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Abstract.  A subsea pipeline designed across active shipping lane prones to failure against external 
interferences such as anchorage activities, hence risk assessment is essential. It requires quantifying the 
geometric probability derived from ship traffic distribution based on Automatic Identification System (AIS) 
data. The actual probability density function from historical vessel traffic data is ideal, as for rapid assessment, 
conceptual study, when the AIS data is scarce or when the local vessels traffic are not utilised with AIS. 
Recommended practices suggest the probability distribution is assumed as a single peak Gaussian. This study 
compares several fitted Gaussian distributions and Monte Carlo simulation based on actual ship traffic data in 
main ship direction in an active shipping lane across a subsea pipeline. The results shows that a Gaussian 
distribution with five peaks is required to represent the ship traffic data, providing an error of 0.23%, while a 
single peak Gaussian distribution and the Monte Carlo simulation with one hundred million realisation provide 
an error of 1.32% and 0.79% respectively. Thus, it can be concluded that the multi-peak Gaussian distribution 
can represent the actual ship traffic distribution in the main direction, but it is less representative for ship traffic 
distribution in other direction. The geometric probability is utilised in a quantitative risk assessment (QRA) 
for subsea pipeline against vessel anchor dropping and dragging and vessel sinking. 
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1. Introduction 

 

In parallel with the continuous development of new oil and gas fields, offshore facilities such as 

subsea pipelines and offshore platforms might be designed to operate in location with significant 

third-party hazard. For instance, this facilities are in heavy marine traffic such as international 

shipping lanes. Therefore, it is necessary to quantify the geometric probability due to ship traffics 

and perform risk assessment to determine the risk level and managing the risk. 

Geometric probability in quantitative risk assessment (QRA) of subsea pipeline facilities requires 

ship traffic data, which are usually obtained from AIS data (Bartolini et al. 2018, Mulyadi et al. 

2014a). A series of scatter ship traffic data in the AIS data need to be processed and analysed to 

determine the probability of passing vessels in the pipeline area. Vitali et al. (2012) and Marcjan et 
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al. (2017) processed the ship traffic data into an actual ship distribution that describes the frequency 

of ship traffic per kilometre of pipe. This approach provides detailed and representative probability 

assessment because it uses actual data. However, the analysis using this method is limited for the 

pipeline within the scope of the data. Thus, if similar risk analysis is carried out for different 

pipelines, it is necessary to recalculate and reanalyse the actual ship distribution. 

For rapid use, the actual ship distribution is fitted with specific analytical distribution which are 

the utilised to predict geometric probability for other pipeline locations. Huang et al. (2019), 

Mujeeb-Ahmed et al. (2018), and Wang et al. (2020) approached the actual ship distribution using 

the Gaussian distribution. This method is a commonly used, as it is recommended in DNVGL-RP-

F107 (2017) that the Gaussian distribution can be used to model the ship distribution passing 

offshore facilities in a shipping lane. However, in relaity the ship distribution in a shipping lane does 

not always in the fitted following a Gaussian distribution. This gaussian distribution is not always 

able to describe the unique ship traffic patterns in any sea areas, therefore, it cannot generate accurate 

risk assessment (Yoo and Kim 2019). Hence, there is a possibility that calculation errors may occur, 

which will furthermore lead to less accurate results. Therefore, it is necessary to remodeled the actual 

ship distribution with appropriate distribution or simulation approaches. 

Mulyadi et al. (2014b) developed another method to approach the ship distribution more 

accurately by dividing the pipeline into several segments and conducting a goodness-of-fit test with 

various types of distribution for each segment. The subsea pipeline was divided into nine segments 

and fitted by several types of distribution, including uniform, lognormal, log-Pearson 3, and Weibull 

distribution. Risk assessment by using this method will generate numerous statistical parameters and 

distributions, thus, might complicate the analysis mainly when applied to a relatively long pipeline. 

Therefore, for simplicity the ship distribution needs to be approached with one distribution equation. 

A Monte Carlo probabilistic simulation are an alternative to calculating the geometric probability 

of passing vessels, as demonstrated by Huang et al. (2019). In their study, frequency analysis was 

conducted for ship position data to generate discrete probability data for each data interval. Then, a 

Monte Carlo simulation was conducted on the regression of the ship’s distribution data to obtain the 

trajectory of the ship’s movement to determine the probability of passing vessels. This approach 

utilises a random simulation on historical data, thus, it might will be an alternative approach if there 

is not enough time and resources to fit a distribution. 

In this study, the ship distribution is analysed across the entire AIS data coverage area in Natuna 

Sea, so that the ship distribution can be utilised for risk analysis on adjacent pipelines within the 

shipping lane. The probability of ship distribution is calculated by comparing two methods to the 

actual ship distribution: the goodness-of-fit test of multi-peak Gaussian distribution and the Monte 

Carlo simulation. The obtained probability and ship distribution are used to assess the subsea 

pipeline failure risk. This study was conducted to explore a simpler and more accurate approach to 

vessel traffic geometric probability analysis which can be continuously utilised for further risk 

assessment on adjacent pipelines on the same shipping lane. This approaches will provide useful 

insight on how the geometric probability are determined for implementation in area with scarce AIS 

data. 

 

 
2. Methodology 

 

The methodology is summarised in Fig. 1. The analysis in this study began with the processing 

of AIS data by filtering and removing irrelevant data (e.g., moored vessel, navigation buoy, platform,  
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Fig. 1 Flowchart of research method 

 

 

etc.) from the study and selecting a single data point from each ship data series to eliminate 

frequency repetition. Then, complete the ship dimension and tonnage data based on ship statistics 

(Trelleborg 2003). After all the data had been completed, each data was categorised into six direction 

categories, as illustrated in Fig. 3, and was analysed to generate the ship distribution data for each 

direction category. The actual ship distribution data for the dominant direction category was then 

modelled using a multi-peak Gaussian distribution goodness-of-fit test and a Monte Carlo simulation. 

Thus, the frequency and probability of passing vessels at the subsea pipeline area can be obtained. 

In parallel, a set of provided soil, environment, structural, and operational data is analysed to provide 

inputs for pipeline damaged analysis, resulting in dent per diameter and damage category for various 

failure scenarios. The probability of passing vessels and the corresponding dent per diameter values 

are then used as inputs in both probability of failure and consequence of failure assessments, which 

are then used to estimate the failure risk of subsea pipeline. 

In accordance with DNVGL-RP-F107 (2017), a pipeline damage analysis was performed for 

each failure scenario based on pipeline parameters. There are many potential failure scenarios to be 

considered in a pipeline risk assessment. However, damage analysis in this study is focused on 

damage due to third-party impact in shipping activities such as dropped anchor, dragged anchor, and 

vessel sinking. In the pipeline damage analysis, calculations are performed to determine the class 

limits of pipeline damage based on the ratio of local deformation to the total diameter. Then, all data 

were categorised into each pipeline damage class: minor damage, moderate damage, major damage, 

and rupture. Failure probability analysis was performed by calculating the frequency and probability 

of failure for each class of pipeline damage based on the category of potential leaks i.e., no release, 

leakage, and rupture. Lastly, a risk assessment of subsea pipelines was performed based on the 

ranking of the probability and consequences of failure.  

 

2.1 AIS Data 
 

AIS (Automatic Identification System) enables a ship to communicate and exchange information  
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Fig. 2 Illustration of AIS data filter against its relative distance 

 

 

with other ships and shore-based monitoring stations. By the end of 2004, the International Maritime 

Organization (IMO) obligated every ship with Gross Registered Tonnage (GRT) of more than 300 

tons to utilise Autonomic Identification System (AIS) technology on board (Zhen et al. 2017). Hence, 

AIS technology is currently utilised by every ship, especially for large vessels operating on 

international shipping routes. 

AIS data transmitted from the ship to the control station will be recorded into a database. The 

data received and transmitted include MMSI (Maritime Mobile Service Identity) number, 

dimensions and tonnage, location of the ship in the form of longitude and latitude, type of ship, 

speed and heading, time, destination, etc. Nonetheless, it is highly probable that data errors might 

occur due to deficiencies in recording tools and systems. Thus, before the AIS data can be used for 

further analysis, it is necessary to filter the data to remove data noise, duplicate data, inappropriate 

data and to fill in the missing data (Hu et al. 2021 and Svanberg et al. 2019). 

Ships which are equipped with AIS will continuously transmit data at a predetermined time 

interval (Chung et al. 2019). Therefore, data repetition may occur if the ship is in the data coverage 

area for a long period of time. In this study, the movement of ships does not need to be accurately 

analysed one by one in order to assess the failure risk of subsea pipelines, yet only the number of 

ships that approach or pass through the pipeline area is required. Thus, a simpler data processing 

method is used, namely filtering the AIS data by selecting one ship data with the shortest relative 

distance to the reference point, as illustrated in Fig. 2. In a congested international shipping lane, 

ships will generally move in a straight line along the shipping lane corridor. Hence, one data out of 

a series of ship location data can be selected to represent its trajectory. While the reference point can 

refer to any important desired location, such as the location of a platform, the end of a pipeline, the 

center point of the data coverage area, etc. In this study, the reference point is the centre point of the 

AIS data coverage area so that the zero point of the ship distribution is right in the middle of the data 

coverage area. 

Then, the AIS data are classified into several directional categories to determine the dominant 

direction of ship traffic and the number and position of minor shipping lanes within the data coverage  
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Fig. 1 Illustration of six direction category of ship traffic. The angles is measured from zero degree as 

true north 

 

 

area. In this study, ship traffic directions are classified into six categories with an interval between 

categories of 30 degrees. The boundaries for each category are set at ±15% to the center of the 

direction category. Each direction category includes two opposite direction centers or has an angle 

difference of 180°, as illustrated in Fig. 3. 

 

2.2 Pipeline damage analysis 
 

In each failure scenario, the impact of pipeline damage will be analysed based on the size of the 

potential dent. Dent is a local deformation of a pipeline due to the impact of an object. The size of 

dent calculation for steel pipeline in this study refers to the DNVGL-RP-F107 (2017) standard as 

described in Eq. (1). 
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E m D

t D

      
          

     
                  (1) 

where 𝐸  is dissipated energy which has different values for each failure scenarios, 𝑚p  is the 

plastic moment capacity which equals to ¼ 𝜎y𝑡2, 𝜎y is yield stress, 𝐷 is outer diameter of the 

steel pipeline, 𝑡 thickness of the pipeline, 𝛿 is dent. 

In dropped anchor and vessel sinking scenario, the total impact energy represents the amount of 

kinetic energy received by the steel pipe after deducted by the absorbed energy due to the concrete 

protective layer as stated on DNVGL-RP-F107 (2017). Tawekal and De Velas (2019) studied 

damage analysis for subsea pipeline with concrete mattress protection due to dropped anchor activity. 

This study uses the same calculation method but is applied to an unburied pipeline without any 

additional protection. 

Whereas in dragged anchor scenario, the total dissipated energy on subsea pipelines should be 

analysed using a finite element model to obtain more accurate and representative analysis results  
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Table 1 Failure consequence ranking results 

Category Consequence Rating  

No Release 2 

Leakage 3 

Rupture 4 

 

 

(DNV RP F-111, 2010), as also used by Tawekal et al. (2017). However, the calculation of the 

dissipated energy due to dragged anchor in this study uses conservative assumptions, where all the 

forces and displacements are converted into energy quantities as an input variable in the Eq. (1). It 

aims to obtain only a preliminary model of the local damage when the anchor just hits and is about 

to drag the subsea pipeline.  

Dragged anchor scenario is a sequence of several possible events when an anchor is thrown by a 

moving ship. Therefore, the total dissipated energy due to dragged anchor activity consists of several 

kinds of energy, i.e., impact energy, pull over energy, hooking energy, and additional energy due to 

inertia of the anchor, where all amounts of energy for all events are calculated by referring to DNV 

RP F-111 (2010). Impact energy is calculated by assuming that a ship will generally move in the 

shipping lane at a maximum speed of 12 knots or 6.17 m/s (Spouge 1999). Pullover energy is the 

resultant vector of vertical and horizontal energy due to pipeline displacement. Hooking energy is 

the total of potential and kinetic energy to hook and lift the subsea pipeline when the anchor is 

wedged under the pipe. The last component that makes up the dissipated energy due to dragged 

anchor is the additional energy due to the inertia of a moving anchor. When the anchor strikes and 

drags the subsea pipeline, the hanging steel chain will provide additional load due to the inertia of 

the chain motion. The magnitude of the additional force is conservatively assumed to be equal to the 

weight of the entire hanging steel chain. 

 

2.3 Consequence of failure analysis 
 
According to the DNVGL RP-F107 (2017), the consequence of failure of an offshore oil and gas 

facility must be evaluated based on three factors: safety, the environment, and the economy 

(production delays). The pipeline used in this case study is an offshore gas distribution pipeline, 

which is located far from human activities. Therefore, the consequence assessment to worker safety 

and the environment is irrelevant. Thus, the consequence of failure analysis is conducted solely from 

an economic standpoint, based on the impact of pipeline damage (Aulia et al. 2021). Each category 

of the impact of pipeline damage can be reclassified according to the likelihood of leakage: no 

release, leakage, and rupture.  

Replacement of a ruptured pipeline, from the cessation of operation to completion of the repair, 

is estimated to take about 13 weeks (Brown 1984). Thus, the pipeline with the potential for rupture 

is classified as CoF class 4 (DNVGL 2017). It is assumed that pipelines with more minor leaks 

require less repair time, so they are classified as CoF class 3. Meanwhile, pipelines that do not leak 

but undergo local deformation typically do not have a significant impact on the production process 

and operations. Nonetheless, the local deformation (dent) that occurs on the pipeline may reduce its 

strength, thereby posing a future risk of leakage (Macdonald et al. 2007). Therefore, even the 

deformed pipeline without leakage also needs to be repaired in accordance with the routine repair 

and maintenance schedule, so it falls under CoF class 2. Thus, it can be concluded that the 

consequences of subsea pipeline failure are as shown in Table 1. 
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2.4 Muti-Peak Gaussian distribution 
 
Multi-peak Gaussian distribution is a combination of several normal distributions with different 

statistical parameters. The formulation of the multi-peak Gaussian distribution in this study was 

iterated not only with respect to the number of peaks but also to the position of each peak. Iteration 

of the goodness-of-fit test was continuously carried out until the desired maximum coefficient of 

determination was achieved. The multi-peak Gaussian distribution is expressed in the form of a 

probability density function as described in Eq. (2). 
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                   (2) 

where, 𝑦0  is the offset factor, 𝐴𝑖  is the amplitude of the 𝑖 th Gaussian distribution, 𝑤𝑖  is the 

deviation factor of the 𝑖th Gaussian distribution, 𝑥𝑐𝑖 is the average of the 𝑖th Gaussian distribution. 

 
2.5 Monte Carlo simulation 

 

In this study, Monte Carlo simulation is used to determine the probability of passing vessels by 

referring to the actual ship distribution data. Theoretically, the Monte Carlo simulation will generate 

a random number between 0 and 1 which represents the cumulative probability of the ship’s 

distribution. The Monte Carlo simulation was carried out five times, with the number of realizations 

up to 100 million times each. The generated random value is then interpolated against the actual 

cumulative density function to generate the estimation of the ship’s position. Each of the simulated 

ships’ position data is then filtered against the subsea pipeline area to determine whether it passes 

through the pipeline area. The probability of passing vessels is a ratio between the number of ships 

that pass through the pipeline area and the total realisation data.  

 

2.6 Probability of failure analysis 
 

In this study, the probability of failure analysis was conducted in accordance with DNVGL-RP-

F107 (2017) but with modified equation variables. The probability of failure can be calculated using 

Eq. (3). 

                         (3) 

where, 𝑃Fail  is the probability of failure, 𝑁  is the total frequency of passing vessel, 𝑃1  is the 

probability of a vessel passing the pipeline area, 𝑃2 is the probability of ship’s category, 𝑃3 is the 

probability of interference due to external activity, 𝑃4 is the reduction factor of the probability of 

failure, and 𝐶𝑃 is the conditional probability (DNVGL-RP-F107 2017). 

 
2.6.1 The probability of a vessel passing the pipeline area 
The first component of the subsea pipeline probability of failure equation is the probability for 

ships passing through the pipeline area (𝑃1). In this study, 𝑃1, states the probability of ships passing 

through the pipeline area. The 𝑃1 value is calculated and approached using three methods: based 

on historical ship traffic data, integration of the multi-peak Gaussian distribution equation, and 

statistical analysis of the results of the Monte Carlo simulation. 
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2.6.2 The probability of the ship’s category 
The second factor that composes the probability of failure equation is the probability of the ship’s 

category (𝑃2). In this study, 𝑃2 states the probability of a ship being in a particular category. The 

ship’s category is determined based on impact analysis on the limits of each pipeline damage 

category at 5%, 10%, 15%, and 20% dent to the pipeline diameter ratio. 

 

2.6.3 The probability of interference due to external activity 
The third factor that composes the probability of failure equation is the probability of interference 

due to external activity (𝑃3). In this study, 𝑃3 states the probability of a failure scenario to cause a 

leak on the subsea pipeline. The value of 𝑃3 is 1.16E-06 for the anchoring scenario and 1.67E-07 

for the vessel sinking scenario (De Stefani and Carr 2011). However, for dragged anchor scenario, 

𝑃3 must be multiplied by a multiplier which denotes the ratio between drag distance and the anchor 

length. 

 

2.6.4 Reduction factor 
The fourth factor that composes the probability of failure equation is the reduction factor (𝑃4). In 

this study, 𝑃4, states the magnitude of the reduction in the probability of failure due to preventive 

measures or mitigation of potential risks. The reduction factors used in this study are: the application 

of a navigation marine chart of 0.1 (De Stefani and Carr 2011), vessel traffic system (VTS) of 0.2 

(Spouge 1999), and marine patrol of 0.14 (DNVGL 2017). Thus, the total value of 𝑃4 used in this 

study is 2.8E-03. 

 

 

3. Geometric probability assessment 
 

3.1 Ship traffic frequency 
 

The frequency of ship distribution data is calculated per kilometer for each category of ship 

direction. The ship traffic shown as sample data in this study from an active shipping lane in Natuna 

Sea, with its specific location will be described in Section 4. The actual frequencies from ship 

distribution analysis for each direction category as described in Fig. 3, for 5 years are shown in Fig. 

5. Based on the frequencies bar chart of ship distribution, the direction category 2 is the dominant 

category with a maximum frequency at the center of the route is about 4500 ships. In comparison to 

the ship frequency in other direction categories, the value of ship distribution in category 2 is more 

significant and representative of the overall distribution. For clarity, the ship frequency data for all 

direction categories are converted into a probability density function, as shown in Fig. 4. 

In contrast, the PDFs for all direction categories other than category 2 are completely unique, 

which means they do not follow any common distribution or are randomly distributed and seem to 

consist of several minor shipping lanes. However, although the PDFs for other categories seem more 

significant due to a higher peak value than category 2, Fig. 5 shows that the frequency for each 

category is not significant. It indicates that there are only a few ships that move in a back-and-forth 

motion. 

Based on the box plots in Fig. 6, most of the ships in the direction category 2 operate within a 

limited area with much narrower boundaries than those in the other categories. It shows that ships 

in category 2 typically move in a particular channel, whereas ships in other categories are distributed 

uniformly or randomly. The mean value (shown by the dashed line) and the median value (shown  
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Fig. 4 PDF of ship distribution for each direction category as described in Fig. 3, for five years from 

June 2016 until May 2021 
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Fig. 5 Frequency of ship distribution for six direction category as described in Fig. 3, for five years data 

from June 2016 until May 2021 

 

 

by the solid line) in the direction category 2 are located right in the middle and almost coincide. It 

shows that ships are distributed almost symmetrically to the left and right of the distribution. 

Therefore, as a limitation of this study, the probability of ship distribution will only be analysed in 

category 2 as the dominant direction category. Ship distributions in other categories are excluded to 

keep this study's focus on comparing the geometric probability analysis methods. However, the 

addition of probability of ship distribution from category 3 will be briefly compared to the category 

2 in risk assessment at the end of Section 4. Furthermore, an assessment should be performed to 

ensure that the relevance of the ship distribution is not limited to the period of data. 
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Fig. 6 Comparison of five years ship distribution for each direction category as described in Fig. 3, from 

June 2016 until May 2021 

 

 

Based on the ship distribution data in category 2, a deeper analysis is performed by comparing 

the PDF graph of the distribution of ship data per year. It aims to verified the position and density 

of ship traffic on the shipping lane by analysing the annual patterns and trends of the distributions. 

The comparison of PDFs per year is shown in Fig. 7. 

Based on the PDF comparison chart in Fig. 7, although the frequency of ship traffic varies from 

year to year, the PDF distribution of ship data in category 2 demonstrates a typically similar trend. 

In general, international shipping lanes are located between –50 km and 50 km, with the distribution 

peak occurring in the middle of the shipping lanes. Therefore, it can be concluded that five years of 

AIS data is sufficient to provide a representative analysis of the ship distribution in the actual 

shipping lane. Thus, the acquired ship distribution can be used to assess the risk of other adjacent 

offshore facilities which are dominated by the same shipping lane. 

 

3.2 Goodness-of-fit test 
 
The discrete ship distribution from AIS data will be approximated by a continuous multi-peak 

Gaussian distribution equation. To determine the number of peaks that can yield the most accurate 

results, it is necessary to conduct iterations on the number of peaks in the goodness-of-fit test until 

the coefficient of determination is close to one. In this study, the ship distribution is iterated from 

one peak to five peaks, as sampled for one and five peaks in Fig. 8. 

The comparison graph in Fig. 8 shows that the five-peak Gaussian distribution is more accurate 

to the actual distribution than the Gaussian distribution with one peak. Although, in general, the one- 
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Fig. 7 Comparison of annual probability density function for direction category 2 from June 2016 until 

May 2021 

 

Distance from Reference Point (km)

-60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y
 F

u
n
c
ti
o
n

0.00

0.01

0.02

0.03

0.04

Actual 
1-Peak 
5-Peak 

 

Fig. 8 Comparison of 1-peak and 5-peak Gaussian distribution against actual distribution 

 

 

peak Gaussian distribution is close enough to the actual distribution, some segments cannot be 

approximated accurately. The objective of this study is to generate a general ship distribution for 

analysing the potential risk of offshore facilities throughout the entire coverage area. Therefore, the  
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Table 2 Coefficient of five-peak Gaussian distribution equation 

Peak Coefficient Value Peak Coefficient Value 

1st Peak 

𝑨𝟏 0.6708 

4th Peak 

𝑨𝟒 0.0230 

𝑿𝑪𝟏 1.6877 𝑿𝑪𝟒 15.6248 

𝑾𝟏 24.8315 𝑾𝟒 6.1409 

2nd Peak 

𝑨𝟐 0.2594 

5th Peak 

𝑨𝟓 0.0170 

𝑿𝑪𝟐 5.0162 𝑿𝑪𝟓 30.5926 

𝑾𝟐 14.1974 𝑾𝟓 7.2269 

3rd Peak 

𝑨𝟑 0.0043 

Offset 𝒀𝟎 0.0001 𝑿𝑪𝟑 5.8590 

𝑾𝟑 1.5192 

 

 

ship distribution must be as accurate as possible to the actual distribution to reduce the possibility 

of calculation errors. The ship distribution used in this study is a five-peak Gaussian distribution 

with a coefficient of determination of 0.9995, and the coefficients that make up the distribution 

equation in Eq. (2) are shown in Table 2. 

 

 

4. Case study 
 

In this study, risk assessment was performed on one of the subsea pipelines in Natuna Sea as 

illustrated in Fig. 9. The colours on the map indicate the density of ship traffic in that area. Areas 

with little or no ship traffic are marked in blue, while areas with heavy traffic are marked in red. The 

examined pipeline is right at the centre of an international shipping lane and is in the red zone, which 

means that the subsea pipeline area is traversed by many ships. 

The Natuna Sea is traversed by international shipping lanes that connect the two busiest container 

ports in the world, namely the Port of Singapore and the Port of Shanghai, and is directly connected 

to the busiest and most important international shipping lane, The Suez Canal Route, which passes 

through the Malacca Strait (Idris and Ramli 2018). The Natuna Sea is also one of the world’s most 

important crude oil and LNG trade shipping lanes connecting Asia, Africa, and Australia. At least 

one-third of the world’s oil and natural gas demands are distributed through this route (U.S. Energy 

Information Admisnistration 2013). Therefore, the ship traffic in this area is dominated by large 

vessels, which poses a potential threat to the existence of subsea pipeline facilities. 

In this study, pipeline damage assessment was performed on subsea pipelines using the 

parameters as shown in Table 3. Pipeline damage analysis is conducted for each failure scenario to 

determine the anchor/ship mass at the limit of each pipeline damage class. The results of the pipeline 

damage analysis are shown in Table 4. 

The probability of a ship passing through the pipeline area was determined using the calculation 

method described earlier. The results of the probability of ships passing through the pipeline area 

calculation are shown in Table 5. 

Based on the results obtained from the calculation errors analysis, the five-peak Gaussian 

distribution is more accurate in modelling the actual ship distribution with a maximum error value 

of 0.23%. Although the normal distribution is close enough to the actual distribution, it turns out 

that it generates the highest error value among all other methods. Whereas the Monte Carlo 

simulation showed a higher error value than the five-peak Gaussian distribution because it was  
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Fig. 9 Pipeline location map against international shipping lane 

 
Table 3 Pipeline structural parameters 

Parameter Value Unit 

Content Gas - 

Length 16 km 

Diameter 219.075 (8.625) mm (inch) 

Wall thickness 9.53 (0.375) mm (inch) 

Specification of Material CS API 5L X52 PSL2 - 

SMYS 360 MPa 

Steel density 7850 kg/m3 

Concrete coating thickness 40 mm 

Anti-corrosion coating thickness 0.5 mm 

 
Table 4 Damage category and ranges for each hazard 

Damage Category Dropped Anchor Dragged Anchor Vessel Sinking 

Dent / Diameter 

(%) 
Category 

Anchor Mass 

(kg) 

Anchor Mass 

(kg) 

Ship Mass  

(Ton) 

< 5 Minor Damage < 8639 < 15424 < 35.68 

5 – 10 Moderate Damage 8639 – 8679 15424 – 15524 35.68 – 36.01 

10 – 15 Moderate Damage 8679 – 8730 15524 – 15653  36.01 – 36.44 

15 – 20 Major Damage 8730 – 8791 15653 – 15806 36.44 – 36.95 

> 20 Rupture > 8791 > 15806 > 36.95 

 

 

performed on interpolated discrete data. So, it can be concluded that the Monte Carlo simulation 

method gives a less relevant result. Therefore, the approach to model the actual ship distribution in 

this study uses a five-peak Gaussian distribution with variables that make up the distribution 

equation are shown in Table 6. 

Based on the rating of consequence and probability of failure on the subsea pipeline, a failure  
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Table 1 Summary of the probability analysis of a ship passing through the pipeline area 

Method Probability Error 

Actual Distribution 0.49574 0.00% 

Normal Distribution 0.48920 1.32% 

Five-peak Gaussian Distribution 0.49462 0.23% 

Monte Carlo Simulation 0.49181 0.79% 

 
Table 2 Results of failure probability analysis on the examined subsea pipeline 

Code Probability Rank Code Probability Rank Code Probability Rank 

DpA-I 2.60E-05 2 DgA-I 6.68E-04 3 VS-I 2.54E-06 1 

DpA-II 6.91E-06 1 DgA-II 5.27E-05 2 VS-II 1.33E-06 1 

DpA-III 2.30E-05 2 DgA-III 1.84E-04 3 VS-III 4.57E-06 1 

Note: DpA: dropped anchor, DgA: dragged anchor, VS: Vessel Sinking, I: no release, II: leakage, III: rupture 

 

 

risk assessment can be carried out and then plotted into a risk matrix (Ponte 2021), as shown in Fig. 

10. It can be seen that the potential risks tend to be in acceptable areas, except for the risk of rupture 

due to dropped anchor and dragged anchor are in the As Low As Reasonably Practicable (ALARP) 

areas. Therefore, it can be concluded that the examined pipeline is relatively safe and does not 

require any additional protection. 

This study also includes a comparison analysis to validate the applicability of the five-peak 

Gaussian distribution application for calculating the geometric probability of vessel traffic in the 

dominant shipping lane. The comparison analysis was conducted on an adjacent subsea pipeline 

with a parallel configuration to the main shipping lane and the same structural parameters as the 

previously examined pipeline. This configuration was chosen because the dominance of the main 

shipping lane has the least impact when compared to the subsea pipeline with a perpendicular 

direction to the main shipping lane. The results of frequency analysis for each direction category are 

shown in Table 7. 

It is shown in Table 7 that the dominant direction category on the comparison pipeline is no 

longer the direction category 2 but category 1, with a total frequency of 695 ships. A parallel 

configuration diminishes the significance of the main shipping lane on the subsea pipeline, even 

though the pipeline is still located within it. For the main pipeline, the frequency of passing vessels 

in direction category 2 is much more significant than in the other categories, thus makes it the 

dominant direction category. Unlike the main pipeline, the frequencies of vessel traffic in direction 

categories 1, 2, and 6 on the comparison pipeline show a similar result. Therefore, all the frequencies 

must be included in the geometric probability analysis with the actual distribution method, while the 

goodness-of-fit test of multi-peak Gaussian distribution still uses the five-peak Gaussian distribution, 

which has been determined previously in direction category 2. It aims to examine the applicability 

of the five-peak Gaussian distribution to approach the actual geometric probability. 

The result of the comparison analysis of the probability of a vessel passing through the 

comparison pipeline area is shown in Table 8. It can be seen that the five-peak Gaussian distribution 

generated a high value of the calculation error of 58.3%. Therefore, it can be concluded that the five-

peak Gaussian distribution is less representative for ship traffic analysis on a subsea pipeline with a 

parallel configuration to the main shipping lane, as shown in Fig. 9. Thus, in order to obtain more 

precise results, it is necessary to analyse the local ship distribution in the vicinity of the examined 

pipeline area. 
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Fig. 10 Failure risk matrix of the examined subsea pipeline 

 
Table 3 Comparison of passing vessel frequencies per direction category between the main and comparison 

pipeline 

Pipeline 
Direction Category Total 

1 2 3 4 5 6  

Main Pipeline 333 61593 4232 61 0 155 66374 

Comparison Pipeline 695 529 0 0 0 621 1854 

 
Table 4 Summary of the probability analysis of a ship passing through the comparison pipeline area 

Method Probability Error 

Actual Frequency 0.01151 - 

Five-peak Gaussian Distribution 0.00480 58.3% 

 
Table 5 Summary of the probability analysis of a ship passing through the comparison pipeline area 

Failure 

Scenario 

Direction Category 2 Direction Categories 2 & 3 

PoF PoF Score Risk PoF PoF Score Risk 

Dropped 

Anchor 

2.42E-05 2 Acceptable 2.60E-05 2 Acceptable 

7.13E-06 1 Acceptable 7.67E-06 1 Acceptable 

2.38E-05 2 ALARP 2.55E-05 2 ALARP 

Dragged 

Anchor 

6.39E-04 3 Acceptable 6.87E-04 3 Acceptable 

5.58E-05 2 Acceptable 6.00E-05 2 Acceptable 

1.95E-04 3 ALARP 2.10E-04 3 ALARP 

Vessel 

Sinking 

2.33E-06 1 Acceptable 2.50E-06 1 Acceptable 

1.34E-06 1 Acceptable 1.44E-06 1 Acceptable 

4.60E-06 1 Acceptable 4.94E-06 1 Acceptable 

 

 

Table 9 shows the comparison of risk analysis utilizing the dominant direction category 2 and if the 

less dominant category 3 is incorporated for main pipeline. It is clear that the addition of the less 
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dominant category 3 increases the probability of failure slightly for each failure scenario. However, 

since PoF score does not change, the risk level remains the same. 

 
 
5. Conclusions 

 
This study presents the development of the geometric probability quantification methods as an 

approach to QRA of subsea pipeline facilities against external interferences based on AIS data. AIS 

data from marine traffic in Natuna Sea was processed by filtering and modeling the actual ship 

distribution throughout the entire coverage area so that the ship distribution can be used to analyse 

other adjacent subsea pipeline facilities in the same shipping lane. The actual ship distribution is 

always preferable for a more detailed and accurate analysis. However, sometimes there might be 

several limitations in acquiring reliable AIS data in every analysis. Therefore, it is necessary to 

assume the data behaviour as a specific distribution, especially for rapid simulation or conceptual 

study, as recommended in technical guidelines. The methods used and compared in this study are a 

goodness-of-fit test of multi-peak Gaussian distribution and a Monte Carlo simulation.  

The results show that a Gaussian distribution with five peaks is required to accurately represent 

the actual data by providing an error of 0.23% compared with actual data. While the Monte Carlo 

simulation with a hundred million realisation provides a calculation error of 0.79%. The Monte Carlo 

simulation generated a less accurate result due to its limitation on approaching interpolated discrete 

data. The normal distribution approach, as is recommended in several technical guidelines, turns out 

to be less accurate than other methods by providing a calculation error of 1.32% because of its 

inability to accurately model the unique behaviour of the actual distribution. Therefore, it can be 

concluded that the multi-peak Gaussian distribution can represent the actual ship traffic distribution 

in the main lane direction. However, it becomes less representative when applied for ship traffic 

distribution in a parallel direction to the main lane direction of due to a different dominating direction 

category. Lastly, the performance of the geometric probability approach was assessed by utilising a 

quantitative risk assessment for a subsea pipeline against vessel anchor-dropping and dragging and 

vessel sinking. The results of the quantitative risk assessment show that most of the risks fall under 

the acceptable areas, except for the risk of rupture due to dropped anchor and dragged anchor, which 

fall under the ALARP areas. Thus, it can be concluded that the examined subsea pipeline does not 

require any additional protection. 
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