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Abstract. Steel Catenary Risers (SCR) are the simplest and often the most economic solution compared
to other riser types such as flexible pipe, riser towers, top tensioned risers, etc. The top of a SCR is
connected to the host platform riser porch. The other end of the SCR connects to flowlines from subsea
wells. The riser touchdown point (TDP), which is the location along the riser where contact with the sea
floor first occurs, exhibits complex behaviors and often results in compression and fatigue related issues.
Heave dynamic responses of semisubmersibles in extreme and operating sea states are crucial for
feasibility of SCR application. Recent full field measurement results of a deep draft semisubmersible in
Hurricane Gustav displayed the considerable discrepancies in heave responses characteristics between the
measured and the simulated results. The adequacy and accuracy of the simulated results from recognized
commercial software should be examined. This finding raised the awareness of shortcomings of current
commercial software and potential risk in mega investment loss and environmental pollutions due to SCR
failures. One main objective of this paper is to attempt to assess the importance and necessity of
accounting for viscous effects during design and analysis by employing indicator of viscous parameter.
Since viscous effects increase with nearly third power of significant wave height, thus newly increased
metocean criteria per API in central Gulf of Mexico (GoM) and even more severe environmental
conditions in Western Australia (WA) call for fundamental enhancements of the existing analysis tools to
ensure reliable and robust design. Furthermore, another aim of this paper is to address the impacts of
metocean criteria and design philosophy on semisubmersible hull sizing in WA and GoM. 

Keywords: SCRs TDP; terminal velocity; viscous effects; viscous parameter; diffraction parameter;
heave motion RAOs; cancelation zone

1. Introduction 

Steel Catenary Risers (SCR) are the most popular and economic solution in deep and ultra deep

waters of GoM. The top of a SCR is connected to the host platform at riser porch located on

pontoon and the other end is connected to flowlines on sea bed. Between these two points, the riser

hangs in a catenary shape and the bottom portion is supported by the sea floor. The riser touchdown

point (TDP), which is the location along the riser where contact with the sea floor first occurs, is a

critical area for design. Jesudasen et al. (2004) presented design considerations of large diameter

SCRs supported by Spar. A Moros et al. (2004) addressed the use of SCRs with a semisubmersible

in deep water prospects in GoM. It has been widely known that heave motions of a Spar is typically
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better than a semisubmersible due to its 150m plus draft. Thus, SCRs hosted by a semisubmersible

should be more carefully examined.

The common commercial software employed for numerical simulations of a semisubmersible are

diffraction theory based which inherits to neglect viscous effects. It has been extensively studied in

the past two to three decades the importance of accounting for viscous effects for fixed and floating

structure to ensure drifting forces having been captured adequately, (Ferretti and Berta 1980,

Chakrabarti 1984, Prinkster et al. 1993, Dev 1996, Dev and Pinkster 1997, Berthelsen et al. 2009).

All studies, as best of knowledge, focused on surge/sway drifting forces which were essential for

station keeping and mooring design of a semisubmersible. None of them addressed the importance of

viscous effects on heave dynamic motions since the early generation semisubmersibles were mainly

for drilling operations and not for productions. The design requirements for drilling operation and

productions are considerably different since a semisubmersible designed for production has to be

moored in production site for 20-30 years. Thus, 100-year hurricanes as well as 1,000-year hurricanes

might be experienced during its service life. A drilling semisubmersible can be moved away if a

reduced extreme event, such as 10-year hurricane, is approaching. Ma et al. (2010) first pointed out

there are considerable discrepancies between the measured and the simulated heave responses based

on full field measurements of a deep draft semisubmersible in GoM. Thus, interest and necessity of

viscous effects on heave motions have been raised in order to adequately simulate physical

phenomena and how to account for viscous effects in analysis tools to ensure reliable and robust

results has been called for.

In the past studies, the “viscous parameter” (Rv = H/D) and the “diffraction parameter” (Rd = κ*D)

have been used as a measure to determine the importance of the viscous/diffraction effect, where H

stands for wave height, D denotes diameter of a cylinder and κ represents wave number. The larger

“viscous parameter” is, the smaller “diffraction parameter” will be. In this study, definitions of

viscous parameter and diffraction parameter are modified slightly, H is maximum wave height

(1.86*Hs) for irregular waves and D is either diameter for a cylinder column or width for a square

column. Hs means significant wave height for irregular waves. 

In this paper, an attempt has been taken to assess the importance and necessity of accounting for

viscous effects for heave responses during design and analysis by employing indicator of viscous

parameter. It is essential for a semisubmersible with large diameter SCRs in harsh environmental

conditions.

There have been several recent noteworthy deepwater discoveries in offshore Western Australia

(WA). This region is remote and is known for both its harsh environment and unique soil conditions.

These factors are essential design concerns as they can negatively influence the economics and risks

associated with floating production platforms.

Large operating sea states with long swell periods present additional challenges for platform

installation, and the remoteness of this region contributes to high mobilization costs for installation

vessels. Quayside integration is therefore a desired feature of the hull concept to eliminate offshore

mating and help reduce the cost and schedule risks associated with long offshore installation

campaigns. One aim of this paper is to address the impacts of metocean criteria and design

philosophy on semisubmersible hull sizing in WA and GoM.

This paper has been outlined as follows: first, design challenges for a floater with SCRs in large

diameter are highlighted and addressed; second, comparisons of metocean conditions of the central

GoM region and generic WA are briefly described; third, analysis results of a submersible in

extreme and operating conditions of WA and GoM are presented; fourth, discussions on key design
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aspects are addressed and finally, conclusions are drawn.

2. Design challenges of a floater with SCRs

To ensure the feasibility of large diameter SCRs for a floater, SCR strength and fatigue

requirements have to be met in both extreme and operating sea states. The touchdown point (TDP)

of an SCR exhibits complex behavior which may result in compression for extreme sea states and

fatigue issues in operating sea states. Key design challenges are highlighted in Sections 2.1 to 2.4.

2.1. Terminal velocity

Terminal velocity per definition by McCann (2003) is reproduced in Eq. (1).

(1)

where mg is the apparent weight of the pipe including internal fluid, CD is the normal drag

coefficient, DDRAG is drag diameter, and ρ is water density. It is obvious from Eq. (1) that terminal

velocity is SCR property depended and is independent of field location.

McCann et al. (2003) had investigated SCR TDP compression and global buckling issues and

found terminal velocity is an important parameter. Furthermore, the non-dimensional parameter of

VHT (VHANGOFF/VTERM) is recommended by McCann et al. (2003) to be utilized as a useful measure

for assessing whether compression (buckling) will be an issue. VHANGOFF is the vertical velocity of

the SCR hang off point. TDP compression (buckling) may occur when VHT is equal to or larger than

1.0.

2.2. Hang off velocity

Vertical motion at the SCR porch is a combination of both platform heave, and vertical motions

induced by roll/pitch motions. As the hang off location moves away from the center of rotation, the

vertical motions due to roll/pitch increase significantly. Therefore, the hang off of catenary risers a

greater distance away from platform center will experience more severe motions. This is especially

true for extreme sea states.

Hang off velocity of the SCR is directly tied to host platform motions. Hang off velocity is a

function of platform vertical motion at the SCR porch which consists of, (a) heave motion at the

platform center, and (b) vertical motions due to roll and pitch motions. Therefore, by directly

reducing platform heave, roll and pitch motions, and the lever arm from the platform center to the

hang off location, VHANGOFF will be reduced. Vertical motions due to platform rotations are

significant during extreme events, and relatively small for fatigue sea states. Therefore, in order to

improve SCR TDP fatigue life, one should focus on optimizing the platform’s heave motions.

2.3. Viscous effects on heave motions and velocities

Wave basin model tests of a deep draft semisubmersible platform with square column 14 m,

column central to central spacing 52 m and draft 33 m have been performed to investigate viscous

VTERM 2mg/  CD ρ DDRAG⋅ ⋅( )=
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effects on heave response characteristics. Three wave only cases, (1) Hs = 3 m, Tp = 8.5 s; (2)

Hs = 6 m, Tp = 11 s and (3) Hs=14 m, Tp=15 s, were tested and heave motion RAOs of the

measured and the predicted are illustrated in Fig. 1. The heave motion velocity RAOs derived from

heave motion RAOs by first derivative of heave motions. Since the heave accelerations have been

directly measured, the procedure for deriving velocity RAOs from motion RAOs have been verified

against the measured acceleration RAOs. The heave velocity RAOs for corresponding sea states are

presented in Fig. 2. 

The viscous parameters of these three irregular waves based on modified definition are 0.4, 0.8

and 1.86 respectively. The predicted results are based on diffraction theory and additional damping,

2.5%, 3.5% and 5.5% of critical damping were added correspondingly to cases 1, 2, and 3 to match

the peaks around heave natural period. 

It has been observed that cancellation zone around 18 seconds in predicted heave motion RAOs

remains unchanged regardless additional damping variations. For the predicted results, only those

near peaks varied when additional damping is changing. The other portion of the curve, say 20

seconds or less, remains unchanged. The common practices for current industry are just adding

additional damping to which has been proven to be inadequate. The correct way to capture the

viscous effects on heave motion and velocity responses is to add viscous excitation forces and

damping into motion equation simultaneously. Calculations of the contributions of viscous excitation

forces and associated viscous damping on heave responses are equally important to yield an

accurate prediction. In fact, viscous damping in extreme sea states is relatively large compared

radiation wave damping from diffraction theory. For the current commercial software, the feature to

model viscous effects properly on heave responses has not been well established and valid so far. 

It has been seen from Figs. 1, 2, and 3 to match the peaks around heave natural period.

• For small sea state, viscous parameter, Rv = 0.4, the predicted agreed well with the measured

even including cancelation zone;

Fig. 1 Heave motion RAOs - predicted vs. measured

Fig. 2 Heave velocity RAOs - predicted vs. measured
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• For medium sea state, viscous parameter, Rv = 0.8, the predicted agreed well with the measured

when wave periods are 17 seconds or less. The moderate deviations between the predicted and the

measured have been observed for wave periods 17 seconds or higher, up to heave resonant period;

• For large sea state, viscous parameter, Rv = 1.86, the predicted agreed well with the measured

only limited to wave periods 12 seconds or less. The large deviations between the predicted and the

measured have been noticed for a wider range of wave periods.

It is obvious that the deviations strongly depended on viscous parameters. For Rv < 0.5, the

predicted heave motion RAOs agree very well with the measured results including cancelation zone;

for 0.5< Rv <1.0, moderate deviations have been observed and for Rv >1.0, the large deviations have

been noticed. In addition, the deviation starts early (shorter wave period) when viscous parameter is

increasing. This phenomenon clearly indicates the importance of viscous effects on heave responses

especially for high seas.

The comparisons of standard deviation and maximum of heave motion and heave velocity of the

predicted and measured in various sea states are given in Tables 1 and 2 respectively. 

Again, the findings from Figs. 1 and 2 are further verified from Tables 1 and 2. The extreme

motions and velocities of a semisubmersible in extreme sea states are seriously under-estimated which

will result in seriously under-estimating SCRs TDP compression and potentially buckling problem.

2.4 Vertical water particle velocities

Table 1 Comparison of standard deviation and maximum of heave motions - predicted vs. measured

Sea states Heave standard deviation Maximum dynamic heaves

Predicted Measured Relative Predicted Measured Relative

m m % m m %

A B (B−A)/A*100 C D (D−C)/C*100

Case 1* 0.088 0.090 2.7% 0.351 0.375 7.0%

Case 2** 0.336 0.366 8.9% 1.344 1.540 14.6%

Case 3*** 1.177 1.422 20.8% 4.706 5.804 23.3%

*Case 1, Hs = 3 m, Tp = 8.5 s; **Case 2, Hs = 6 m, Tp = 11 s; ***Case 3, Hs = 14 m, Tp = 15 s

Table 2 Comparison of standard deviation and maximum of heave velocities – predicted vs. measured

Sea states Velocity standard deviation at CG Maximum heave velocity at CG

Predicted Measured Relative Predicted Measured Relative

m m % m m %

A B (B−A)/A*100 C D (D−C)/C*100

Case 1* 0.056 0.057 2.5% 0.223 0.232 4.4%

Case 2** 0.186 0.201 8.4% 0.744 0.830 11.5%

Case 3*** 0.491 0.591 20.4% 1.963 2.414 23.0%

*Case 1, Hs = 3 m, Tp=8.5 s; **Case 2, Hs = 6 m, Tp=11 s; ***Case 3, Hs = 14 m, Tp = 15 s
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To estimate viscous effects on heave responses, the relative vertical velocities on bottoms of

pontoons/columns are needed. The relative vertical velocity is the vector sum of the platform

vertical velocity and vertical water particle velocity at bottom of pontoon. The measured wave

elevation time series were employed to calculate the particle velocity time series at various depths

below the mean water level (MWL). Since vertical water particle velocity was the only interest for

this study, how to accurately predict horizontal particle velocity will not be addressed herein.

 The measured wave elevation time series η (t) were decomposed by using FFT and both wave

elevation amplitude and phase spectra were kept for generating vertical particle velocity amplitude

and phase spectra. Then, IFFT was applied to generate vertical particle velocity time series at the

specified depth below. The equations involved in the calculation are listed as follows

(2)

where, η (t) represents the measured wave elevation time series and Ampe(i) and Phye(i) are wave

elevation i-th component amplitude and phase. Thus, an irregular wave elevation time series was

decomposed into summation of “n” components of regular waves. An i-th regular wave component

has amplitude Ampe(i) and phase Phye(i). For a regular wave in deep water, vertical particle velocity

at depth z is denoted as follow

(3)

(4)

(5)

Phyv(i) = Phye(i)  (6)

where,  is the wave number of i-th component regular wave in Eq. (3),  is the vertical

particle velocity of i-th regular wave component at depth z in Eq. (4),  is the vertical

particle amplitude and Phyv(i) is the phase of the corresponding regular wave in Eqs. (5) and (6)

respectively. Once vertical velocity amplitude and phase spectra were obtained, IFFT can be applied

and vertical particle velocity time series at depth z can be generated. Since the vertical particle

velocities involved in this study are at the MWL or below, no stretch method was employed. The

above described method had been validated against the measurements, Kim and Zou (1995), Choi

(2005). Thus, it is believed to be adequate for this study.

The maximum vertical water particle velocity profiles along vertical axis from MWL down to

48.0 m below are illustrated in Fig. 3.

Maximum platform heave velocities, vertical water particle velocities at -33 m and relative vertical

velocities and elative vertical velocity square are summarized in Table 3 and maximum relative

vertical velocity at -33 m square as a function of significant wave height is shown in Fig. 4. The

best fitting trend line as well as best fitting equation and R-squared value were also displayed in

Fig. 4.

The vertical viscous force on one of pontoons/columns in Morison equation form is denoted as

η t( ) Ampe i( )*cos Phye i( )( )

i 1=

n

∑=

κi ω  i/g=

vz i( ) ωi*Ampe i( )*e
κ
i
z

sin(Phye i( ) )=

Ampv i( ) ω i*Ampe i( )*e
κ
i
z

=

κi vz i( )

Ampv i( )
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follows

(7)

where,  stands for vertical viscous forces; ρ represents sea water density; Cd means vertical

drag coefficient; A is either pontoon or column vertical project area and vrel denotes vertical relative

velocity.

From Eq. (7), it is obvious  ∝  and from Fig. 4, it has been found  ∝  since

wave peak period is another parameter which has not been factored into equation yet; thus one can

derive the following relationship

 ∝ (8) 

From Eq. (8), viscous forces are proportional to nearly third power of significant wave height

(nearly cubic not quadratic). For new central GoM, 100-year and 1,000-year waves (API 2007) and

WA, 100-year and 10,000-year waves, larger viscous effects are anticipated and it is even more

essential to account for viscous effects properly in order to have a reliable and robust design in

these regions. 

Fviscous t( )
1

2
---ρCdAvrel vrel=

Fviscous

Fviscous vrel

2
vrel

2
Hs

2.76

Fviscous Hs

2.76

Fig. 3 Vertical water particle velocity profiles Fig. 4 Maximum relative velocity square as a function
of significant wave height

Table 3 Summary of maximum heave, vertical particle and relative velocities

Hs Maximum Maximum vertical Maximum relative Maximum relative

Heave velocity Particle velocity 
at -33 m

Vertical velocity 
at -33 m

Vertical velocity 
at -33 m squared

m m/s m/s m/s (m/s)^2

A B C B+C (B+C)^2

3.0 0.232 0.184 0.417 0.174

6.0 0.830 0.482 1.311 1.719

14.0 2.414 1.128 3.542 12.543
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3. Metocean of Western Australia and Gulf of Mexico

3.1 Extreme sea states

Generic WA metocean criteria are compared to the central region of the Gulf of Mexico (API

2007). Results are summarized in Table 4. The corresponding waves and winds are found to be very

close. In terms of design criteria, 10,000-yr return period (RP) conditions are typically selected as a

survival check in WA, while 1,000-yr RP conditions are normally recommended per API for the

Gulf of Mexico. Because of differences in design philosophy between WA and the GoM, column

freeboard must be increased accordingly, and the heave natural period for a semisubmersible should

be shifted at least 1 sec to the longer side. Consideration of the 10,000-yr conditions for a survival

check in WA has a significant influence on platform configuration and sizing.

3.2 Wave scatter diagrams

To better understand the influence of operating sea states on SCR fatigue at the touchdown point,

generic WA and typical GoM wave scatter diagrams are plotted and shown in Fig. 5.

For the generic WA wave scatter diagram in Fig. 5, there exist a large percentage of waves in the

Table 4 Comparison of extreme waves and winds of generic WA and central GoM

Parameters Units Generic WA Central GoM

10,000-yr 1,000-yr 100-yr 10,000-yr 1,000-yr 100-yr

Hs m 22.5 20.5 16.8 22.1 19.8 15.8

Tp sec 18.1 17.1 15.3 18.2 17.2 15.4

Hourly wind m/s 68.5 62.0 50.0 67.2 60.0 48.0

Fig. 5 Generic WA and typical GoM wave scatter diagrams 
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approximate range of 1 to 4 m HS and 8 to 17 sec TP. There are almost no waves with TP less than

8 sec. In contrast, the GoM wave scatter diagram shows a large percentage of waves in the

approximate range of 0 to 4 m HS and 1 to 10 sec TP. There are almost no waves with TP larger

than 10 sec.

The differences in these two wave scatter diagrams are important as they directly impact the

floater hull configuration, heave motion contributions to SCR fatigue life and installation cost. These

are addressed in detail in later sections.

WA and GoM wave scatter diagram data are shown in Fig. 6 as percentages of occurrence as a

function of both wave peak period TP (left) and significant wave height HS (right). 

The different characteristics of the WA and GoM wave scatter diagrams are further displayed in

this figure. The key aspects which affect hull configuration are as follows:

• For the GoM, the dominant wave peak period occurrence is approximately 4.5 sec. The

probability of occurrence dramatically reduces out to approximately 10 sec and essentially goes to

zero after that.

• For WA, the dominant wave peak period occurrence is approximately 14 sec. There are near zero

occurrences of wave peak periods below 5 sec and above 25 sec. It should be noted that wave peak

periods beyond 20 sec presents a considerable design challenge for floaters such as semisubmersible

and Spar. A more in-depth discussion follows in a later section.

• The dominant occurrence of significant wave height in the GoM is approximately 0.8 m. The

probability of occurrence dramatically reduces out to approximately 4 m and essentially goes to zero

beyond 5 m. 

• For WA, the dominant occurrence of significant wave height is approximately 2.3 m which is

more than twice that seen in the GoM. Similarly, the occurrence of significant wave height drops

dramatically out to approximately 4 m and essentially goes to zero beyond 5 m. 

4. Analysis results

4.1 General

The host platform used for this study is a pair-column semisubmersible platform as illustrated in Fig. 7

and key figures of hull configuration are summarized in Table 5. The description of advantages of this hull

form over typical deep draft semisubmersible hull has been presented in Zou and Chianis (2011) and

Fig. 6 Generic WA and GoM wave scatter diagram as a function of TP (a) and HS (b)
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thus omitted here.

This concept won a competition hosted by RPSEA (Research Partnership to Secure Energy for

America) in 2009. A comprehensive and systematic study including wind tunnel and wave basin

model tests has been funded in order to mature the concept and prepare it for application to a major

capital project. RPSEA continued to support this concept and funding on extensive Vortex Induced

Motions (VIM) model tests will be provided in 2013.

4.2 Extreme heave responses in WA and GoM

Fig. 7 A pair-column semi-submersible platform hull and mooring configuration

Table 5 Key figures of the pair-column semi-submersible platform

Items Units Data

Draft (m) 50.0

Displacement (mt) 75,489

Inner Column Length x Width (m) 9.1 × 13.0

Inner Column c/c Span (m) 50.3

Main Pontoon Width × Height (m) 12.0 × 8.0

Outer Column Length × Width (m) 11.0 × 13.0

Connecting Pontoon Width × Height (m) 13.0 × 8.0

Distance between Inner/Outer Columns (m) 15.0

Total Weight (mt) 70,535

SCRs + Mooring Vertical Loads (mt) 4,955

Vertical C.G. from base (Mass only) (m) 27.34

Roll Radii of Gyration, Kxx (m) 41.7

Pitch Radii of Gyration, Kyy (m) 41.5

Yaw Radii of Gyration, Kzz (m) 43.3

GMtc (Free Surface Correction, Mass VCG) (m) 8.2
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The heave responses in 100-, 1,000- and 10,000-yr RP events of WA and GoM as described in

Table 4 are shown in Fig. 8. The RMS heave motions in GoM are slightly smaller than the

corresponding RMS heave motions in WA. However, 1,000-yr RP events in GoM are survival

conditions recommended by API while 10,000-yr RP events in WA are typically selected as survival

conditions per Australia traditional design philosophy. Due to altering design philosophy in WA,

10,000-yr RP events are becoming governing cases for maximum allowable heave motion

requirements in order to be lower than terminal velocity to avoid compression and potential bulking

at SCR TDP. In addition, minimum airgap (minimum column freeboard) requirements are also

governed by 10,000-yr RP events. The impacts on hull sizing are considerably high.

 

4.3 Heave responses in fatigue seas of WA and GoM

Heave responses in fatigue sea states of WA and GoM are illustrated in Fig. 9. Distinct response

characteristics have been found. 

Heave responses in GoM need not be shown for wave peak periods above 11.5 sec based on Fig. 5

which shows that the probability of GoM fatigue seas is near zero for wave periods longer than 11.5 sec.

From Fig. 9, it is seen that heave motions are nearly zero for the dominant probability around 4.5

sec. Also, for HS = 9.75 m and TP = 11.5 sec, heave motions are about half that for HS = 5.25 m

Fig. 8 Comparison of heave motion RMS in WA and GoM

Fig. 9 Heave RMS in fatigue seas of WA and GoM
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and TP = 17.0 sec. This indicates that wave peak period has a more pronounced effect on heave

motions than significant wave height.

4.4. Weighted heave motions in fatigue seas of WA and GoM

Heave responses of generic fatigue seas in WA and GoM are presented in Section 4.3 and the

probability corresponding to each fatigue sea state as illustrated in Fig. 5. Weighted heave motion is

defined as heave motion multiplied by the corresponding probability of that sea state. Fig. 10 shows

the sum of all weighted heave motions corresponding to the same TP. 

The above figure shows as follows

• The largest weighted heave in WA is about 30 times higher than the largest weighted heave in

the GoM. This indicates that it is much more challenging to satisfy SCR fatigue life requirements in

WA than in the GoM. Because of this, hull configurations in WA and GoM will besconsiderably

affected.

• The weighted heaves for WA peak at 15.0 sec while the weighted heaves for GoM peak at 8.5

sec. This clearly indicates the long swell effects on heave responses of a semisubmersible which

will translate to SCRs at TDP and impact the fatigue significantly.

5. Discussions

5.1 Viscous effects on heave responses

Viscous effects on heave responses have been closely studied. The attempt has been taken to

assess the importance and necessity of accounting for viscous effects during design and analysis by

employing indicator of viscous parameter.

 From correlation analysis of physical wave basin test results, it has clearly confirmed that the

deviations strongly depended on viscous parameter (Rv). For Rv < 0.5, the predicted heave motion

RAOs agree very well with the measured results including cancelation zone; for 0.5 < Rv < 1.0,

moderate deviations have been observed and for Rv > 1.0, the large deviations are anticipated. In

addition, the deviation starts early (shorter wave period) when viscous parameter is increasing.

Fig. 10 Weighted heave responses in WA and GoM fatigue seas
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For current commercial software diffraction theory based, the typical way by solely adding

additional damping to account for viscous effects for heave responses have been proven to be

inadequate to capture the characteristics of heave responses in high seas. Including proper viscous

excitation forces and damping are equally critical to ensure reliable and robust design and analysis.

After Hurricane Katrina and Rita, metocean criteria increased considerably in GoM per latest API.

In addition, active explorations have extended and reached more severe environmental region, such

as Western Australia. Since viscous effects increase with nearly third power of significant wave

height, it becomes more essential and necessary to account for viscous effects properly on heave

dynamic responses of semisubmersibles with SCRs designed for these regions.

5.2 Hull configurations in WA and GoM

The extreme sea states of WA, as shown in Table 4, are slightly worse than the corresponding sea

states in central GoM. However, 10,000-yr events are selected as survival conditions in WA common

offshore design practice while 1,000-yr events are recommended as survival cases per API. There

are more than 30% higher in WA if extreme heave motion RMS value in WA 10,000-yr events is

compared with that in GoM 1,000-yr events. 

Due to altering design philosophy in WA, 10,000-yr RP events are becoming governing cases for

maximum allowable heave motion requirements in order to be lower than terminal velocity to avoid

compression and potential bulking at SCR TDP. In addition, minimum airgap (minimum column

freeboard) requirements are also governed by 10,000-yr RP events. The impacts on hull sizing are

considerably high. A brief summary is highlighted as follows: 

(a) Hull draft for application in the GoM can be 10 m less than in WA due to the reduced required

SCR porch vertical velocity

(b) Hull freeboard for application in the GoM can be 3 m less than in WA due to the reduced

wave crest heights

(c) Based on the items (a) and (b), column span for application in the GoM can be 5 to 10 m less

than in WA

(d) Based on item (c), deck steel weight for application in the GoM can be 15 to 25% less than in

WA due to the reduced column/column spacing

(e) Based on all above items, hull displacement for application in the GoM can be 25 to 35% less

than in WA

(f) Based on all above items, mooring systems for application in the GoM can have either fewer

mooring lines and/or smaller line sizes than those in WA

(g) Based on all above items, the hull for application in the GoM is easier for construction,

transportation and installation than in WA

(h) Based on all above items, the hull for application in the GoM is significantly more economic

than in WA for carrying the same topsides payload

6. Conclusions

Viscous effects on heave dynamic response characteristics of a semisubmersible have been

investigated and identified. Viscous parameter can be a useful indicator to measure the importance
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and necessity of viscous effects. Simultaneously including viscous excitation forces and damping

are crucial to capture the heave dynamic response characteristics in high seas. There are more

pronounced viscous effects when one designs a semisubmersible in central GoM and/or WA since

viscous effects increase with nearly third power of significant wave height. 

The remote region of Western Australia has several unique features which complicates the

development of economic and low risk deepwater floating production platforms. These

characteristics include metocean and soil conditions, 10,000-yr survival criteria, high labor and

mobilization costs, etc.

Although wet tree developments with Steel Catenary Risers are well-proven in the Gulf of

Mexico, their application to WA is relatively new and will prove to be a challenge for acceptable

SCR performance. This paper has identified the differences between GoM and WA metocean

conditions and how SCR performance is influenced by both operational and extreme sea states for

each. Furthermore, it has found the hull for GoM is considerably more economic than hull in WA

for carrying the same topsides payload.
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