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Abstract. In the present study, an offshore platform having large partial porous cylindrical members,
which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave
force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single
exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is
expressed by an Eigen-function expansion method. Applying Darcy’s law to the porous boundary
condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures
are presented for various wave conditions. For the idealized three-dimensional platform having large
partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces
are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the
substructure method is also applied. The displacement and bending stress at the selective nodal points of
the structure are computed using various input parameters, such as the shear-wave velocity of soil, the
wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability
evaluations at critical structure members, which contained uncertainties caused by dynamic forces and
structural properties, are examined by the reliability index with the results obtained from MCS.

Keywords: large partial porous cylindrical members, eigen-function expansion method, wave excitation
forces, substructure method, MCS method.

1. Introduction

An offshore platform with a large deck area is a new concept of offshore structure for utilizing

ocean space such as residence areas, airports, and power station, etc. In order to develop a large-

scale offshore structure the wave forces on structures and the reaction forces on foundations must be

reduced. One possible way is to use a large-diameter partial porous cylindrical member (LPPC

member), which is composed of a porous part located near free surface to reduce the horizontal

wave force and a rigid part bounded top and bottom by impermeable end caps. It is reported that

the porous members can significantly reduce the wave force and wave run up acting on an offshore

structure by many researchers (Williams and Li 1998, 2000, Cho and Kim 2010, and Park et al.

2010)

In addition, since large platforms have heavy dead loads, the reaction forces on the foundations

become severe, thus very firm foundations should be required. Therefore, the dynamic soil-structure
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interaction has to be fully considered. There are two main methods for the analysis of dynamic

structure-foundation interaction, direct and substructure methods, as outlined by Wolf (1985, 1988).

On the other hand, the uncertainty of dynamic forces and structural properties plays an important

role on structural reliability. If the uncertainty is limited within small variations, the sensitivity of

uncertainties can be effectively evaluated by the perturbation method. When the uncertainty has

relatively large variations and the structure motions are nonlinear, the Monte Carlo Simulation

(MCS) method would be an effective tool for taking account of the influence of uncertainty

(Kawano and Venkataramana 1998, Guan and Melchers 2000 and Park et al. 2011). It was also

reported that the reliability should be evaluated using the dynamic responses since the effect of

uncertainty of dynamic forces is important (Kardeniz 2005). 

In the present study, a 3D numerical analysis method is developed with the Eigen-function

expansion method and Darcy’s law in order to calculate the wave force acting on LPPC members.

To deal with hydrodynamic interactions among LPPC members, the fluid domain is divided into

three regions: a single exterior region, N inner regions and N beneath regions, and the scattering

wave in each fluid region is expressed by the Eigen-function expansion method with using 3-

dimension liner potential theory. Applying Darcy’s law to the porous boundary, the effect of

porosity is simplified. In order to verify the present method, the calculated results are compared

with experimental results from Zhao et al. (2011) and numerical results of the high-order boundary

element method from Choi et al. (2000). The wave excitation forces and wave run up on the

structures are presented for various wave conditions. By applying the wave force, the dynamic

response evaluation of the offshore platform having LPPC members is carried out through the

modal analysis with the Newmark method (Park et al. 2011) as a time integration scheme. In order

to evaluate the effect of soil-structure interaction, the substructure method is also applied to the

equation of motion. Therefore, the present three-dimensional platform consists of two subsystems:

superstructure and pile-foundation subsystems, which are connected at the nodal points between the

pile heads of the foundation and the bottom of the superstructure. Using the reliability index from

the MCS method the dynamic response of the platform against uncertain wave forces is fully

evaluated. From these results, it is found that this type of offshore structure may be useful to build a

large-scale platform by reducing the excitation forces. 

2. Formulation

2.1. Wave force evaluation

It is assumed that the computational fluid domain is inviscid, and incompressible, and its motion

is irrotational. An arbitrary array of N partial porous cylindrical members is situated in water of

uniform depth d and the draughts of each permeable and impermeable cylinder are h and b,

respectively. Thus the total draught length of partial porous cylindrical member is D( = h + b). The

radius of the jth partial porous cylinder is aj and the global Cartesian coordinate system(x, y, z) is

defined with an origin located on the sea bed with the z-axis directed vertically upwards. The center

of each partial porous cylinder at (xj, yj) is taken as the origin of a local polar coordinate system (rj,

θj), where θj is measured counterclockwise from the positive x-axis. The center of the lth partial

porous cylinder has polar coordinates (Rjl, αjl) relative to the jth partial porous cylinder. The

coordinate relationship between the jth and lth partial porous cylinders is shown in Fig. 1.
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Moreover, the fluid domain is divided into three regions: region 1 above the impermeable cylinder

(r ≤ a, d-h ≤ z ≤ d), region 2 beneath the impermeable cylinder (r ≤ a, 0 ≤ z ≤ d-b-h), and region 3

which is exterior to the partial porous cylinder and extends to infinity in the horizontal plane (r ≥ a,

0 ≤ z ≤ d).

The array of partial porous cylindrical members is subjected to a train of regular waves of height

H and angular frequency ω propagating at an angle β to the positive x-axis. When the uniform

geometry of the array structure vertically allows the depth dependence in the solution, it can be

written as follows

(1)

where, Re[ ] denotes the real part of a complex velocity potential Φ.

The wave potential in the inner region(1) of the jth partial porous cylinder, which satisfies the

appropriate free surface and structural boundary conditions, can be expressed by the following

Eigen-function expansion

(2)

in which Jn denotes the Bessel function of the first kind of order n and An
j is the unknown complex

potential coefficient. A new wave number k0 is introduced, which satisfies the dispersion relation

ω2 = gk0tanhk0h, where g and h denote the gravitational acceleration and local water depth,

respectively.

The wave potential in the beneath region (2) of the jth impermeable cylinder, which satisfies the

bottom and sea-bed boundary conditions, can be also expressed by the following Eigen-function

expansion
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Fig. 1 Coordinate system for an array of partial-porous cylinders
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(3)

in which b0 = qπ/(d-b-h) and In denotes the modified Bessel function of the first kind of order n,

respectively. Bj
n,0 and Bj

n,q are the unknown complex potential coefficients.

In addition the wave potential in the exterior region (3), which is expressed by using Graf’s

addition theorem for the Bessel Functions (Abramowitz and Stegun 1972) and satisfies the

Helmholtz equation, can be expressed by the following Eigen-function expansion

(4)

where  is a phase factor associated with the partial porous cylinder j. k is the

incident wave number which is related to the angular frequency through the dispersion relation,

ω2 = gktanhkd, with d the water depth. The right-hand side of Eq. (4) represents the incident wave

upon the jth cylinder, the scattered wave produced by the jth cylinder, and the re-scattered wave

generated by the adjacent cylinders l, respectively. The factors Zn
j can be determined by the

boundary conditions on the partial porous cylinder surface, where for the limiting case of cylinders

being rigid leads to

(5)

here Hn is the Hankel function of first kind of order n, and  and  are the first derivatives of

the Bessel and Hankel function of the first kind, respectively.

In addition to the boundary conditions, each region must be matched to ensure continuity at the

interface among regions. Finally, the matching conditions can be written as follows

(6)

As another matching condition, the fluid flow passing through the porous cylindrical surface is

assumed to obey Darcy’s law. Therefore it can be written as follows (Williams and Li 2000)

(7)
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where µ is the coefficient of dynamic viscosity, γ is a material constant having the dimension of

length and ρ is the fluid density, respectively. Subsequently, the porosity of the cylinder will be

characterized by the dimensionless parameter, G. The body boundary condition on the porous

cylinder can be expressed with the G.

(8)

in which, 

Applying matching conditions in Eqs. (6) and (8), and exploiting the orthogonality of depth, the

key equation for unknown coefficients Cn
j can be obtained as follows

(9)
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By using a stand matrix technique, the equations on Cn
j can be solved and the unknown

coefficients An
j, Bj

n,0 and Bj
n,q may then be obtain from Eqs. (8) and (6) by applying Cn

j. In this

manner the velocity potential in each fluid region (φ 1
j, φ 2

j , φ 3
j) can be determined.

After solving the velocity potentials, the wave excitation forces on each cylinder are obtained

using the integration of pressure on the wetted surface of cylinder. Surge (Fx) and sway (Fy) forces

are calculated as follows

(10)

(11)

where Eq. (10) is for porous part and Eq. (11) is for impermeable portion of cylinder. 

Heave (Fz) force is also calculated in the same manner by integrating the velocity potential on the

cylinder bottom.

(12)

2.2. The governing equation of motion

In the present study, the dynamic behavior of an idealized three dimensional platform with four

large-diameter partial porous cylindrical (LPPC) members as shown in Fig. 2 is evaluated in the

time domain. Using the modal analysis with time histories of wave forces the dynamic response of

the structure can be obtained. 
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Fig. 2. An idealized three dimensional offshore platform with LPPC members
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The platform consists of a framed-structure and a pile-soil foundation subsystem, and has a

connection at the base nodal point (node 8) between the pile heads of the foundation and the bottom

of the superstructure. Since the two subsystems interact by transferring the displacement and

dynamic forces at the pile heads and the truss bases, the governing equation of motion for the entire

structure can be formulated as follows

(13)

where the subscripts ‘a’ and ‘b’ denote the unconstrained nodal point on the superstructure and the

point connected to the pile-soil foundation system, respectively. [M], [C] and [K] represent the mass

matrix, the damping coefficient matrix, and the stiffness matrix of the structure, respectively. The

vector {Fa} is the external force acting on the superstructure, {Fb} is the reaction force caused by

the interaction of the structure-foundation system, {xa} is the displacement of the superstructure, and

{xb} is the displacement of the base nodal point. The external force on the superstructure can be

obtained from the following equation.

(14)

where, 

[CM], [Cm] and [CD] represent the inertia, added mass and drag coefficients matrices, respectively,

 and  are inertia and drag coefficients,  and  denote the acceleration and velocity of

water particles at the unconstrained nodal points, respectively. ρ represents the water density, V is

the enclosed volume and A is the projected area in the direction of flow. For convenient and

efficient analysis, a linearized drag force obtained by the least square method was applied to the

equation of motion. In order to apply the wave force obtained from Eqs. (10) and (11) to the

governing equation of motion for the entire structure, it is assumed the horizontal force per unit

length may be written equivalently as the inertia part of Morison’s equation in Eq. (14) as follows

(15)

Therefore, the water-particle acceleration  can replace  of Morison’s equation in case

of partial porous cylindrical members.

Assuming that the relative velocity between the water particles and the structure is a zero mean

Gaussian process, the equation of motion (Eq. (13)) can be rearranged as follows

(16)
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where, 

From Eq. (16), it is expected that the dynamic vibration due to inertia force and the quasi-static

displacement caused by the pile-soil foundation system would be located in the superstructure

system. They are given by

(17)

where, 

 is the displacement due to the inertia force in the fixed foundation system, and [I] is the unit

matrix. 

After substituting Eq. (17) into Eq. (16) and multiplying both sides by the transpose matrix of Eq.

(17), the equation of motion for the entire system can be rewritten as follows

(18)

where

 

As the structure mass increases, the interaction between the superstructure and foundation system

intensifies; thus, the contribution to the dynamic response of the total system increases. An

impedance function was used for analysis of the pile-soil foundation system. This function should

be calculated within the range of effective frequencies due to the fact that it is generally dependent

on the excitation frequency. Impedance coefficients as damping and stiffness matrices were applied

to the equation of motion for the foundation system given in Eq. (19) (Yamada et al. 1988 and Park
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et al. 2011).

(19)

where the subscript p represents the pile-soil foundation, {Rp} is the force from the pile head, and

[Mp], [Cp] and [Kp] denote the mass, damping, and stiffness matrix of the foundation, respectively.

By combining the force between the superstructure and pile head, the dynamic equilibrium can be

obtained as follows

(20)

Using the substructure method that satisfies the resultant force equilibrium and the compatible

displacement at the platform intersection, the equation of motion for the total system, combining Eq.

(18) with Eq. (20), is finally formulated as follows

(21)

Given the wave forces, this equation is solved using the modal analysis based on the eigenvalue

and eigenvector. Subsequently, the governing equation with a generalized coordinate system {y} can

be transformed into

(22)

where  

[Ψ ] is a modal matrix, [ ]W is wave forces,  represents the natural frequency at the jth mode

for the vibration of the total system, and  is the corresponding damping ratio including the

mechanical, hydrodynamic radiation and the viscous damping. In this study,  is the Rayleigh type

damping and its magnitude is 2% of the jth mode of the superstructure.

2.3. Uncertain parameters and reliability index

The Monte Carlo Simulation (MCS) method can be used in this study to estimate the dynamic

response of the platform with the uncertain input parameters. The reliability evaluations for linear

response induced by uncertain input can be carried out through the maximum response obtained

from the MCS method. In this study, it is assumed that uncertainties can be found in incident wave

period, wave height and shear wave velocity of soil. The uncertain parameter (q) is assumed to be a

normal distribution and expressed as follows with the mean value  and the variation coefficient δ
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(23)

where ε is a random number with the normal distribution (zero mean and variance=1). Applying

these uncertain parameters, the dynamic response can be calculated by Eq. (22). Then, the mean

value of the maximum displacement and bending stress can be determined. If the limit state

function is given by the most critical case of the dynamic response (e.g., the maximum bending

stress), the following reliability index can be described with the results obtained from the MCS

method

(24)

where 

and δR denotes the variation coefficient of member strength. Assuming that the mean value  and

its standard deviation σR are independent of time, these values are constant. The stress  and its

standard deviation are functions of time. The performance of offshore structures based on the limit

state function is strongly depended on the reliability index.

3. Numerical and discussion

Fig. 3 shows the comparison between the present numerical results and the experimental data of

Zhao et al. (2011) for various incident wave frequencies. The computed body is a full-body porous

cylinder with an impermeable bottom plate, radius (a) of 0.15 m and draft (h) of 0.3 m. The water

depth (d) in the computational domain is 5 m and the incident wave angle (β ) is 00. The calculated

surge and heave forces are normalized by ρg(H/2)a2. In Fig. 3, based on the relation between the

por

porosity parameter (G) and the opening ratio (τ) in Zhao et al. (2011), , the

p

parameter (G) of 1.432 is used for the present comparison, where the opening ratio (τ) is 0.14 and a

fixed wave slop (ε) is 0.04633 for the experimental data. It is seen that both numerical and

experimental results are well agreed and the surge wave loads on porous body are remarkably
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Fig. 3. Comparison of numerical results with experimental results (Zhao et al. 2010) for a = 0.15 m,
d = 5 m, h = 0.3 m, b =0.0 m, D = 0.3 m and β = 00: (a) Surge force and (b) heave force
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smaller than those on impermeable body. It is also observed that the peak frequencies of surge

modes for porous body are slightly smaller than the impermeable case, which means the structural

property has been changed due to porosity on the cylinder wall. On the other hand, the heave force

on the porous body remarkably decreases and goes to zero compared to the impermeable cylinder

when ka is less than 0.5, while the force slightly increases with ka greater than 0.5. From this

comparison, it is found that in the long waves the heave force is much influenced by the porosity

on the side wall. Therefore, this result can be used as an effective means to reduce the heave forces

in relatively long waves as installing porous materials on the cylinder wall. 

Fig. 4 shows the comparison of total wave forces on four cylinders for various porous wall-

lengths (h). The calculation conditions are a = 10.0 m, d = 95.0 m, D = 50.0 m, G = 5.0 and β =0.00.

The cylinders are numbered clockwise from 1 to 4, and situated at (-50.0, 50.0)m, (50.0, 50.0)m,

(50.0, −50.0) m and (−50.0, −50.0) m, respectively. The distance between cylinder centers (R) is

100.0 m, which is 5 times of cylinder diameter (R/(2a) = 5). In the comparison the ratio of h/D = 0.0

and b/D = 1.0 indicates the full-body impermeable cylinder, while h/D=1.0 and b/D=0.0 represents

the full-body porous cylinder. In the case of full-body impermeable cylinder, the calculated wave

forces are in good agreement with the results from HOBEM (Choi et al. 2000). The surge forces of

partial-porous cylinders at the modulated peaks gradually decrease as the wave number (ka)

increases. The forces at the second and third peaks (at ka = 0.6 and ka = 1.2) decrease about 55.6%

and 67.8%, respectively, compared to full-body impermeable cylinder, when the porous-length ratio

is only 12.5% of whole draft (h/D = 0.125). However, the reduction rate of surge force is not

significant as the ratio increases. It means that the effect of porosity on the body near the free

surface is much greater than the case in the deep water. In the comparison of heave forces the

partial-porous body has much different from the full-body impermeable case. In particular, in the

long wave region, the heave force on the partial-porous body greatly decreases even with a small

ratio of porous-length (h/D). The heave forces on porous body are also modulated over a given

frequency range, while those on full-body impermeable cylinder decrease monotonously. Through

these comparisons, it is found that a cylinder with a small portion of porous-wall near the free

surface could be an effective structure to have greatly reduced surge force, and this type of structure

can also be useful to control the heave force in the long waves.

Fig. 5 shows the comparison of wave run-up on each cylinder for full-body impermeable and

partial-porous cases. The wave run-up is normalized by incident wave height(H) and the abscissa

Fig. 4. Comparison of total wave forces on four cylinders with a = 10.0 m, d =95.0 m, R = 100.0 m,
D = 50 m, G = 5.0 and β = 0.00 for various porosity depths (h): (a) Surge force and (b) heave force
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denotes the angle(θ ) measured counterclockwise from the positive x-axis. Since the hydrodynamic

interaction is reduced in the case of porous bodies, the maximum run-up on partial-porous body is

significantly lower than the full-body impermeable case. For the cylinder 1 and 2 the maximum

values for both surfaced-body conditions are occurred at the similar location, around the angle of

1800, where the incident wave propagates toward the cylinder. It is found that due to the reduction

of wave-body interaction the cases of partial-porous body have similar values regardless of the body

locations and the partial-porous body, when the porous-length ratio becomes a larger than 50.0% of

whole draft (h/D = 0.5), is remarkably effective to reduce the wave run up like the case of full-body

porous cylinder.

The dynamic response evaluation of the offshore platform having LPPC members as shown in

Fig. 2 is carried out through the modal analysis. In this study the LPPC member, which has a

porous-length ratio of greater than 50% (h/D ≥ 0.5), is used based on the above results. These LPPC

members can also support the deck weight by excessive buoyancy, thus the resultant reaction forces

from base foundation decrease. The height of the platform is 105 m, the width is 120m and the

water depth is 95m. The properties of structural materials are unit weight of 77.0 (kN/m3), Young’s

modulus of 2.1 × 108 (kN/m2) and shear stiffness of 8.1 × 107 (kN/m2). The concentrated load on the

deck is assumed to be 4MN on each top point of circular cylinder. Table 1 shows the respective

natural periods of the present platform for various soil conditions. Since the pile stiffness increases

as the shear-wave velocity of soil increases, the natural period is expected to decrease with the

velocity increments (Vs). Therefore, the natural period of the total system is directly dependent on

the soil conditions of the foundation. Fig. 6 shows a time histories of displacement at node 1 due to

Fig. 5 Comparison of wave run-up on each cylinder for various porosity depths with β = 0.00, G = 5.0 and
ka = 0.6: (a) Cylinder 1 and (b) cylinder 2

Table 1. Natural period of offshore platform (sec)

mode Fixed foundation
Pile-soil foundation (soil condition)

Vs = 100 m/s Vs = 300m/s Vs = 500 m/s

1st 3.136 3.758 3.336 3.273

2nd 3.097 3.728 3.278 3.214

3rd 3.032 3.650 3.210 3.156

4th 1.737 1.881 1.785 1.775

5th 1.194 1.205 1.200 1.200
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wave forces as shown in Fig. 4, where the wave height is 5 m and the wave period is

8sec( ). The phase of displacement for all cases is same regardless of soil condition and

porous body surface. In case of porosity (G = 5.0), the magnitude decreases 50% compared to the

impermeable one. Although the magnitude of displacement of pile-soil foundation system

(Vs = 100 m/s) is 5% greater than that of fixed case, there is a little difference between fixed and

pile-soil foundation with the share wave velocity of 500 m/s. It is understood that the displacement

at the top node is strongly influenced by not soil condition but strength of wave forces, and the

LPPC member plays an important role on reduction of wave force and displacement of the platform

resultantly. Therefore, the LPPC members may be a useful concept for an offshore structure

subjected to the severe environmental condition.

ka 0.6≈

Fig. 6 Time histories of displacement at node 1 due to wave forces with H = 5 m and T = 8 sec: (a)
Vs = 300 m/s and (b) G = 5.0

Fig. 7. Comparison of maximum values for all nodal points of rigid structure due to wave force: (a)
Displacement for G = 5.0, (b) displacement for Vs=300m/s, (c) bending stress for G = 5.0 and (d)
bending stress for Vs=300 m/s. 
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Fig. 7 shows the comparison of the maximum values at each nodal point for various shear-wave

velocities of soil (Vs) and porosity rate (G). As the shear-wave velocity decreases (soft soil), the

maximum displacement at base nodal point (node 8) greatly increases and the difference between

node 1 and node 8 is minimized. These results can be explained by the fact that the incident energy

is damped through the pile-soil system and the reaction of the structure becomes small. In the case

of the impermeable members (G = 0.0), the incident wave energy without loss is acting on the

structure and the maximum displacement at the top (node 1) can be expected. Therefore, the

greatest difference between G = 0.0 and G = 5.0 is found at the top deck as shown in Fig (b). The

bending stress increases with the velocity increments (firm foundation), and the greatest value is

found in a fixed foundation system. As bending stress is generally concentrated at the connection

between the different structural systems, the biggest value can be predicted at the bottom of the

structure (node 8) where it is connected to the pile-soil foundation, and the second most affected

point is observed at the intersection between the LPPC members and the truss structure. Therefore,

it is critical for these linked parts to be examined explicitly for the reliable platform design.

In order to evaluate the effects of the wave conditions, the bending stress at node 8 is compared

for the various wave periods (Fig. 8). The soil condition with share wave velocity of 300 m/s is

chosen for a distinct comparison. As seen in Fig. 8, the case of impermeable members (G = 0.0) is

significantly influenced by the wave condition since the hydrodynamic interaction is strongly related

the wave length, while permeable members (G = 5.0) presents considerably constant values. From

these results, the offshore structure with LPPC members may be a very useful structure especially in

harsh environmental area.

Fig. 9(a) details the convergence of the maximum bending stress at node 8 for the number of

simulations (400 times) with variable inputs such as wave period (T), height (H) and share wave

velocity of soil (Vs). The variation coefficient (δ) of 0.2 was chosen in the present study. The

convergence of all parameters is achieved after 250 simulation numbers. Through this comparison,

the effects of the respective uncertain parameters on the dynamic response can be assessed, and

reliable results are finally determined after a sufficient number of simulations. The cumulative

probability of the bending stress for permeable members with the respective parameters (Vs, T, H) is

shown in Fig. 9(b). The abscissa denotes the ratio of each maximum response to its mean value,

which is determined by a time history of the responses. The wide distribution of the bending stress

indicates a significant deviation from the mean value. It is observed that the case of mean wave

Fig. 8. Maximum bending stress at node 8 due to wave forces
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height has a broad distribution. As a result, the reliability of the dynamic response is significantly

influenced by wave height.

The reliability index expressed with the second moment of the response is suitable for the

evaluation of uncertainties. The MCS method is used in order to obtain the second moment, and,

subsequently, the reliability of the dynamic responses at critical structure members with respect to

uncertain parameters can be evaluated. Assuming that the allowable bending stress is 240 MPa as

steel frames and the variation coefficient is 10% (δR=0.1), the reliability indices on the bending

stress at node 8 for the mean wave height are shown in Fig. 10. The empty and filled symbols

represent the cases of permeable and impermeable members, respectively. The reliability index of

impermeable members is significantly lower than that with permeable. In general, if the reliability

index is greater than three, the structure is considered to be relatively safe. In Fig. 10, the index

gradually decreases as the wave height increases. When the height is greater than 9 m, the index of

impermeable members is less than three, indicating that the present platform becomes unstable.

However, the cases with permeable members are always safe (>3) in the given range of wave

height. Through the parametric study, the safety of the platform against the respective uncertain

input parameters can be appraised, and the sensitivity of the individual parameters can be

determined.

Fig. 9 MCS of the offshore structure with LPPC members at node 8 due to wave forces: (a) Convergence of
bending stress and (b) cumulative probability of bending stress

Fig. 10. Comparison of reliability indices at node 8 due to wave forces
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4. Conclusions

The dynamic responses of the bottom-mounted offshore platform with LPPC members due to

wave motions are analyzed. In order to calculate the wave force acting on LPPC members the

Eigen-function expansion method and Darcy’s law is used. By applying the wave force, the

dynamic response evaluation of the offshore platform is implemented through the modal analysis

with the Newmark method. In addition, the substructure method is applied to the equation of motion

in order to evaluate the effect of soil-structure interaction. The results obtained from the present

study are summarized as follows:

(1) A LPPC member with small portion of porous-wall near the free surface could be an effective

structure to reduce the surge forces and the wave run up as well as to control the heave force in the

long waves.

(2) The dynamic response of the platform with porous members is found to be considerably small

and be less influenced by the wave condition compared to the case of impermeable members. Thus,

the offshore platform with LPPC members may be a useful offshore structure especially in harsh

environmental area.

(3) Comparing the fixed foundation system, the pile-soil foundation system has less dynamic

responses with given input conditions, so that it can be an efficient way to reduce the response by

changing the natural frequency of structure. 

(4) By applying the reliability index obtained by the MCS, the present platform was properly

evaluated its safety for wave forces. The index values of porous members were larger than those of

impermeable members. Therefore, the bottom-mounted offshore platform with LPPC members can

be a new promising concept in order to reduce the wave force, wave run up and the resultant

dynamic response as well as to ensure the large deck area for utilizing ocean space.
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