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1. Introduction 
 

Rivers are closely related to human activities, and water 

quality is largely influenced by a combination of complex 

anthropogenic activities and natural factors (Ren et al. 

2003, Xian et al. 2007). Water quality are affected by both 

natural and anthropogenic factors (Ma et al. 2020). 

Anthropogenic influences such as urbanization, industrial, 

and agricultural practices, chemical spill accidents, dam 

construction, and natural processes such as erosion and 

climatic conditions can also affect water quality (Zhang et 

al. 2009). In particular, in urban, agricultural, and industrial 

areas, anthropogenic pollutants such as wastewater effluent 

discharge are absorbed or deposited into rivers, functioning 

as major factors in deteriorating water quality. In order to 

improve and manage water quality influenced by various 

factors, it is necessary to understand changes in water 

quality characteristics and identify the main contributors to 

pollution, and various statistical analysis techniques have 

been used to conduct such a study (Fan et al. 2010, Yang et 

al. 2010, 2013, Dutta et al. 2018).  

Multivariate statistical analysis has been applied as a 

useful method to reduce errors in interpreting uncertain data 

of water systems with complex water quality characteristics, 

effectively evaluating and estimating the main factors 

influencing the water environment (Ahn and Yang 2007, 

Kim et al. 2014). Multivariate statistical techniques, such as  
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cluster analysis (CA), factor analysis, and principal 

component analysis (FA/PCA), have been widely used to 

interpret water quality data in the identification of possible 

sources that influence water systems, offering valuable tools 

for the reliable management of water resources (Zeng and 

Rasmussen 2005, Ouyang et al. 2006, Hussain et al. 2008, 

Razmkhah et al. 2010). The combine use of different 

multivariate statistical techniques has been increasingly 

used in the assessment of water quality (Alves et al. 2018). 

In the Nakdong River, various studies using these 

techniques have been conducted, mostly focused on the 

middle and lower reaches, tributaries joining the 

mainstream, and other specific areas where anthropogenic 

pollution sources are distributed (Kim et al. 2010, Choi et 

al. 2011, 2012). To the best our knowledge no studies exist 

on the spatial variations and water quality characteristics of 

each area in the Nakdong River basin. In this study, 

multivariate statistical analysis was performed to more 

reliably interpret water quality data and extract factors 

affecting water quality.  

Characterization of the spatial variation and source 

apportionment of water quality parameters can provide an 

improved understanding of the conditions of the water 

environment, helping researchers establish priorities for 

sustainable water management (Kolovos et al. 2002, Wang 

2002, Chang 2005). The Nakdong river is an important 

water resource that provides drinking water to approximately 

13 million people, it also supplies water to industrial 

complex and large cities along the river (Seo et al. 2019). 

This water system is affected by multiple sites of point 

source and non-point source pollution discharged from 
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urban, agricultural, and industrial areas, and is characterized 

by high spatial variations (Suh et al. 2019). Different 

pollutant types and effluent from sewage and wastewater 

treatment plants near the Nakdong River have flowed into 

the mainstream through tributaries, deteriorating the water 

quality and directly affecting the aquatic ecosystems (Lee et 

al. 2016). Therefore, studies on spatial variations and water 

quality assessment considering the effects of complicated 

water quality parameter inflows are necessary to more 

comprehensively understand the aquatic ecosystems of the 

Nakdong River water environment, as well as its needs in 

terms of water quality management. 

Accordingly, this study targeted the Nakdong River (17 

sites, 2017–2019), aiming to analyze correlations between 

various water quality parameters, identify water quality 

characteristics, and estimate the spatial variations of those 

characteristics. Further, clusters were set based on water 

quality characteristics through CA, identifying the main 

factors which heavily influenced water quality in the 

Nakdong River basin and analyzing the clusters configured 

through FA/PCA. Water quality pollution assessment was 

conducted by calculating the pollution index (PI) of the 

main contributing parameters. Based on these results, this 

study assessed river water quality characteristics, indicated 

their spatial variations, and identified target parameters and 

areas to be managed first for improving water quality. 

Furthermore, this study can be used as a basis for reference 

data necessary for understand pollution resource and spatial 

variations, and for reduce water pollution and improve 

water quality, not only in the Nakdong River, but also in 

other river system.  

 
 

2. Material and methods 
 

2.1 Study area  
 

The Nakdong River study area has a total area of 

23,384.21 km2, a mainstream length of 400.7 km, and a 

river length of 510.36 km, accounting for nearly 25% of the 

total area in South Korea. The geographic location is 

34°59’41″–37°12’52″ N latitude, and 127°29’19″– 

129°18’00″ E longitude, and includes three metropolitan 

cities (Pusan, Daegu, and Ulsan) and certain parts of five 

provinces (Gyeongsangbuk-do, Gyeongsangnam-do, 

Jeollanam-do, Jeollabuk-do, and Gangwon-do). In addition, 

the Nakdong River basin has complex land-use patterns, 

including agricultural and livestock activities in the 

upstream part, and the formation of a densely populated 

metropolis and industrial activities in the middle and lower 

reaches. This study targeted a total of 17 sites, ranging from 

Site 1 in Andong city, Gyeongsangbuk-do, in the Nakdong 

River upstream reaches, to Site 17 in Busan Metropolitan 

city downstream. The sites are geographically divided into 

upstream (Sites 1–6), middle stream (Sites 7–12), and 

downstream (Sites 13–17) (Fig. 1a). Small and large 

tributaries join the mainstream between each site; among 

them, the larger tributaries include Wi-cheon between Sites 

3 and 4, Gam-cheon between Sites 5 and 6, Geumho-river 

between Sites 9 and 10, Hwang-river between Sites 12 and 

13, Nam-river between Sites 13 and 14 and Milyang-river 

between Sites 15 and 16. In the Nakdong River, tributaries 

in the middle and lower reaches tend to be larger than those 

in upstream. Pollution sources generated from urban, 

industrial, and agricultural areas, which are located near all 

17 sites, flow directly into the river or via the tributaries, 

affecting overall water quality. Accordingly, current 

population, and the status of agricultural and industrial 

areas near the were obtained using the Water Emission 

Management System (http://wems.nier.go.kr) provided by 

the National Institute of Environmental Research of South 

Korea. Among all sites, Site 10 in Daegu city had the 

highest population of more than 50,000; thus, it was 

assumed that the site recorded the highest inflow of 

domestic wastewater due to urbanization. It was found that 

the basin areas of Sites 1 and 10 were the largest, covering 

23.6 and 27.7 km2, respectively. In particular, Site 10 

consisted of the largest agricultural (4.4 km2) and industrial 

(0.115 km2) areas, which have the highest risk of inflow 

from sewage and wastewater (Fig. 1b). 

 

2.2 Water quality analysis methods 

 
This study area employed monthly average data of water 

quality analysis for three years (from January 2017 to 

December 2019), targeting the 17 sites in the mainstream of 

the Nakdong River. Precipitation (PCP) data were collected 

from the Water Resources Management Information System 

(http://www.wamis.go.kr) provided by the Han River Flood 

Control Office of South Korea. Among the water quality 

parameters, a total of four components were measured at the 

site using a multiparameter water quality meter (YSI- 

650MDS, USA): water temperature (WT), dissolved 

oxygen (DO), electrical conductivity (EC), and pH. Ten 

further water quality parameters were analyzed as indirect 

indicators of organic matter pollution: biochemical oxygen 

demand (BOD), chemical oxygen demand (COD), total 

organic carbon (TOC); the nutrient salt nitrogen-based 

compounds total nitrogen (T-N), ammoniacal nitrogen 

(NH3-N), and nitrate nitrogen (NO3-N); the phosphorus- 

based compounds total phosphorus (T-P) and inorganic 

dissolved phosphorus (PO4-P); and suspended solids (SS) 

and chlorophyll-a (Chl-a) (Table 1). The field survey and 

study analysis methods were based on the official test 

methods for water quality according to the Ministry of 

Environment of Korea (MOE 2012). 

 

2.3 Statistical analysis methods  
 

In this study, multivariate statistical analysis techniques 

were applied using SPSS 20.0 software. The widely used 

pearson’s correlation analysis was employed to determine 

correlations between the water quality parameters; as the 

p-value was set to less than 0.05, coefficients with higher 

values were assumed to have non-significant correlations. 

CA was applied to identify groups of samples with similar 

water quality parameters (Kumari et al. 2013). This study 

used Ward’s methods, a hierarchical CA designed to 

minimize the loss of data between clusters, and each cluster 

was set by converting similarities into distances using  

246



 

Assessment and spatial variation of water quality using statistical techniques ... 

 

 

 

Euclidean distance (Otto 1998). Based on these results, 

clusters were illustrated as a dendrogram (Mckenna 2003). 

Prior to performing FA/PCA, the Kasier-Meyer-Olkin 

(KMO) and Barlett’s tests were conducted to determine 

whether clusters were applicable to water quality parameter 

data. Based on the CA results, FA/PCA was performed on 

all clusters together as well as each configured cluster. In 

addition, FA/PCA was performed on the correlation matrix 

between the different parameters followed by Varimax 

rotation, with the same being used to examine the 

association between water parameters (Kuppusamy and 

Giridhar 2006).  

 

 

 

2.4 Pollution index method 

 

In order to estimate the pollution level in the study area, 

the pollution index for each water quality parameter was 

calculated as follows (Su et al. 2011).  

𝑃𝐼 =  𝐶𝑖 𝐶0⁄   (i = 1, 2, … n) (1) 

where Ci is the concentration of the analyzed water quality 

parameter and Co is the standard concentration of each 

parameter. In this study, standard concentrations were based 

on the environmental standards for river water quality of 

Korea; except for T-N which does not currently have a  

 

Fig. 1 Monitoring sites in the Nakdong river (a): site map, (b): summary map, population, basin, agriculture, and 

industrial areas 

Table 1 Water quality parameter, abbreviations, analytical methods, and equipment used in this study 

Parameter Abbreviation Analytical Methods (equipment model, country) 

Biochemical oxygen demand BOD Dilution and seeding 5-days (YSI 5100-115v, USA) 

Chemical oxygen demand COD Potassium permanganate (Water bath) 

Total organic carbon TOC High-temperature combustion (AnalytikJena multi N/C 3100, Germany) 

Total nitrogen T-N Continuous flow analysis (Skalar SAN++, Netherlands) 

Ammonium nitrogen NH3-N Ion chromatography (J.L.Science Metrohm850, Swiss) 

Nitrate nitrogen NO3-N UV-visible spectrometry (Aliance Smartchem200, France) 

Total phosphorus T-P Continuous flow analysis (Skalar SAN++, Netherlands) 

Inorganic dissolve phosphorus PO4-P UV-visible spectrometry (Aliance Smartchem200, France) 

Suspended solids SS Filtration methods (GF-C, and Dry oven) 
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standard concentration for rivers, and so was set based on 

the environmental standard for lake water quality of Korea. 

The environmental standard water quality in Korea is 

divided into six classes; class I is subdivided into classes Ia 

and Ib, with class Ib corresponding to “good” and thus 

indicating a good water quality condition (Table 2). 

Therefore, the concentration of Ib was used as the standard 

concentration; if a PI value was less than 1, this would 

indicate a non-contaminated environment, while higher PI 

values indicated a higher level of contamination. 

 

 

3. Results and discussion 
 
3.1 Results of water quality  
 

Fig. 2 shows the analysis of the water quality 

components for each site during the study period. Overall, 

the study area showed an increasing trend in pH (7.0–9.1) in 

the middle and lower reaches compared to upstream. Water 

temperature and DO showed similar patterns at all sites; DO 

was between 5.8–16.8 mg/L without forming oxygen- 

deficient water masses (< 2.0 mg/L) at all sites. It is known 

that pH affects chemical and biological processes, and that 

temperature affects the availability of oxygen concentration 

(Kowalkowski et al. 2006). In particular, pH affects the 

growth of algal populations (Na et al. 2016); as algae such 

as phytoplankton grow, carbonates and bicarbonates in the 

water are absorbed and increased by photosynthesis (Kim et 

al. 2002). 

The concentration of Chl-a, a component indicating 

algal density, tended to increase in the middle and lower 

reaches (> 19 mg/m3) compared to upstream (< 19 mg/m3). 

As a result, the study area showed more active growth of 

algae in the middle and lower reaches than in the upstream 

part. It has been estimated that for the middle and lower 

reaches, there is a high risk of eutrophication in which algae 

growth expands and DO is decreased, especially in the 

summer when water temperature increases. EC exceeded 

300 µs/cm at sites in the middle and lower reaches (Sites 

10, 11, and 12), and SS was also increased in that it had 

higher concentrations in the middle and lower reaches 

compared to upstream, which was a similar pattern to EC. It 

is assumed that this spatial pattern of increase in SS was 

due not only to seasonal factors such as precipitation, but 

also to a large amount of suspended matter inflowed from  

 

 

tributaries which are distributed more heavily among the 

middle and lower reaches than in the upstream part (Jung 

and Kim 2017). BOD showed “excellent” water quality 

corresponding to Ia at Sites 1 and 2 located in the farthest 

upstream part, increasing to 2.2 mg/L at Site 10 in the 

middle-stream, and then showing a relatively lower water 

quality of class II at Site 14. COD was found to be less than 

5 mg/L in the upstream part (Sites 1 and 2) indicating no 

contamination; however, all other sites showed a level of 

pollution corresponding to class III with a concentration 

exceeding 5 mg/L; in particular, the maximum COD 

concentration (6.7 mg/L) was observed at both Sites 11 and 

12. As TOC was less than 4 mg/L at Sites 1, 2, and 3, which 

belonged to the upstream part, those sites were classified as 

Ib and class II; all other sites showed values exceeding 4 

mg/L corresponding to class III, with midstream sites (Sites 

10–13) showing the maximum TOC concentrations. 

Organic matter indicators such as BOD, COD, and TOC 

showed distinctive increasing trends from Site 10, where 

the maximum concentration appeared; it can be seen that 

there was a high concentration of organic matter 

downstream. Nitrogen-based nutrient salts such as T-N, 

NH3-N, and NO3-N had maximum concentrations in the 

midstream part; T-N also showed a high concentration 

exceeding 3 mg/L from Sites 10 to 13. NH3-N and NO3-N 

also showed an increasing trend in the midstream part; Sites 

10 and 11 had the highest concentrations, with NH3-N 

exceeding 0.1 mg/L and NO3-N exceeding 2.5 mg/L. 

Phosphorus-based nutrient salts such as T-P and PO4-P also 

showed a similar pattern to organic matter and nitrogen- 

based nutrient salts, showing the highest concentration in 

the midstream part; T-P was found to belong to classes Ia 

and Ib at all sites. Overall for the study area, results showed 

high concentrations of organic matter and nutrient salts at 

Site 10, affecting the middle and lower reaches. 

 

3.2 Correlation analysis  
 

Pearson’s correlation analysis was performed to identify 

the correlation between all water quality components in this 

study (Table 3). PCP showed high positive correlation 

coefficients with T-P (0.650) and PO4-P (0.617) along with 

water temperature (0.659); PCP also had positive 

correlations with TOC (0.396), COD (0.461), and SS 

(0.386). SS showed positive correlations with TOC (0.523), 

COD (0.510), T-P (0.500), and PO4-P (0.323). It is assumed  

Table 2 Environmental standards for river water quality of Korea 

class BOD (mg/L) COD (mg/L) TOC (mg/L) SS (mg/L) DO (mg/L) T-P (mg/L) T-N* (mg/L) 

a Excellent ≤ 1 ≤ 2 ≤ 2 ≤ 25 ≥ 7.5 ≤ 0.02 ≤ 0.2 

b 

Good ≤ 2 ≤ 4 ≤ 3 ≤ 25 ≥ 5.0 ≤ 0.04 ≤ 0.3 

Above 

average 
≤ 3 ≤ 5 ≤ 4 ≤ 25 ≥ 5.0 ≤ 0.10 ≤ 0.4 

Fair ≤ 5 ≤ 7 ≤ 5 ≤ 25 ≥ 5.0 ≤ 0.20 ≤ 0.6 

Poor ≤ 8 ≤ 9 ≤ 6 ≤ 100 ≥ 2.0 ≤ 0.30 ≤ 1.0 

Very poor ≤ 10 ≤ 11 ≤ 8  ≥ 2.0 ≤ 0.50 ≤ 1.5 

*T-N: Environmental standard for lake water quality of Korea 
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that these results were due to the increased concentration of 

SS, organic matter, and phosphorus-based nutrient salts 

inflowing into the water system because of non-point source 

pollution, such as soil runoff during summer coupled with 

high precipitation, as well as to the simultaneous discharge 

of phosphorus adsorbed onto SS (Lee and Kim 2017). DO 

showed a high negative correlation with water temperature 

(-0.916), likely caused by a typical seasonal factor in which 

the oxygen depletion rate increases due to the decomposition 

of organic matter during summer when the water 

temperature also increases (Na et al. 2015). As Chl-a had no 

significant correlation with PCP or water temperature, it 

was interpreted to have little or no seasonal effect. This  

 

 

result differed from other research outcomes, which have 

showed that Chl-a was generally highly correlated with 

water temperature. This can be explained in that during 

summer, when water temperature increases, blue-green 

algae Microcystis species tend to proliferate, leading to an 

increase in Chl-a, a phenomenon in which the low- 

temperature diatoms Stephanodiscus sp. show optimal 

growth despite the low water temperature (Joung et al. 

2013, Seo et al. 2010). In addition, as there were positive 

correlations of Chl-a with organic matter components such 

as BOD (0.721), COD (0.515), and TOC (0.502), it can be 

assumed that (marine) autogenous organic matter increased 

in relation to the algal growth (Kim et al. 2013). Although  

 

Fig. 2 Box plot of water quality data in each sites of the study area (from 2017 to 2019) 
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Chl-a indicated low yet significant positive correlations 

with T-N (0.141) and T-P (0.148), although it had negative 

correlation with PO4-P (-0.112). It is believed that, unlike 

other nutrient salts, PO4-P can be easily transformed within 

the body of phytoplankton in water (Kappers 1980). T-N 

showed high positive correlation with NO3-N (0.949), and 

these two components also showed high correlation with 

EC (T-N: 0.597 and NO3-N: 0.657), indicating that 

nitrogen-based nutrient salts fully functioned as electrolytic 

factors in the water. Regarding the correlations between 

organic matter components, compared to the correlation 

coefficients of BOD with COD (0.551) and with TOC 

(0.585), the correlation of COD with TOC showed a 

relatively higher coefficient of 0.895. This indicates that the 

variation in COD and TOC, and those in COD/TOC and 

BOD, did not correspond to each other, inferring that 

non-biodegradable organic matters were more distributed 

than organic (Gwak and Kim 2015). Overall, PCP and 

water temperature showed high correlations with SS and 

phosphorus-based nutrient salts, while COD and TOC 

showed a higher correlation coefficient than those of 

COD/TOC with BOD. Based on this, it is assumed that 

non-biodegradable organic matter was distributed in the 

study area.   

 

3.3 Cluster analysis  
 

Cluster analysis involves arranging objectives into 

clusters based on the similarities inside the clusters and 

dissimilarities of different clusters. The clusters were 

divided by their unique characteristics, and often informed 

the interpretation of the water quality data (Vega et al. 

1998). CA was performed based on the analyzed water 

quality components and is represented by a dendrogram 

(Fig. 3). The study area was largely divided into three  

 

 

clusters (I, II, and III), while clusters I and II could be 

subdivided into four sub-clusters, Ia, Ib, IIa, and IIb, 

comprising five clusters in total including cluster III. 

Cluster III belonged to the upstream part of the study area 

(Sites 1 and 2), showing the lowest concentrations of most 

water quality components compared to other clusters, thus it 

was interpreted that this cluster had the lowest level of 

water quality pollution. Cluster II consisted of the upper 

(Sites 3–6, sub-cluster IIb) and middle (Sites 7–9, 

sub-cluster IIa) stream sites. Cluster II had a higher level of 

water quality pollution than cluster III, but had a lower level 

than cluster I. Cluster I consisted of sites in the middle 

(Sites 10–12, sub-cluster Ib) and lower (Sites 13–17, 

sub-cluster Ia) reaches. The average number of populations 

in the classified clusters is in the order of Ib > Ia > IIa > IIb 

> III, and land use is in the order of Ib > IIa > IIb > Ia > III 

for both agricultural and industrial area. As such, 

sub-cluster Ib represented sites with the largest population 

and the widest areas of agriculture and industry in the study 

area. The CA was performed and classified based on the 

water quality pollution levels and characteristics of the 

study area (Singh et al. 2005). According to the pollution 

levels, the relationship from highest to lowest was: cluster I 

(sub-clusters Ib > Ia) > cluster II (sub-clusters IIa > IIb) > 

cluster III. Further, a large amount of organic matter and 

nutrient salts was assumed to be present in sub-cluster Ib, 

likely affecting sub-cluster Ia in the lower reaches.  

The CA in this study indicated land use impact on the 

Nakdong River and the location of sewage treatment 

facilities, which was reflective of previous classification of 

geographic groups based on the pollutants introduced by 

domestic and industrial wastewater and agricultural 

activities (Shrestha and Kazama 2007). According to 

previous studies, areas were classified into the upstream 

part, which had good quality of water, and areas near Deagu  

Table 3 Pearson’s correlation coefficients among water quality parameter 

 PCP WT pH DO EC SS Chl-a BOD COD TOC T-N NH3-N NO3-N T-P PO4-P 

PCP 1               

WT 0.659** 1              

pH -0.139** 0.107** 1             

DO -0.609** -0.916** 0.053 1            

EC -0.431** -0.464** 0.137** 0.496** 1           

SS 0.386** 0.216** -0.118** -0.198** -0.215** 1          

Chl-a 0.037 0.044 0.422** 0.157** 0.231** 0.087* 1         

BOD -0.003 -0.016 0.392** 0.186** 0.447** 0.068 0.721** 1        

COD 0.461** 0.409** 0.124** -0.301** 0.008 0.510** 0.515** 0.551** 1       

TOC 0.396** 0.338** 0.107** -0.224** 0.045 0.523** 0.502** 0.585** 0.895** 1      

T-N -0.303** -0.603** -0.112** 0.597** 0.644** -0.083* 0.141** 0.280** 0.032 0.074 1     

NH3-N 0.010 -0.079 -0.112** 0.003 0.366** 0.001 0.033 0.295** 0.216** 0.250** 0.323** 1    

NO3-N -0.346** -0.665** -0.143** 0.657** 0.526** -0.101* 0.094* 0.200** -0.080* -0.005 0.949** 0.176** 1   

T-P 0.650** 0.546** -0.263** -0.506** -0.312** 0.500** 0.148** 0.158** 0.672** 0.581** -0.126** 0.187** -0.188** 1  

PO4-P 0.617** 0.537** -0.363** -0.545** -0.473** 0.323** -0.112** -0.095* 0.473** 0.380** -0.210** 0.093* -0.228** 0.871** 1 

*: correlation is significant at the 0.05 level, **: correlation is significant at the 0.01 level 
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city, which were heavily affected by anthropogenic 

pollutants from cities and industrial complexes (Han et al. 

2009). In addition, based on water quality pollution levels, 

the river had been divided into two groups: upstream, and 

the middle and lower reaches. The middle and lower 

reaches have been shown to have high pollution levels and 

to be strongly affected by domestic and industrial waste- 

water and effluent flowing into the Geumho-river (Jung et 

al. 2016a). In this study, clusters were classified on the 

basis of Site 10 located in Deagu city, according to various 

pollutants in the wastewater effluent discharged from urban, 

agricultural, and industrial areas concentrated near the site, 

which flow into the mainstream through the Geumho-river 

and show varying water quality characteristics. 

 

3.4 Factor analysis/Principal component analysis   
 

Factor analysis and principal component analysis is a 

powerful pattern recognition tool that combines many 

variables based on similar common dimensions and reduces 

them to a small number of factors in order to identify 

principal components (PCs) of environmental change. For 

this study, the method derived a unique pattern that was 

mutually independent of changes in water quality parameters 

in order to analyze the trend of the entire dataset (Simeonev 

et al. 2003). In addition, FA extracted varifactors (VFs) 

from loading factors, allowing them to be classified based 

on the degree of influence of each water quality parameter 

on the water quality characteristics. VF could also include 

unobservable, hypothetical, or latent variables, while each 

PC comprised a linear combination of observed water 

quality parameters (Wunderlin et al. 2001). In this study, 

FA/PCA was conducted on a total of six clusters (total 

cluster, sub-clusters Ia, Ib, IIa, and IIb, and cluster III), 

identifying PCs which had the greatest influence on factor 

impacts and water quality changes in each cluster. It is 

known that FA/PCA analysis is possible only when the  

 

 

KMO-test has a minimum value of 0.5, and Barlett’s test 

has a p-value of less than 0.05 (Park et al. 2013, Kim and 

Kim 2017). In this study, the KMO-test had values of more 

than 0.7 in the total cluster and sub-clusters Ia, Ib, IIa, and 

IIb, and 0.633 in cluster III, while Barlett’s test had values 

of 0.00 in all clusters, demonstrating the applicability of 

FA/PCA. Eigenvalues were also extracted, which provide a 

measure of the significance of the factor; the highest 

eigenvalue indicates the highest significance, with 1.0 or 

greater considered as significant (Kim and Mueller 1978, 

Pekey et al. 2004). Accordingly, in this study, VFs with an 

eigenvalue higher than 1.0 were extracted. 

The FA results including VFs, factor loading, and total 

and cumulative variance are shown in Table 4. If the factor 

loading value of the water quality parameter exceeded 0.75, 

it was classified as “strong,” values between 0.75 and 0.50 

were “moderate,” and values less than 0.5 were “weak” 

(Liu et al. 2003). Total of four VFs were extracted from the 

total cluster; VF1 had an eigenvalue of 4.445 and total 

variance of 29.630%, with T-P of 0.887 and PO4-P of 

0.791, which were classified as “strong”, and had COD 

(0.735), TOC (0.699), SS (0.709), and PCP (0.665) which 

corresponded to “moderate”. VF2 indicated an eigenvalue 

of 4.126, a total variance of 27.509%, with NO3-N (0.910), 

T-N (0.875), WT (-0.839), DO (0.830), and EC (0.556) 

corresponding to strong. In addition, in cluster I, sub- 

clusters IIa and IIb, and cluster III, the factors extracted in 

VF1 and VF2 showed similar results to the total cluster. 

These results were similar to those of a previous study (Han 

et al. 2009), showing that anthropogenic pollutants such as 

organic matter and T-P corresponded to “strong” and had 

great influence on the water quality of the Nakdong River. 

In sub-cluster Ib, T-N (0.893), NO3-N (0.944), DO (0.904), 

and WT (-0.901) of VF1 corresponded to strong, and in 

VF2, SS (0.892), T-P (0.863), PO4-P ( 0.797), COD (0.721), 

PCP (0.639), and TOC (0.614) corresponded to both strong 

and moderate, showing different results from the other five  

 

Fig. 3 Dendrogram of the monitoring sites using hierarchical cluster analysis in the study area 
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clusters. In addition, Chl-a, BOD, and pH, which are related 

to eutrophication, belonged to VF3 in all clusters. 

The factor loading values of the total cluster and 

sub-cluster Ib are presented in a scatter plot in order to 

identify PC1 and PC2, which had highest influences on the  

 

 

study area, and PC1 and PC2 in sub-cluster Ib with different 

VF1 and VF2 (Fig. 4). There is a difference in the principal 

components affecting cluster sub-cluster Ib compared to 

other clusters, and it can be estimated that there is a 

difference in the pollutant sources flowing into the sites  

Table 4 Result of factor analysis (FA) for each cluster in the study area 

a) total cluster (all sites) b) Ⅰa sub-cluster c) Ⅰb sub-cluster 

parameter VF 1 VF 2 VF 3 VF 4 parameter VF 1 VF 2 VF 3 VF 4 parameter VF 1 VF 2 VF 3 VF 4 

T-P 0.887 -0.235 0.014 0.160 T-P 0.899 -0.262 0.065 0.016 NO3-N 0.944 -0.090 0.064 0.114 

PO4-P 0.791 -0.311 -0.255 0.129 PO4-P 0.868 -0.294 -0.217 0.034 DO 0.904 -0.229 0.049 -0.005 

COD 0.735 -0.084 0.567 0.135 SS 0.740 -0.141 0.311 -0.001 WT -0.901 0.325 0.115 -0.084 

SS 0.709 0.045 0.107 -0.322 PCP 0.696 -0.336 0.162 0.105 T-N 0.893 -0.130 0.144 0.256 

TOC 0.699 -0.005 0.581 0.133 EC -0.643 0.530 0.131 0.272 EC 0.554 -0.525 0.363 0.294 

PCP 0.665 -0.457 -0.030 0.022 NO3-N -0.177 0.926 -0.033 0.027 SS -0.103 0.892 0.093 -0.177 

NO3-N 0.005 0.910 -0.008 0.153 T-N -0.208 0.905 -0.011 0.176 T-P -0.326 0.863 -0.120 0.131 

T-N 0.040 0.875 0.068 0.317 WT 0.357 -0.872 0.157 0.046 PO4-P -0.397 0.797 -0.305 0.108 

WT 0.395 -0.839 0.100 0.068 DO -0.376 0.857 0.139 -0.085 COD -0.100 0.721 0.546 0.122 

DO -0.368 0.830 0.114 -0.143 Chl-a 0.146 0.122 0.852 -0.134 PCP -0.532 0.639 0.036 -0.111 

EC -0.298 0.556 0.341 0.479 BOD -0.002 0.228 0.843 0.110 TOC 0.015 0.614 0.536 0.365 

Chl-a 0.134 0.109 0.849 -0.044 TOC 0.514 -0.209 0.752 0.009 Chl-a 0.168 0.080 0.869 -0.215 

BOD 0.140 0.190 0.834 0.282 pH -0.358 -0.231 0.737 -0.060 BOD 0.259 0.072 0.766 0.448 

pH -0.378 -0.221 0.716 -0.126 COD 0.597 -0.301 0.662 0.034 pH -0.320 -0.415 0.716 -0.136 

NH3-N 0.126 0.130 0.052 0.867 NH3-N 0.046 0.060 -0.046 0.968 NH3-N 0.233 0.021 -0.053 0.897 

Eigen 

value 
4.445 4.126 2.732 1.463 

Eigen 

value 
4.121 3.988 3.220 1.100 

Eigen 

value 
4.445 4.126 2.732 1.463 

%total 

Var. 
29.630 27.509 18.214 9.756 

%total 

Var. 
27.476 26.651 21.469 7.334 

% total 

Var. 
29.630 27.509 18.214 9.756 

Cul. % 29.630 57.139 75.353 85.109 Cul. % 27.476 54.127 75.596 82.930 Cul. % 29.630 57.139 75.353 85.109 

d) Ⅱa sub-cluster e) Ⅱb sub-cluster f) Ⅲ cluster 

parameter VF1 VF2 VF3  parameter VF1 VF2 VF3 VF4 parameter VF1 VF2 VF3 VF4 

COD 0.874 -0.099 0.228  T-P 0.890 -0.126 -0.297 -0.018 T-P 0.875 0.221 -0.078 0.043 

SS 0.858 0.059 0.126  COD 0.880 -0.064 0.179 0.158 PO4-P 0.871 0.098 -0.052 -0.214 

T-P 0.835 -0.278 -0.246  PO4-P 0.818 -0.048 -0.418 -0.057 COD 0.867 0.247 -0.089 0.086 

PO4-P 0.810 -0.316 -0.264  SS 0.805 0.124 0.053 0.089 SS 0.826 0.381 0.038 -0.228 

TOC 0.809 -0.017 0.332  PCP 0.792 -0.334 -0.244 0.111 TOC 0.758 -0.026 -0.086 0.429 

EC -0.760 0.421 -0.049  TOC 0.741 0.007 0.361 0.185 PCP 0.655 0.524 0.120 -0.037 

PCP 0.641 -0.524 -0.101  EC -0.729 0.326 0.422 0.216 NO3-N 0.386 -0.342 0.017 0.361 

pH -0.593 -0.199 0.526  NO3-N 0.070 0.942 -0.089 -0.168 T-N 0.222 0.867 -0.249 0.205 

NO3-N 0.035 0.949 0.073  T-N 0.125 0.933 -0.082 -0.098 WT -0.233 -0.860 0.245 -0.138 

T-N -0.024 0.942 -0.062  WT 0.512 -0.809 -0.089 -0.048 DO -0.053 -0.661 0.378 0.151 

WT 0.402 -0.861 -0.019  DO -0.512 0.762 0.246 -0.030 EC 0.435 0.651 -0.029 -0.058 

DO -0.315 0.854 0.216  BOD 0.049 0.076 0.868 -0.080 Chl-a -0.004 -0.211 0.964 -0.022 

Chl-a 0.001 0.179 0.804  pH -0.241 -0.155 0.792 -0.097 BOD -0.073 -0.223 0.952 -0.019 

BOD -0.016 0.398 0.651  NH3-N 0.504 -0.146 0.028 0.705 pH -0.248 0.031 -0.012 0.851 

NH3-N -0.163 0.163 -0.609  Chl-a 0.121 0.166 0.485 -0.659 NH3-N 0.540 0.387 -0.013 0.609 

Eigen 

value 
5.137 4.156 2.095  

Eigen 

value 
5.466 3.326 2.365 1.119 

Eigen 

value 
4.765 3.253 2.143 1.606 

%total 

Var. 
34.247 27.705 13.970  

%total 

Var. 
36.440 22.172 15.769 7.457 

%total 

Var. 
31.766 21.686 14.288 10.708 

Cul. % 34.247 61.952 75.922  Cul. % 36.440 58.612 74.381 81.838 Cul. % 31.766 53.452 67.740 78.447 
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corresponding to sub-cluster Ib. PC1, which had the greatest 

influence on water quality characteristics in the study area, 

included phosphorus-based nutrient (T-P and PO4-P), 

non-degradable organic matter (COD and TOC), PCP, and 

SS, while PC2 had T-N, NO3-N, and DO. PC1 in sub- 

cluster Ib consisted of NO3-N and T-N; compared to other 

clusters, nitrogen-based nutrient salts had the greatest effect 

on water quality characteristics, while phosphorus-based 

nutrient salts, organic matter, and SS, identified as PC1 in 

the total cluster and other clusters, were found to be PC2. It 

is known that nutrient salts, non-degradable organic matter, 

and SS, which have great influence on the water quality of 

the Nakdong River, are mostly introduced from urban and 

industrial areas near the sites, while phosphorus-based 

nutrient salts and SS have generally increased because of 

point source pollution and non-point source pollution, such 

as agricultural land and soil erosion (Venkatraman et al. 

2014). In particular, domestic wastewater, especially that 

containing detergents, industrial effluents, and fertilizer 

run-off, contributes to elevated levels of phosphates in 

water (Iscen et al. 2008). Nitrogen-based nutrient salts, 

which corresponded to PC2 in the total cluster and PC1 in 

sub-cluster Ib in this study, are known to be an 

anthropogenic pollutant sources of domestic wastewater and 

agricultural activities (Singh et al. 2005). Fertilizers 

containing nitrogen compounds are used for agricultural 

activities, distributing a high concentration of nitrogen 

pollutants within the Nakdong River basin (Zhou et al. 

2006). In addition, nitrogen-based nutrient salts, among 

pollutants inflowed through tributaries, generally function 

as PCs in areas where urban and industrial areas are 

concentrated (Yoon et al. 2019). Based on this, for this 

study it can be inferred that anthropogenic sources of 

pollution were discharged from urban, industrial, and 

agricultural areas near sub-cluster Ib. In particular, a high 

concentration of nitrogen pollutants was introduced through 

the Geumho-river, a large tributary joining Site 10. 

According to the results of FA/PCA, in the study area, 

phosphorus-based nutrient salts (T-P and PO4-P) and 

non-degradable organic matter (COD and TOC) had the 

greatest effect on water quality characteristics. Compared to 

other clusters, sub-cluster Ib (Sites 10, 11, and 12) was 

considered to be relatively heavily affected by nitrogen- 

based nutrient salts (T-N, and NO3-N). 

 

 

3.5 Pollution index   
 

Based on the FA/PCA results, the concentrations of 

nutrient salts and organic matter, which acted as major 

factors (PC1 and PC2) for variations of water quality 

characteristics in the study area, were calculated as PIs (Fig. 

5). Specifically, the PIs were based on the mean 

concentrations of T-P and T-N (parameters representing 

phosphorus and nitrogen-based nutrient salts), COD and 

TOC (parameters indicating non-degradable organic matter), 

and SS. COD and TOC showed high pollution levels with 

averages of 1.45 and 1.44, respectively. In clusters II and III 

in the upstream part, the values generally recorded less than 

1.5, while values exceeded 1.5 from Site 10 to the 

downstream sites, which belonged to sub-cluster Ib. COD 

and TOC, indicating non-biodegradable organic matter, 

were likely heavily influenced by the wastewater effluent 

discharged from urban and industrial areas. In particular, 

biodegradable organic matter can be processed and 

removed in sewage and wastewater treatment plants; 

however, non-biodegradable substances are known to 

remain in the effluent (Imai et al. 2002). At Geumho-river 

joining Site 10, there is a concentration of sewage and 

wastewater treatment plants, introducing a large amount of 

non-biodegradable organic compounds in the effluent into 

the mainstream of the Nakdong River (Jung et al. 2015). In 

addition, there is a study that the Geumho-river’s water 

quality steeply decreased along with the inflow of 

tributaries’ flow as well as effluents from the wastewater 

treatment plants in city of Gyeongsan and Daegu (Bae 

2020). Therefore, in order to reduce the pollution caused by 

non-biodegradable organic compounds at the sites in the 

middle and lower reaches, the effluent from the treatment 

facilities near Geumho-river should be properly managed. 

SS recorded an average PI of 0.28, indicating no pollution, 

and showing a relatively higher value in the lower reaches 

than in the upstream part. T-P had an average PI of 0.73, 

indicating an overall pollution-free environment; however, 

cluster Ib showed a higher degree of contamination with a 

value close to 1 (> 0.9). The changes in T-P concentration 

are influence by changes in the discharge loads from 

pollution sources in watershed (Jung et al. 2019). Therefore, 

the PI increased according to the increased in the discharge 

load from the pollution sources of the Geumho-river joining 

 

Fig. 4 Scatter plot of loading for the total cluster (a), and sub-cluster Ⅰb (b) 
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the cluster Ib, and there is a high possibility of water 

pollution by nitrogen-based nutrient salts for those sites. 

T-N showed the highest PI with an average of 13.54, which 

may be the result of applying the lake standard to the T-N 

standard concentration. Therefore, it is necessary to set the 

T-N river standard concentration in order to determine the 

pollution level of T-N in rivers with higher accuracy and 

reliability. T-N, similar to other water quality parameters, 

tended to increase in the middle and lower reaches, 

especially in sub-cluster Ib, showing a high value exceeding 

15. These results, along with the outcomes from FA/PCA, 

indicate that the variations in water quality characteristics 

by nitrogen-based nutrient salts were higher than those in 

other clusters, indicating that worsening water quality from 

nitrogen contaminants was serious in sub-cluster Ib. The PI 

of five water quality parameters was generally higher in the 

middle and lower reaches than in the upstream part, and in 

particular, sub-cluster Ib showed the highest pollution 

levels. It was found that spatial variations in the integrated 

PI were consistent with previously determined spatial 

variations of the level of urbanization (Wang et al. 2008). 

For Site 10 in sub-cluster Ib, which had the highest PI value 

and was consistent with the highest degree of urbanization 

due to population density, it is interpreted that the influx of 

anthropogenic pollutants due to human activities significantly 

influenced the water quality. Within the study area, a higher 

number of larger tributaries such as Geumho-river, Hwang- 

river, Nam-river, and Milyang-river join the middle and 

lower reaches as compared to the upstream part of the 

mainstem Nakdong River. Among them, Geumho-river is 

located within a larger city and has a higher population as 

compared to other tributaries; further, coupled with its 

higher concentration of agricultural and industrial areas, it 

is known that pollutants such as organic matters and 

nutrient salts, which are discharged from sewage treatment 

plants and domestic wastewater, flow into the mainstream 

of the Nakdong River from this location, affecting its 

downstream reaches (Jung et al. 2016b, Lee and Kim 2017). 

In this study, the concentrations of non-degradable organic 

compounds and nutrient salts increased sharply at Site 10 

compared to Site 9, leading to a tendency to worsen water 

pollution. Thus, it is inferred that non-degradable organic  

 

 

matter, and nitrogen- and phosphorus-based nutrient salts, 

which were distributed in sewage and wastewater 

discharged from urban, agricultural, and industrial areas 

concentrated near Site 10, flowed into the mainstream 

through the Geumho-river, worsening water quality 

pollution in the middle and lower reaches.  

 

 

4. Conclusions 
 

In order to evaluate the characteristics and spatial 

variation of water quality (PCP, WT, DO, EC, BOD, COD, 

TOC, T-N, NH3-N, NO3-N, T-P, PO4-P, SS, and Chl-a) in 

the Nakdong River, a total of 17 sites were surveyed for 

three years from 2017–2019. Four statistical analysis 

techniques (pearson’s correlation analysis, CA, and FA/PCA) 

were applied based on the analyzed water quality 

parameters to calculate the PI of main contributing factors. 

Generally, the study area showed that concentrations of 

phosphorus- and nitrogen-based nutrient salts and organic 

matter increased at Site 10. The study area was divided into 

a total of five clusters based on the characteristics of water 

quality pollution, which show descending order of pollution 

as: cluster I (sub-clusters Ib > Ia) > cluster II (sub-clusters 

IIa > IIb) > cluster III. Phosphorus-based nutrient salts (T-P 

and PO4-P), SS, and non-degradable organic matter (COD 

and TOC) corresponded to VF1 and VF2, which were found 

to be PCs with a strong impact on water quality. In addition, 

it was found that sub-cluster Ib was relatively heavily 

affected by nitrogen-based nutrient salts of nitrogen (NO3-N 

and TN) compared to other clusters. Water pollution (PI) 

shows deterioration by non-degradable organic matter, 

nitrogen- and phosphorus-based nutrient salts in the middle 

and lower reaches as compared to upstream. Based on these 

results, anthropogenic pollution sources such as sewage and 

wastewater discharged from urban, agricultural, and 

industrial areas concentrated near Site 10 likely flowed into 

the mainstream through the Geumho-river and deteriorated 

the water quality in the middle and lower reaches. 

Therefore, to improve overall water quality in the Nakdong 

River, pollution reduction and purification measures for 

nutrient salts and non-degradable organic matters should be 

 

Fig. 5 Pollution indexes of (a) COD; (b) TOC; (c) SS; (d) T-P; and (e) T-N 
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preferentially implemented for the site of Geumho-river 

joining Site 10 in sub-cluster Ib. In other words, in order to 

improve water pollution in the main stream of river, which 

is used as a source of drinking water, it is necessary to 

remove the source of pollution by effectively treating 

wastewater from cities, agriculture, and industrial 

complexes flowing in from tributaries. 
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