Membrane Water Treatment, Vol. 8, No. 2 (2017) 171-184 DOI: https://doi.org/10.12989/mwt.2017.8.2.171

Greenhouse gases emission from aerobic methanotrophic denitrification (AeOM-D) in sequencing batch reactor

Kwanhyoung Lee^{1a}, Oh Kyung Choi^{2b} and Jae Woo Lee^{*1,2}

¹Department of Environmental Engineering, Korea University, 2511 Sejong-Ro, Sejong City 339-700, Korea ²Program of Environmental Technology and Policy, Korea University, 2511 Sejong-Ro, Sejong City 339-700, Korea

(Received June 26, 2016, Revised August 26, 2016, Accepted October 12, 2016)

Abstract. This study presents the effect of hydraulic retention time (HRT) on the characteristics of emission of three major greenhouse gases (GHGs) including CH₄, CO₂ and N₂O during operation of a sequencing batch reactor for aerobic oxidation of methane with denitrification (AeOM-D SBR). Dissolved N₂O concentration increased, leveled-off and slightly decreased as the HRT increased from 0.25 to 1d. Concentration of the dissolved N₂O was higher at the shorter HRT, which was highly associated with the lowered C/N ratio. A longer HRT resulted in a higher C/N ratio with a sufficient carbon source produced by methanotrophs via methane oxidation, which provided a favorable condition for reducing N₂O formation. With a less formation of the dissolved N₂O, N₂O emission rate was lower at a longer HRT condition due to the lower C/N ratio. Opposite to the N₂O emission, emission rates of CH₄ and CO₂ were higher at a longer HRT. Longer HRT resulted in the greater total GHGs emission as CO₂ equivalent which was doubled when the HRT increased from 0.5d to 1.0 d. Contribution of CH₄ onto the total GHGs emission was most dominant accounting for 98 - 99% compared to that of N₂O (< 2%).

Keywords: aerobic oxidation of methane with denitrification (AeOM-D); hydraulic retention time (HRT); methane (CH₄); carbon dioxide (CO₂); nitrous oxide (N₂O); greenhouse gases (GHGs)

1. Introduction

Denitrification in wastewater treatment is significant since discharge of nitrate at a high concentration to water environment can potentially cause eutrophication which eventually deteriorates quality of water resources (Kim *et al.* 2005). In addition to damages on water environmental quality, nitrate is known to be forming carcinogenic compounds such as nitrosamines and nitrosamides (Ono *et al.* 2000, Forman *et al.* 1985). A typical method for enhancing denitrification is to add external carbon sources such as methanol and acetate into either biological nutrient removal (BNR) process or post-denitrification process as a tertiary step (Costa *et al.* 2000). However, the excess addition of the external carbon sources often generates concerns

^{*}Corresponding author, Professor, E-mail: jaewoo@korea.ac.kr

^aPh.D. Student, E-mail: 77lkh77@hanmail.net

^bPh.D. Student, E-mail: ogangogang7@korea.ac.kr

Copyright © 2017 Techno-Press, Ltd.

http://www.techno-press.org/?journal=mwt&subpage=7

such as increase in operating cost, excess biological growth and deterioration of effluent quality due to the residual organic carbon (Lee *et al.* 2014).

As an alternative, denitrification using CH_4 (or H_2) has been recently attempted at a laboratory level study aiming water and wastewater treatment (Daelman et al. 2014, Cuba et al. 2011, Modin et al. 2010). It can be attractive due to its some benefits with less potential of biomass production and organic pollutants remaining in the effluent (Sun *et al.* 2013). The denitrification using CH_4 as a sole carbon source under aerobic condition is known as aerobic oxidation of methane with denitrification (AeOM-D). Despite some benefits in AeOM-D, its applicability is still limited due to low mass transfer rate of CH_4 gas into water and utilization rate of the dissolved CH_4 by the relevant microorganisms. As for the latter, CH_4 in AeOM-D is firstly metabolized by methanotrophs with methane monooxygenase (MMO) oxidizing methane to methanol. The rate of MMO activity has not been clearly explained in AeOM-D for water treatment system but the denitrification rate is strongly subject to the methanotrophic activity (Houbron et al. 1999). This means that methane oxidation is the rate-liming step and AeOM-D might have a higher potential of emission of unutilzed CH_4 into the atmosphere. Waki *et al.* (2005) pointed out that the risk of explosion during operation if CH₄ is not sufficiently transformed or utilized and its concentration in the off-gas may exceed 5-14%. In addition to the risk problems, CH_4 is one of major greenhouse gases (GHGs) of which emission should be carefully managed. In order to understand or control the emission of GHGs, many studies have been done focusing on various factors or design and operating parameters affecting on emission of GHGs from nature such as sediment and soil or from engineering systems such as water/wastewater treatment plants and landfill. The emission of GHGs during methane oxidation in soil has largely been affected by soil physical factors (Smith et al. 2003). Emission of CH_4 from AeOM-D could be also affected by many factors such as hydraulic retention time (HRT) and it could be reduced by increase of retention time due to enhanced CH_4 oxidation (Petersen *et al.* 2005). In spite of few studies, it is necessarily studied in depth for reducing GHGs emission from engineering AeOM-D system.

In addition to CH_4 , there are concerns for emission of the other GHGs including CO_2 and N_2O from AeOM-D. Fig. 1 shows the hypothetical mechanisms for emission of GHGs from AeOM-D system. Emission of CH_4 was associated with unused CH_4 before methanotrophic oxidation. CO_2 could be generated through the metabolisms by methanotrophs and denitrifiers, while N_2O can be generated by denitrification process. It has been reported that production of N₂O in denitrification was increased in some condition such as low pH, and presence of O₂ (Knowles 1982). Global warming impacts of CH_4 and N_2O are 21 and 298 times as strong as carbon dioxide (CO_2), respectively (IPCC 2013). Similar to common denitrification process, nitrous oxide (N_2O) could be also produced from AeOM-D (Kits *et al.* 2015). In spite of low production potential of N_2O compared to CH₄ and CO₂, it is very seriously considered due to its higher global warming impact. Mechanisms for N₂O production are still under study but in many studies, N₂O could be formed through various biological reaction related to nitrogen transformation: denitrification, autotrophic and heterotrophic nitrification, nitrifier-denitrification (Hu et al. 2011, Wrage et al. 2001). N₂O production in denitrification is more significant when nitrate is highly loaded (Hu et al. 2012, Wunderlin et al. 2012). It is important to point out that the most possible conditions for greater N_2O emission were associated with unfavorable conditions to nitrifiers and denitrifiers such as low DO, short solids retention time (SRT), low C/N ratio, and low temperature (Zheng et al. 1994, Her and Huang 1995, Thoern and Soerensson 1996, Noda et al. 2003, Tallec et al. 2008, Hu et al. 2013, Paudel et al. 2015). The N₂O production in the full-scale conventional wastewater treatment plant is estimated from 0 to 14.6% of input nitrogen (Kampschreur et al. 2009) accounting for up

Fig. 1 Hypothetical mechanisms for GHGs emission in AeOM-D process

to 26% of total GHGs emission from wastewater plant (Frijns *et al.* 2008). However, to our knowledge, N_2O emission from biological denitrification using methane oxidation has not been intensively studied yet. Some relevant studies attained so far are more likely related to anammox and denitrifying anaerobic methane oxidation (DAMO) in wastewater and soil area (Shi *et al.* 2013, Ding *et al.* 2014).

Generally, HRT is a key designing parameter to determine the size of the bioreactor which in turn primarily governs the performance of the system by affecting important rates such as mass transfer, reaction and growth rate (Zonoozi *et al.* 2014). Hence, the HRT could also affect the emission of GHGs from bioreactor as well as treatment performance since the GHGs are obviously dependent on those rates. The overarching goal of this study was to characterize the emission potential of GHGs from AeOM-D in a sequencing batch reactor (SBR) operated under different hydraulic retention time (HRT) conditions. Specific objectives were 1) to understand the transformation of CH₄ and nitrogen 2) to investigate the N₂O formation and emission during AeOM-D, 3) to calculate overall emission potential of GHGs equivalent to CO₂ depending on HRT condition in AeOM-D SBR system via abiotic and biotic track studies.

2. Materials and methods

2.1 Mixed culture consortium and medium

Mixed culture consortium was prepared by mixing activated sludge and anaerobic digested sludge, obtained from 'J' wastewater treatment plant (Seoul, Korea) at 1:1 (w/w) ratio, and was cultivated for 1 month until methanotrophs and denitrifiers became enriched in terms of their reaction activity (Lee *et al.* 2014). Growth medium was consisted with the following composition (Modin *et al.* 2010): MgSO₄·7H₂O, 1000mg/L; CaCl₂·2H₂O, 270mg/L; FeSO₄·7H₂O, 9.1mg/L; and KNO₃, 144.4mg/L (20mg N/L). 1mL of trace element and 2mL of phosphate buffer solution were also contained in growth medium. The composition of phosphate buffer contained (mg/L): KH₂PO₄ 24,400; Na₂HPO₄ 10,200, and that of trace metal contained (mg/L): FeSO₄·7H₂O 2486;

Fig. 2 Schematic diagram of system; (1) reactor, (2) mass flow controller, (3) diffusing stone, (4) gas bag, (5) gas sampling port, (6) fill and draw pump, (7) magnetic stirrer

MnCl₂·4H₂O 500; ZnCl₂ 50; NiSO₄·6H₂O 101; CoCl₂·6H₂O 50; Na₂MoO₄·2H₂O 26; H₃BO₃ 50; CuSO₄·5H₂O 310; and 35% HCl 5 mL.

2.2 Track study for AeOM-D

In order to investigate the effect of HRT on nitrate nitrogen (NO₃-N) transformation and GHGs emission during AeOM-D, a cylindrical acrylic sequencing batch bioreactor (SBR) (10 cm I.D. $\times 60$ cm L.; 2.54 L actual working volume) was prepared as shown in Fig. 2. The SBR was operated under solid retention time (SRT) of 50 d and three different HRT conditions of 0.25, 0.5 and 1 d. Acclimation period with at least three weeks was given whenever the operation condition for HRT changed. The reaction time of 2, 5 and 11 hr was assigned to the equivalent HRT of 0.25, 0.5 and 1 d, respectively. The time for fill (0.25 hr), settle (0.5 hr) and withdraw (0.25 hr) was identically fixed in all bioreactor regardless of HRT condition. The SBR was operated in a temperature controlled chamber maintaiend at 20±1°C. CH₄ (99.5%) and O₂ (99.9%) in the pressurized cylinder were separately supplied into the SBR through a porous diffuser. Flow rate of CH₄ and O₂ were set to be identically 5 mL/min (1:1 ratio) by mass flow controller (MFC, TSC-200, NFSystem, Korea). In order to provide a homogeneous condition inside the reactor, continuous mixing was given at 300 rpm using magnetic stirrer. Initial concentration of the inoculum mixture was set to be 1,000 mg MLVSS/L (identically MLSS/L=1,270 mg/L) whenever the HRT condition for the SBR was changed. Mixed liquor samples were periodically taken for track study. They were immediately transferred into a 10 mL serum bottle for analyses of dissolved CH_4 and N_2O by using a headspace method (Lee *et al.* 2010). Acetylene gas was added to headspace of serum bottle for ceasing methane oxidation (Chan and Parkin 2000). While, dissolved nitrogenous compounds (NO₃⁻-N, NO₂⁻-N) were analyzed after filtrating the mixed liquor samples by membrane filters (0.45 μ m pore-size). Gaseous samples emitted through the head space of AeOM-D SBR were also periodically collected in a 1L of tedlar bag (SKC, USA) for analyses of three different GHGs of CH₄, CO₂, N₂O. All samples were analyzed in duplicate.

Denitrification efficiency and specific denitrification rate (SDNR) was calculated as follows

Denitrification efficiency (%) =
$$\frac{C_{in}V_{in} + C_fV_f - C_{out}V_{tot}}{C_{in}V_{in}} \times 100$$
 (1)

where, C_{in} is the influent NO₃⁻ concentration (mmol N/L), C_f is the residual NO₃⁻ concentration after withdrawl in the previous cycle (mmol N/L), C_{out} is the NO₃⁻ concentration at the end of reaction before withdrawl (mmol N/L), V_{in} is influent volume every cycle (L), V_f is the residual volume after withdrawl in the previous cycle (L), V_{tot} is total working volume of the SBR (L).

$$SDNR (mg N/g MLVSS \cdot hr) = \frac{Amount of NO_3^- reduced during reaction period (mg N)}{Amount of inoculum (g MLVSS) \times reaction time (hr)}$$
(2)

2.3 CH₄ dissolution test

Abiotic CH₄ dissolution test was conducted to estimate the variation of the dissolved CH₄ concentration in water as a function of time under various HRT conditions without biological reaction. The same bioreactor for AeOM-D was used for it. To calculate theoretical amount of CH₄ dissolved under abiotic condition, the dissolution test was performed by supplying CH₄ and O₂ at 5 mL/min which was the same condition to that of biotic experiments. Dissolved concentration of CH₄ in liquid phase was also analyzed at every 30 min by using headspace method (Lee *et al.* 2010).

2.4 Analytical methods

The CH₄ concentration was analyzed by using gas chromatography (GC, DS6200, Donam, Korea) equipped with a thermal conductivity detector (TCD) using Hayesep Q column (8', 1/8", 0.085", alltech, USA). The temperatures of oven, injector and detector were 40, 120 and 120 °C, respectively. The concentration of N₂O was also measured by GC equipped with a pulsed discharge detector (PDD) using Hayesep D column (80/100, 18", 8ft, Alltech, USA). Oven temperature was programmed from 40 °C kept for 4 min, ramped to 120 °C at 20 °C/min with injector temperature 120 °C and detector temperature 170 °C.

Volatile suspended solids (VSS) concentrations in the mixed liquor samples were measured according to standard method (APHA, 2005). Liquid samples were also prepared after filtration with a 0.45 μ m membrane filter to analyze nitrate nitrogen (NO₃⁻-N), and nitrite nitrogen (NO₂⁻-N) of which concentration were analyzed by ion chromatography (ICS-900, Dionex, Sunnyvale, CA, USA).

3. Results and discussion

3.1 Denitrification rate in AeOM-D

Track study was conducted for investigating denitrification performance in AeOM-D SBR operated with different HRT and the variations of nitrate concentration are shown in Fig. 3. Initial concentration of NO_3 -N was 1.13, 0.8 and 0.77 mmol/L for HRT of 0.25, 0.5 and 1.0 d, respectively, and the difference in the initial concentration was attributed to the difference in denitrification performances in the previous cycle. Denitrification using CH₄ as a sole carbon

Fig. 3 Behaviour of nitrate depending on HRT of AeOM-D SBR in track study

Table 1 Specific denitrification rate (SDNR, mg NO ₃ -N/g MLVSS hr) of AeOM-D with differ
--

SDNR		HRT (d)	
	0.25	0.5	1
Overall SDNR	0.82	1.02	0.58
Maximum SDNR	1.12 (2h*)	1.24 (3hr*)	1.59 (4hr*)

*The number in the parenthesis means the time that the maximum SDNR took place

source was well achieved in the AeOM-D SBRs despite a relatively low CH₄ flow rate (5 mL/min). Denitrification efficiency was increased as the HRT increased and it was varied in the range between 33% and 93%. Build-up of NO₂⁻-N was not observed in any bioreactor. NO₃⁻-N concentration began to decline as soon as the reaction period started switching from fill period. The overall specific denitrification rate (SDNR) during the entire reaction period for each condition was calculated and the results are shown in Table 1. The condition of 0.5 d HRT resulted in the higher overall SDNR (1.02 mg NO₃⁻-N/g MLVSS·hr) than the other HRT conditions. The longer HRT condition (1.0 d) did not exhibit the maximum rate because the nitrate to be reduced was deficient in the middle of reaction period. The maximum SDNR occurred at 2, 3, 4 hr for HRT of 0.25, 0.5, 1.0 d, respectively. The maximum SDNR was also increased from 1.12 to 1.59 mg NO₃⁻-N/g MLVSS·hr as the HRT increased from 0.25 to 1.0 d (Table 1). The maximum SDNR obtained in this study was almost comparable to those of the previous studies ranging from 0.37 to 1.96 mg NO₃⁻-N/g MLVSS·hr (Khin and Annachhatre 2004, Sánchez *et al.* 2004, Lee *et al.* 2001).

3.2 CH₄ utilization and N₂O formation in AeOM-D

Concentration of the dissolved CH_4 was monitored in AeOM-D SBR under either abiotic or biotic condition (Fig. 4). The profile of the dissolved CH_4 concentration under abiotic and biotic condition means the total available CH_4 concentration supplied to methanotrophs and the CH_4 concentration remaining after methanotrophic denitrification, respectively. Thus, the difference between two profiles represented the concentration of CH_4 oxidized by methanotrophs. In this study, the oxidized CH_4 was hypothetically identical to CH_3OH formed by MMO in

Parameters	HRT (d)			
	0.25	0.5	1	
Nitrate loading rate (mmol NO_3 - N/d)	22.9	8.1	3.9	
C/N ratio [*]	0.5	5.4	17.4	
DO (mg/L)	1.35 ± 0.104	0.61 ± 0.147	0.59 ± 0.105	
Maximum concentration of dissolved N ₂ O (µmol N ₂ O-N /L)	21.1	17.2	11.6	
N ₂ O discharge rate in effluent (mmol N ₂ O-N/d)	0.2	0.1	0	

Table 2 Characteristics of N₂O formation depending on HRT

^{*}Total amount of CH₄ oxidized product (mol)/initial amount of NO₃⁻ (mol) in each cycle

methanotrophs as shown in Eq. (3). It has been known that a part of CH_4 is also directly utilized by methanotrophs for their synthesis but we assumed that all the CH_4 was converted to CH_3OH due to difficulty in fractionation of those CH_4 utilization as similar to the previous studies (Mancinelli 1995, Modin *et al.* 2007). Total amount of dissolved CH_4 was calculated as 1.21, 7.66, 23.6 mmol for HRT of 0.25, 0.5 and 1.0 d, respectively. On the other hands, total amount of the oxidized product of CH_4 (e.g., CH_3OH) was calculated as 0.58, 4.32 and 13.38 mmol for HRT of 0.25, 0.5 and 1.0 d, respectively. Once the concentration of the CH_4 oxidized by methanotrophs was determined, the molar C/N ratio (CH_4 oxidized product/ NO_3 -N) for denitrification could be estimated at each sampling time in the track study. The theoretical molar C/N ratio for denitrification without consideration of cell growth is 0.83 according to the following equations (Lee *et al.* 2014).

$$5CH_4 + 2.5O_2 \rightarrow 5CH_3OH \tag{3}$$

$$5CH_3OH + 6NO_3^- \rightarrow 5CO_2 + 3N_2 + 6OH^- + 7H_2O$$
 (4)

Combining Eq. (3) and (4)

$$5CH_4 + 2.5O_2 + 6NO_3^{-} \rightarrow 5CO_2 + 3N_2 + 6OH^{-} + 7H_2O$$
 (5)

The C/N ratio based on the total oxidized CH_4 to initial NO_3^- in each cycle was 0.5, 5.4 and 17.4 for HRT of 0.25, 0.5 and 1.0 d, respectively, which indicated that the C/N ratio at HRT of 0.25 d was insufficient for denitrification (Table 2).

N₂O, one of major GHGs, could be formed in biological denitrification, especially under unfavorable condition for denitrification such as high nitrate loadings (Wunderlin *et al.* 2012) or low C/N ratio (Hu *et al.* 2013). The reason for greater N₂O emission under such conditions was not clearly explained, but one of possible explanations was associated with deactivation of N₂O reductase compared to N₂O producing enzymes (Holtan-Hartwig *et al.* 2002). N₂O formation could be highly influenced by the C/N ratio available for denitrification. Fig. 5 shows the concentration of the dissolved N₂O and C/N ratio for AeOM-D with different HRT. The dissolved N₂O concentration under 0.25 d HRT condition increased and levelled off until the end of the reaction time. However, under higher HRT condition of 0.5 and 1.0 d, it was increased and then decreased during reaction period. The maximum concentration of the dissolved N₂O for 0.25, 0.5, 1.0 d of HRT was 21.1, 17.2, and 11.6 μ mol/L, respectively (Table 2). The C/N ratio appeared to

Fig. 4 Change of CH₄ concentration under abiotic condition and its concentration in effluent

Fig. 5 Profile for C/N ratio and concentration of dissolved N_2O and ; HRT (a) 0.25 d, (b) 0.5 d, (c) 1.0 d

exponentially increase as the reaction time increased, higher C/N ratio induced reduction of N_2O concentration. When the dissolved N_2O concentration started to decrease, the C/N ratio was greater than 2.4 in the HRT higher than 0.5 d (Fig. 5 (b)-(c)). In many studies for denitrification, formation of N_2O was most likely significant when the C/N ratio was low probably due to the lowered activity of nitrous oxide reductase (Itokawa *et al.* 2000, Noda *et al.* 2003).

Another possible reason for N_2O formation in AeOM-D was associated with dissolved oxygen (DO) concentration. Activity of nitrous oxide reductase (*Nos*) is sensitive to DO concentration. Nitrate and nitrite reductase can maintain their activity at relatively high level of DO up to 4 and 2 mg/L, respectively, whereas *Nos* was strongly inhibited at a higher DO concentration than 0.25 mg/L (Bonin *et al.* 1992). In this study, the DO concentration at the end of reaction was higher when the HRT of AeOM-D was shorter (Table 2). The higher DO at the shorter HRT was probably attributed the lowered oxidation rate of methane. Even though the DO concentration for all HRT did not reach the inhibitory level for *Nos* activity, the higher DO concentration under shorter HRT condition might provide unfavorable condition to *Nos* activity. The results revealed that shorter HRT (0.25 d) did not lead to complete denitrification and consequently formed a more N_2O due to low C/N ratio and high DO concentration.

3.3 Greenhouse gases (GHGs) emission in AeOM-D SBR

Fig. 6 shows the concentrations of the GHGs of CH_4 , CO_2 and N_2O emitted from AeOM-D SBR depending on HRT condition. The concentration of the emitted CH_4 appeared to drastically increase in 2 hr and then leveled off until the end of reaction period describing that most of CH_4 conversion, i.e., methanotrophic reaction, occurred during the earlier reaction period. The maximum concentration CH_4 in the emitted gas was similarly 20.5 mmol/L regardless of the HRT condition and it was almost close to the input CH_4 concentration supplied to the AeOM-D SBR. The CH_4 concentrations limitedly increased for the latter 5 hr of the reaction time in the AeOM-D under 1 d HRT condition, which means that the input CH_4 was not further transformed or utilized due to the deficiency of nitrate (Fig. 6(a)).

Similar to CH_4 , concentrations of the emitted CO_2 for all HRT conditions were rapidly increased in the early 2 hr reaction time indicating that denitrification took place mainly during the earlier reaction time period (Fig. 6(b)). Once the CO_2 concentration rapidly increased and then slowly increased during the rest of the reaction time until the end of reaction time. This result illustrated that CH_4 oxidation by methanotrophs into CO_2 kept occurring even after the denitrification completed despite a lowered rate before coupling with denitrification.

Concentration of the emitted N₂O showed a similar pattern to that of the dissolved N₂O. Different from the other GHGs, dependence of the emitted N₂O concentration on HRT was significant. The maximum concentration of N₂O was higher in the AeOM-D under shorter HRT condition. The N₂O concentration in the emitted gas from AeOM-D under 0.25 d of HRT kept increasing until the end of reaction time, however it was leveled-off or decreased at the longer HRT of 0.5 or 1.0 d, respectively. The maximum N₂O concentration for 0.25 and 0.5 d was 26.5 and 22.0 μ mol/L respectively, and those took place at the end of reaction time. The concentration of N₂O reached a maximum value of 15.6 μ mol/L at 6hr and then decreased to 8.0 μ mol/L at the end of reaction in case of 1 d HRT.

Emission rate of CH_4 , CO_2 and N_2O in AeOM-D SBR was calculated by using the following equation

Emission rate (mg/d) =
$$\Sigma[C_g \times Q_g] \times t_R/d$$
 (6)

where, C_g is concentration of emitted GHGs (CH₄, CO₂ and N₂O) measured at periodic interval (mg/L; Q_g is flow rate of CH₄ and O₂ with 1:1 ratio (mL/min); t_R is reaction time in a day

The overall emission rates of GHGs from AeOM-D SBR are shown in Table 3. Emission rates of CH_4 and CO_2 increased as the HRT increased due to the extended reaction time. The reason for

Fig. 6 Concentration of emitted GHGs with different HRT; (a) 0.25 d, (b) 0.5 d, (c) 1.0 d

Parameters		HRT (d)		
		0.25	0.5	1
Emission rate (mmol/d)	CH_4	161.1	200.2	243.3
	CO_2	1.0	4.1	7.2
	N_2O	0.21	0.20	0.15

Table 3 Emission rate of GHGs and conversion ratio of NO3⁻-N to N2O with different HRT

high emission rate of CH_4 and CO_2 was attributed to more unused CH_4 and continuous methane oxidation by methanotrophs even after nitrate was exhausted. However, the emission rate of N_2O showed an opposite result to those of CH_4 and CO_2 . As discussed above, the shorter HRT was a condition leading to higher N_2O formation, so the emission rate of N_2O was increased as the HRT decreased. N_2O emission rate for HRT 1.0 d was 71% of that for HRT 0.25 d. Total generation rate of N_2O , which is the sum of the emission rate and discharge rate into effluent, showed a more evident dependence on HRT in AeOM-D: 0.41, 0.30 and 0.15 mmol/d for 0.25, 0.5 and 1.0 d, respectively. Hence, the conversion ratio of the reduced NO_3 -N into N_2O was estimated at 12.8,

Fig. 7 Annual total GHGs emission equivalent to CO₂ from AeOM-D SBR under different HRT

5.5, 4.5 % for HRT of 0.25, 0.5, 1.0 d, respectively. Interestingly, the results for GHGs emission demonstrated that both CH_4 and CO_2 have higher emission rate but N_2O has a lower rate in the AeOM-D SBR under a longer HRT condition.

3.4 Impact of AeOM-D on climate change

A better denitrification performance in the AeOM-D could be achieved by supplying CH_4 for a longer reaction time in a higher HRT. However, in operation of the AeOM-D, N₂O and CO₂ were produced and emitted as a result of metabolisms of methanotrophs and denitrifiers. Furthermore, a greater amount of unused CH_4 was emitted to atmosphere without sufficient dissolution into water and utilization by the relevant microorganisms. Thus, it is inevitable to avoid emission of GHGs from AeOM-D and it is important to estimate the impact of these on climate change. In order to estimate the impact of GHGs emission from AeOM-D SBR on climate change, the annual total GHGs emission as CO_2 equivalent for denitrification was calculated for each HRT condition as follows:

Annual emission rate of total GHGs as CO₂ equivalent (ton CO₂ Eq./kg NO₃⁻-N·yr)

=
$$\sum \text{Emission rate of each GHG} \times \frac{\text{Global warming potential (GWP)}}{\text{Total amount of the reduced } NO_3^2 - N/d} \times \frac{365d}{yr}$$
 (7)

where, GWP is the global warming potential as CO_2 equivalent and GWP for CH_4 , N_2O and CO_2 are 28, 265 and 1, respectively (IPCC 2013).

Annual total GHGs emission rate for denitrification was minimized at HRT of 0.5 d in spite of linear increase of emission rate of GHGs except N₂O with decrease of HRT in AeOM-D (Fig. 7). Thus, HRT of 0.5 d turned to be an optimal condition if considering both denitrification performance and GHGs emission rate. It was reported that the emission factor (EF) of N₂O in domestic wastewater treatment was ranged from 0.005 to 0.025 kg N₂O-N/kg TN (IPCC, 2006). The EF of N₂O obtained in this study was ranged from 0.04 to 0.13 kg N₂O-N/kg NO₃⁻-N indicating that the AeOM-D SBR potentially produces more N₂O during denitrification. Recently,

in spite of smaller emission, more attention was laid upon N₂O in wastewater treatment due to its large contribution to global warming with a higher GWP (Kampschreur *et al.* 2009). Even though the EF of N₂O was remarkably high compared to that of wastewater treatment, CH₄ was the most representative GHG enormously contributing to the total GHGs emission rates. Contribution of N₂O on the total GHGs emission was 2.0 and 1.0 and 0.5% in AeOM-D SBR at HRT of 0.25, 0.5 and 1.0 d, respectively, whereas that of CH₄ was in the range from 98 to 99%. Contribution of CO₂ was lower than that of N₂O. This study suggested that AeOM-D has a relatively high GHGs emission potential with a dominant contribution of CH₄ emitting to atmosphere as the unused form. Furthermore, N₂O could be also potentially emitted more than that of typical wastewater treatment. Consequently, it should be carefully considered to enhance the efficiency of CH₄ dissolution and utilization in operation of AeOM-D system in the future.

4. Conclusions

Recently, methanotrophic denitrification is not limited to scientific studies occurring in nature but is recently expanded to applications for water and wastewater treatment. Denitrification performance was successfully achieved in AeOM-D SBR when a relatively enough HRT was given. A longer HRT leads to a relatively higher denitrification performance with a lower emission rate of N₂O. Formation of N₂O in AeOM-D was strongly dependent on C/N ratio which was increased with increase in HRT. On the contrary, emission rate of CH_4 and CO_2 was proportionally increased as the HRT increased. The total GHGs emission as CO₂ equivalent was dominantly high at HRT of 1 d due to the excess emission of unused CH4. Thus, extension of HRT in AeOM-D system might be a good strategy for denitrification performance including N₂O emission, but it might be ineffective for controlling total GHGs emission. Considering both denitrification performance and GHGs emission, the optimal condition in this study was HRT of 0.5 d. In engineering aspect, there is still remained concern related to GHGs emission in particular CH₄. Thus, it may be necessary to enhance the efficiency of CH_4 utilization as well as to optimize the operating conditions in order to successfully apply the AeOM-D for water treatment in the future. Our suggestion is to use of microporous membrane diffuser for enhancing the mass transfer of CH_4 with less input or to recirculate the head space gas into the reactor for enhancing the utilization of the emitted CH₄.

Acknowledgments

This research was supported by Korea Ministry of Environment (MOE) as Waste to Energy and Recycling Human Resource Development Project and the Basic Science Research Program, through the National Research Foundation of Korea under Grant (NRF-2010-0013266).

References

APHA (2005), *Standard Methods for the Examination of Water and Wastewater*, 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA.

- Bonin, P., Gilewicz, M. and Bertrand, J.C. (1992), "Effects of oxygen on *Pseudomonas nautica* growth on n-alkane with or without nitrate", *Arch. Microbiol.*, **157**, 538-545.
- Chan, A.S.K. and Parkin, T.B. (2000), "Evaluation of potential inhibitors of methanogenesis and methane oxidation in a landfill cover soil", *Soil Biol. Biochem.*, **32**, 1581-1590.
- Costa, C., Dijkema, C., Friedrich, M., Garc ía-Encina, P., Fernández-Polanco, F. and Stams, A.J.M. (2000), "Denitrification with methane as electron donor in oxygen-limited bioreactors", *Appl. Microbiol. Biotechnol.*, **53**, 754-762.
- Cuba, R.M.F., Duarte, I.C.D., Saavedra, N.K., Varesche, M.B.A. and Foresti, E. (2011), "Denitrification coupled with methane anoxic oxidation and microbial community involved identification", *Braz. Arch. Biol. Technol.*, 54(1), 173-182.
- Daelman, M.R.J., Van Eynde, T., van Loosdrecht, M.C.M. and Volcke, E.I.P. (2014), "Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs", *Water Res.*, **66**, 308-319.
- Ding, Z.W., Ding, J., Fu, L., Zhang, F. and Zeng, R.J. (2014), "Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria", *Appl. Microbiol. Biotechnol.*, 98, 10211-10221.
- Forman, D., Al-Dabbagh, S. and Doll, R. (1985), "Nitrates, nitrites and gastric cancer in Great Britain", *Nature*, **313**(6004), 620-625.
- Frijns, J., Mulder, M. and Roorda, J. (2008), "Op weg naar een klimaatneutrale waterketen", H₂O, 10, 36-37.
- Her, J.J. and Huang, J.S. (1995), "Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough", *Bioresource Technol.*, **54**, 45-51.
- Holtan-Hartwig, L., Dosch, P. and Bakken, L.R. (2002), "Low temperature control of soil denitrifying communities: kinetics of N₂O production and reduction", *Soil Biol. Biochem.*, **34** (11), 1797-1806.
- Houbron, E., Torrijos, M. and Capdeville, B. (1999), "An alternative use of biogas applied at the water denitrification", *Wat. Sci. Tech.*, **40**(8), 115-122.
- Hu, Z., Lee, J.W., Chandran, K., Kim, S. and Khanal, S.K. (2013), "Nitrogen transformations in intensive aquaculture system and its implication to climate change through nitrous oxide emission", *Bioresource Technol.*, 130, 314-320.
- Hu, Z., Lee, J.W., Chandran, K., Kim, S., Sharma, K. and Khanal, S.K. (2012), "Nitrous oxides (N₂O) emission from aquaculture: A review", *Environ. Sci. Technol.*, **46**(12), 6470-6480.
- Hu, Z., Zhang, J., Xie, H., Li, S., Wang, J. and Zhang, T. (2011), "Effect of anoxic/aerobic phase fraction on N₂O emission in a sequencing batch reactor under low temperature", *Bioresource Technol.*, **102**, 5486-5491.
- IPCC (2006), Ch.6-Wastewater Treatment and Discharge. Prepared by the National Greenhouse Gas Inventories Programme, IPCC Guidelines for National Greenhouse Gas Inventories, Waste, Vol. 5, IGES, Japan.
- IPCC (2013), Summary for Policymakers. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, New York.
- Itokawa, H., Hanaki, K. and Matsuo, T. (2001), "Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition", *Water Res.*, 35(3), 657-664.
- Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2009), "Nitrous oxide emission during wastewater treatment", *Water Res.*, **43**, 4093-4103.
- Khin, T. and Annachhatre, A.P. (2004), "Nitrogen removal in a fluidized bed bioreactor by using mixed culture under oxygen-limited conditions", *Water Sci. Technol.*, **50**(6), 313-320/
- Kim, J.K., Park, K.J., Cho, K.S., Nam, S.W., Park, T.J. and Bajpai, R. (2005), "Aerobic nitrificationdenitrification by heterotrophic *Bacillus* strains", *Bioresource Technol.*, 96, 1897-1906.
- Kits, K.D., Klotz, M.G. and Stein, L.Y. (2015), "Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium *Methylomonas denitrificans*, sp. nov. type strain FJG1", *Environ. Microbiol.*, 17(9), 3219-3232.

Knowles, R. (1982), "Denitrification", Microbiol. Rev., 46(1), 43-70.

Lee, H.J., Bae, J.H. and Cho, K.M. (2001), "Simultaneous nitrification and denitrification in a mixed

methanotrophic culture", Biotechnol. Lett., 23, 935-941

- Lee, J.W., Lee, K.H., Park, K.Y. and Maeng, S.K. (2010), "Hydrogenotrophic denitrification in a packed bed reactor: Effects of hydrogen-to-water flow rate ratio", *Bioresource Technol.*, 101, 3940-3946.
- Lee, K, Choi, O.K., Song, J.H. and Lee, J.W. (2014), "Membrane diffuser coupled bioreactor for methanotrophic denitrification under non-aerated condition: Suggestion as a post-denitrification option", *Environ. Eng. Res.*, 19(1), 75-81.
- Mancinelli, R.L. (1995), "The regulation of methane oxidation in soil", Annu. Rev. Microbiol., 49, 581-605.
- Modin, O., Fukushi, K. and Yamamoto, K. (2007), "Denitrification with methane as external carbon source", *Water Res.*, **41**, 2726-2738.
- Modin, O., Fukushi, K., Nakajima, F. and Yamamoto, K. (2010), "Aerobic methane oxidation coupled to denitrification: Kinetics and effect of oxygen supply", J. Environ. Eng. ASCE, 136(2), 211-219.
- Noda, N., Kaneko, N., Mikami, M., Kimochi, Y., Tsuneda, S., Hirata, A., Mizuochi, M. and Inamori, Y. (2003), "Effects of SRT and DO on N₂O reductase activity in an anoxic-oxic activated sludge system" Water Sci. Technol., 48, 363-370.
- Ono, Y., Somiya, I. and Oda, Y. (2000), "Identification of a carcinogenic heterocyclic amine in river water", *Water Res.*, **34**(3), 890-894.
- Paudel, S.R., Choi, O., Khanal, S.K., Chandran, K., Kim, S. and Lee, J.W. (2015) "Effects of temperature on nitrous oxide (N2O) emission from intensive aquaculture system" Sci. Total Environ., 518-519, 16-23.
- Petersen, S.O., Amon, B. and Gattinger, A. (2005), "Methane oxidation in slurry storage surface crusts", J. *Environ. Qual.*, **34**, 455-461.
- Sánchez, A., Rodríguez-Hernández, L., Buntner, D., Esteban-García, A.L., Tejero, I. and Garrido, J.M. (2016), "Denitrification coupled with methane oxidation in a membrane bioreactor after methanogenic pre-treatment of wastewater", J. Chem. Techno. Biotechnol., 91(12), 2950-2958.
- Shi, Y., Hu, S., Lou, J., Lu, P.m Keller, J. and Yuan, Z. (2013), "Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor", *Environ. Sci. Technol.*, 47, 11577-11583.
- Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J. and Rey, A. (2003), "Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes", *Eur. J. Soil Sci.*, 54, 779-791.
- Sun, F.Y., Dong, W.Y., Shao, M.F., Lv, X.M., Li, J., Peng, L.Y. and Wang, H.J. (2013), "Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: Treatment performance and the effect of oxygen ventilation", *Bioresource Technol.*, 145, 2-9.
- Tallec, G., Garnier, J., Billen, G. and Gousailles, M. (2008), "Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation", *Bioresource Technol.*, 99, 2200-2209.
- Thoern, M. and Soerensson, F. (1996), "Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal", *Water Res.*, **30**, 1543-1547.
- Waki, M., Suzuki, K., Osada, T. and Tanaka, Y. (2005), "Methane-dependent denitrification by a semipartitionedreactor supplied separately with methane and oxygen", *Bioresour. Technol.*, **96**, 921-927.
- Wrage, N., Velthof, G.L., van Beusichem, M.L. and Oenema, O. (2001), "Role of nitrifier denitrification in the production of nitrous oxide", *Soil. Biol. Biochem.*, **33**, 1723-1732.
- Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. and Siegrist, H. (2012), "Mechanisms of N₂O production in biological wastewater treatment under nitrifying and denitrifying conditions", *Water Res.*, 46(4), 1027-1037.
- Zheng, H., Hanaki, K. and Matsuo, T. (1994), "Production of nitrous oxide gas during nitrification of wastewater", *Water Sci. Technol.*, **30**, 133-141.
- Zonoozi, M.H., Moghaddam, M.R.A. and Maknoon, R. (2014), "Decolorization kinetics and characteristics of the azo dye acid red 18 in MSBR system at various HRTs and SRTs", *Membr. Water Treat.*, 5(4), 281-293.

184