the flume, the subsequent evolution of the wave train was not observed. The

corresponding spectra also reflect the evolution of waves. The sidebands had minimal growth until

kx > 43.9. With the increase of the propagation distance, the sidebands obtain energy from the

expended energy of the carrier wave. Along the flume, the growth rate of both sidebands is the

same, i.e., there is no obvious asymmetry growth of the imposed sidebands. Meanwhile, the bound

higher harmonics (2fc, 3fc) and its corresponding sidebands also increased. In the experiment of

Chiang and Hwung (2007), at the location kx = 187, the wave trains with an initial steepness of

about 0.13 also did not show asymmetrical growth between the lower and higher sidebands. 

It should be noted that, due to the resonance wave interactions, at kx > 112.4, there was growth of

the free waves with fc± nδf (n ≥ 2). At the end of the flume, the growth of the free high-frequency

waves is more obvious than that of the low-frequency waves, especially for waves beyond fc− 2δf.

The physical mechanics of the growth of the waves of fc± nδf can be explained as these frequencies

combining with the initial waves to satisfy the condition of Benjamin-Feir instability. However, the

reason for the asymmetrical growth at the free waves of fc± nδf (n ≥ 3) is not clear. Tulip and

Fig. 3 The evolution of the wave train with f
c
 =1.0 Hz, ε = 0.13, δf = 0.1 Hz and a±/a0 =0.05: (a) surface

elevations, (b) wave amplitude spectra in the liner coordinates and (c) wave amplitude spectra in the
semi-log coordinates
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Waseda (1999) gave an explanation that this phenomenon can be mainly attributed to the

asymmetrical growth of the primary sidebands. However, in this case, the primary upper and lower

sidebands do not show obvious asymmetrical growth, indicating the explanation of Tulip and

Waseda (1999) cannot be applied here. 

The evolution of the wave trains with a larger initial steepness (ε = 0.19) is shown in Fig. 4. The

modulation of this experimental case is faster than that of the previously discussed case, and the

initial breaking was observed at kx = 116.5, with a local maximum steepness ε = 0.42 (ε = kpam,

where kp is the local wave number corresponding to the peak amplitude and am is peak crest), which

is very close to the theoretical extreme Stokes wave and the previous experiments (Tulin and

Waseda 1999). After wave breaking, the continuous wave train is disintegrated to a series of wave

groups. The amplitudes of the waves between the adjacent wave groups are close to zero. However,

as the waves propagate further, the wave train becomes continuous again. For this case, the growth

of the sidebands can be clearly observed with the Fourier spectra. The amplitude of the lower

sideband is larger than that of the higher sideband from kx = 140.6. After wave breaking, the

asymmetrical growth is more evident and the amplitude of the lower sideband exceeds the carrier

wave, becoming the dominant wave in the frequency domain; thus, an effective frequency

downshift occurred. Simultaneously, the numbers of waves per group decreased from 11 to 10,

corresponding to an effective frequency downshift (the middle panel of Fig. 4). Additionally, in the

case, the growth of the free high-frequency waves also outstrips the low-frequency waves. 

The evolution results for the case with the maximum steepness (ε = 0.23) in this discussion are

provided in Fig. 5. This case illustrates a faster modulation process, in which the initial breaking

occurred at kx = 72.1 with a local maximum steepness ε = 0.437. Due to the width of the flume, the

breaking events for this case demonstrated three dimensional features. Breaking occurred not only at

the crest of the waves, also occurred near the sidewalls. This three-dimensional breaking type may

Fig. 4 The evolution of the wave trains with f
c
 =1.0 Hz, ε = 0.19, δf = 0.1 Hz and a±/a0 =0.05: (a) surface

elevations, (b) wave amplitude spectrum in the liner coordinates and (c) wave amplitude spectrum in
the semi-log coordinates
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be caused by the three-dimensional instability, which was also observed in the previous experiments

(Su 1982, Waseda and Tulin 1999). After wave breaking, an effective frequency downshift is

observed. At the end of the flume, the shape of the wave train demonstrates a demodulation (again

becoming a near uniform wave train again). However, the evolution in the frequency domain does

not show a similar trend. 

Comparing with the evolution of the waves in Figs. 3-5,¨with increasing of initial steepness, the

modulation is more obvious and breaking occurs earlier. Additionally, wave breaking can accelerate

the growth rate of the lower sideband, while suppressing the growth of the higher sideband. With

the increase of the initial steepness, the wave spectra in the semi-log coordinates indicate that the

generation of the free waves at discrete frequencies tends to spread to a continuous frequency band,

suggesting that the initial steepness is important for the mechanism of continuous or discrete

development. 

There is currently no detailed discussion regarding the time and frequency domain. However, the

variations of frequencies and phases in the time domain are not yet clear. In this section, the

frequency modulation and the phase function variations for two experimental cases, which are

corresponding to the wave trains with the smallest (Fig. 3) and largest (Fig. 5) initial steepness, will

be illustrated. 

Fig. 6 shows the evolution of the instantaneous peak frequencies along the flume for the case with

the initial steepness ε = 0.13 (corresponding to the experimental case in Fig. 3). For convenient

comparison, the measured surface elevations are also presented. At kx < 19.7, the instantaneous peak

frequency of the wave train mainly concentrates in the carrier frequency fc. At kx = 72.1, small

deviations from fc appear at certain time intervals. At kx = 108.4, the instantaneous peak frequencies

show obvious modulation with higher frequencies at the crests of the surface envelope and lower

frequencies at the troughs of the envelope. The amplitude of the frequency modulation increases

Fig. 5 The evolution of the wave trains with f
c
 =1.0 Hz, ε = 0.23, δf = 0.1 Hz and a±/a0 =0.05: (a) surface

elevations, (b) wave amplitude spectrum in the liner coordinates and (c) wave amplitude spectrum in
the semi-log coordinates
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Fig. 6 The evolution of the instantaneous frequencies for the wave train (f
c
 =1.0 Hz, ε = 0.13, δf= 0.1 and a±/a0

= 0.05 ); The dash line represents the initial peak wave frequency f
c
 

Fig. 7 The wrapped phase functions of the wave trains (f
c
 =1.0 Hz, ε =0.23, δf = 0.1 and a±/a0 =0.05); The

dot line is the lower sideband phase function, the solid line is the carrier wave phase function and the
blue dash line is the upper sideband phase
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with increasing propagation distance. The instantaneous peak frequencies illustrate both local

frequency downshift and upshift, although effective frequency downshift was not observed for this

case. As waves with a lower frequency propagate faster, the local maximum crests can continuously

increase due to the “chasing process” of waves with different frequencies corresponding to a linear

aspect. Besides, the increase of the frequency modulation indicates that the increase of the

maximum amplitude may also be due to a nonlinear process. 

The wrapped phase functions for the three wave components of this experimental case are shown

in Fig. 7. The three phase functions coincide with each other at the locations without frequency

modulation. Whereas, the upper sideband phase deviates the carrier waves at kx = 108.4, where the

frequency modulation occurs. 

The frequency modulation of the wave train with a larger steepness ε = 0.23 is shown in Fig. 8.

Before the initial breaking (kx < 72.1), similar to the case with a smaller initial steepness, the

amplitude of the frequency modulation increases with the propagation distance, as does the local

maximum amplitude. The breaking events occurred intermittently (72.1 < kx < 160.8) at the

downstream direction. At the initial breaking location (kx = 72.1), the oscillation of the

Fig. 8 The evolution of the instantaneous frequency for the wave train (fc =1.0 Hz ε = 0.23, δf = 0.1 and a±/a0

= 0.05); The dash line represents the initial peak wave frequency f0 
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instantaneous frequency follows a Stokes-type shape, i.e., a sharp crest and a gentle trough, and the

modulation amplitude increases in the downstream locations. At kx = 112.4, however, the peak

frequency oscillation is very steep. There are abrupt local (t = 13s, 23s) frequency downshifts at this

location, and the time regions with the abrupt changes correspond to waves with small amplitudes.

After wave breaking, the instantaneous frequencies shift to the lower side of the initial peak

frequency and oscillate around the initial lower sideband frequency (fc - δ f). Outside the breaking

region, the modulation of the frequency gradually becomes weak. At the end of the flume, the peak

frequencies mainly concentrate at the initial input lower side frequency. 

The wrapped phase functions of this case for the carrier wave and the lower and upper sidebands

at select measured locations are shown in Fig. 9. At the first measured location (kx = 19.7), the

phases of the three wave components coincide well. However, similar to the cases with smaller

initial steepness, as the waves propagate forward, the phase of the upper sideband first deviated

Fig. 9 The wrapped phase functions of the wave trains (f
c
 =1.0 Hz, ε = 0.23, δ f =0.1 and a±/a0 = 0.05); The

dot line is the lower sideband phase function, the solid line is the carrier wave phase function and the
blue dash line is the upper sideband phase
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from the phases of the other two components. This deviation is clearer at the downstream locations.

In addition, the deviations correspond to the time intervals before the peak of the surface envelop.

At kx = 140.6, however, the phase deviations from the initial carrier waves are at the lower

sideband, and these deviations correspond to the time intervals with the surface envelop that occurs

before the peak amplitude. It is very interesting to observe that the phase changes during the

evolution, but the physical mechanics for this phenomenon are still obscure.

3.2 Evolution for the initially strong modulated wave train

The previous section discussed the evolution of wave trains with initial small disturbances. For

these cases, because of the length limitation of the flume, the later stage of the modulation can not be

observed. In this section, the evolution of a wave train with initial large disturbances (a±/a0 = 0.5) will

be investigated. 

The evolution of the surface elevations for the wave train (ε =0.11, fc =1.25 Hz, and δ f = 0.10 Hz)

is shown in Fig. 10(a). Intermittent breaking was observed during the evolution, as shown in this

figure, and the local extreme steepness ε of the breaking is approximately 0.427 (ε = kpam, where kp

is the local wave number corresponding to the peak amplitude and am is the peak crest). Because the

imposed sidebands are large, the evolution of this case is fast. The evolution of the surface elevation

illustrates an approximate recurrence-type in the time domain. From Fig. 10(a), the number of

waves in one modulation period at the locations near the wavemaker is 13 but decreases to 12 and

then to 11 during the breaking region. However, outside the breaking region, the number of waves

Fig. 10 The wave spectrum evolution for the wave trains ( f
c
 =1.25 Hz, ε = 0.11, δ f = 0.15 Hz and a±/a0 = 0.5):

(a) surface elevations, (b) wave amplitude spectrum in the liner coordinates and (c) wave amplitude
spectrum in the semi-log coordinates
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gradually returns to 13. At the same time, the envelope shape of the waves at the end of the flume

become similar to the initial shape. This process is similar to the result of Tulin and Waseda (1999),

who observed a recurrent evolution without breaking in both time and frequency domain. For this

experimental case, the evolution in time demonstrates is approximately recurrence-type. The

evolution in the frequency domain does not show this recurrent phenomenon due to the breaking. In the

breaking region, the waves at the primary and the upper sideband lost most of their energy, and the lower

sideband wave were dominant, (i.e., frequency downshift occurred). It is noted that, at kx = 232.5, the

peak frequency of the wave train transferred to fc, indicating that the breaking induced frequency

downshift is not permanent. This result is consistent with the observation of Chiang and Huwng (2007).

In the later stage, the waves at fc-2δ f and fc grow while diminishing the wave at fc-δ f due to the

nonlinear resonance interactions. At the end of the flume, although the amplitude of the initial

carrier wave fc is close to that of the initial lower sideband wave, the amplitude of the initial upper

sideband wave is still small compared to the wave at fc-2δ f. Thus, there is not a recurrence in the

frequency domain. 

The instantaneous frequency evolution of this case is illustrated in Fig. 11. Because the imposed

Fig. 11 The evolution of the instantaneous frequency for Case SB4 (f
c
 = 1.25 Hz, ε = 0.13, δf = 0.1 and a±/a0

= 0.5): The dashed line represents the initial peak wave frequency f
c
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sidebands are large, the frequency modulation appears early. At the incipient breaking point (kx = 81.3),

the frequency modulation is strong, with a gentle slope at the front of the modulation and a sharp

decrease at the rear, and the dramatic decrease of the instantaneous frequencies correspond to

surface elevations with very small amplitudes. After wave breaking, an effective frequency

downshift occurred and the frequency modulation oscillates around the frequency of the lower

sideband. However, the shape of the frequency modulation after the wave breaking is adverse of

that in the upward locations, i.e., a steep front and a gentle rear. At the end of the flume, the

frequency modulation returns to the shape at the locations near the wave maker. The frequency

modulation oscillats around the input carrier frequency fc again at the end of the flume (kx = 292.3),

although the peak frequency at this location is fc-δ f. 

4. Conclusions 

New experiments regarding the modulational evolution of nonlinear wave trains were performed,

which involved mechanically generating wave trains with different initial wave steepness, perturbed

frequencies and initial modulation rates. The experimental results show that the development of the

modulational instability relates closely to the initial wave steepness. With the growth of the initially

imposed sidebands, free wave growth at fc ± nδ f (n ≥ 2) was observed, especially for the waves with

a frequency of fc + nδ f. For an increase of the initial steepness, the growth of the free waves has a

tends to shift from select discrete frequencies to a continuous frequency band. During the wave

evolution, breaking events were observed, and the local extreme wave steepness is approximately

0.43, which is similar to the values frome previous studies on deep water wave breaking. 

The Morlet wavelet transform was used herein to extract the instantaneous frequency of the wave

trains. Due to the multi-scale analytical characteristics of the Morlet wavelet transform, the phase

function of each wave components can also be obtained. The evolution of the instantaneous frequency

illustrates that the frequency modulation increases with the growth of the sideband amplitude. At the

middle and later stages of the modulation, the instantaneous frequencies are higher at the crests of the

surface envelope and lower at the troughs of the envelope. Select abrupt frequency changes, which

correspond to small wave amplitudes, were observed at the breaking regions. The wrapped phase

functions demonstrate that, during the evolution, the phase of the upper sideband first deviates from

the carrier wave at the beginning of the frequency modulation. However, at the later stage of the

modulation, a deviation of the phases from the carrier wave is observed at the lower sideband. 

The experiments with a pair of large imposed sidebands show an approximate recurrence in the time

domain; however, mainly due to dissipation by breaking, the approximate recurrence evolution is not

observed in the frequency domain. In the mean time, for this case, the frequency demonstrates an

approximate recurrence type during the evolution. 
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