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1. Introduction 
 

In recent years, applications in the field of the periodic 

wave and the employ of composite materials have 

experimented a great interest in aerospace, automobile, and 

other engineering industries (Behera and Kumari 2018, 

Narwariya et al. 2018, Fládr et al. 2019, Bakhshi and 

Taheri-Behrooz 2019, Belbachir et al. 2019, Abualnour et 

al. 2019, Sahla et al. 2019, Medani et al. 2019, Draoui et al. 

2019, Ghadimi 2020, Ghannadpour and Mehrparvar 2020, 

Singh and Kumari 2020). Growing, attention is being 

devoted to elasticity due to its many engineering 

applications in the fields of geophysical physics, structural 

elements, plasma physics, and the corresponding 

measurement techniques of magneto-elasticity as described 

in the Refs. (Farhan 2017, Akbarov et al. 2018, Ozisik et al. 

2018, Othman and Fekry 2018, Karami et al. 2019ab, Lata 

2019, Karami et al. 2019cde, Alimirzaei et al. 2019, 

Khorasani et al. 2020). The interaction of electromagnetic 

fields with the motion of a deformable solid is receiving 

much attention from many researchers. Among the many 

essential problems considered in such studies, elastic wave 

propagation problems in the presence of a paper magnetic 

field have investigated. Considerable use was made of 

elastic materials, especially in aerospace industries. It is 

thus of considerable practical interest to investigate the 

elasto dynamic behavior of such materials due to the effect 

of suddenly applied surface pressures. Addition to 

aerospace industries, spherical structures may also be used  
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in submarines, nuclear reactors, and chemical plants. The 

elastodynamic response of anisotropic spheres is a 

fundamental problem of renewed contemporary interest. 

 Abd-Alla et al. (2013) investigated an analytical 

solution for electrostatic potential, on wave propagation 

modeling in human long wet bones. They investigated 

effects of non-homogeneity, magnetic field and gravity field 

on Rayleigh waves in an initially stressed elastic half-space 

of orthotropic material subject to rotation, and they studied 

the influence of the rotation and gravity field on Stonely 

waves in a non-homogeneous orthotropic elastic medium. 

Abd-Alla and Mahmoud (2010 and 2013) investigated the 

magneto-thermoelastic problem in rotating non-

homogeneous orthotropic hollow cylindrical under the 

hyperbolic heat conduction model and the problem of radial 

vibrations in the non-homogeneity isotropic cylinder under 

the effect of initial stress and magnetic field. Mofakhami et 

al. (2006) investigated finite cylinder vibrations with 

different end conditions at the boundary. The hollow 

spheres are frequently encountered in engineering 

industries, and the corresponding free vibration problem has 

become one of the basic problems in elastodynamics. Free 

vibration analysis of functionally graded curved panels was 

carried out using a higher order formulation have been 

investigated by Pradyumna and Bandyopadhyay (2008). 

Sofiyev and Karaca (2009) investigated the vibration and 

buckling of laminated non-homogeneous orthotropic 

conical shells subjected to external pressure. Argatov (2005) 

investigated the approximate solution of the axisymmetric 

contact problem for an elastic sphere. Huang and Ho (2004) 

discussed the analytical solution for vibrations of a polarly 

orthotropic Mindlin sectorial plate with simply supported 

radial edges. Bahrami et al. (2013) investigated the wave 

propagation technique for free vibration analysis of annular 
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circular and sectorial membranes. Towfighi and Kundu 

(2003) investigated elastic wave propagation in anisotropic 

spherical curved plates. The radially nonhomogeneous 

axisymmetric problem is studied by Theotokoglou and 

Stampouloglou (2008). Stavsky and Greenberg (2003) 

studied the radial vibrations of orthotropic laminated hollow 

spheres. 

In the present paper, the equations of the elastodynamic 

problem for orthotropic non-homogeneous hollow sphere 

subject to initial stress and rotation have solved regarding 

displacements. An Analytical solution for the elastodynamic 

equations has obtained in detail for different cases. The 

results indicate that the periodic wave solutions in elastic 

material under the effect of initial stress, rotation, and non-

homogeneity on radial displacement, the corresponding 

stresses are played a significant role in engineering, science, 

and pure and applied mathematics. 

 

 

2. Formulation of the problem 
 

Let us consider a system of orthogonal spherical 

coordinates axes and let a hollow sphere, for a spherically 

orthotropic elastic medium under the effect of initial stress; 

the spherical coordinates (𝑟, 𝜃, 𝜑)  are helpful with 

𝑟 radial  𝜃 co-latitudinal and  𝜑  meridional. The basic 

equations of the spherical orthotropic are given by:  

𝜏𝑟𝑟 = (𝑐11 + 𝑃)
𝜕𝑈𝑟

𝜕𝑟
+ (𝑐12 + 𝑃)

𝑈𝑟

𝑟
+ (𝑐13 + 𝑃)

𝑈𝑟

𝑟
, 

𝜏𝜃𝜃 = (𝑐12 + 𝑃)
𝜕𝑈𝑟

𝜕𝑟
+ (𝑐22 + 𝑃)

𝑈𝑟

𝑟
+ (𝑐23 + 𝑃)

𝑈𝑟

𝑟
,    

𝜏𝜑𝜑 = 𝑐13

𝜕𝑈𝑟

𝜕𝑟
+ 𝑐23

𝑈𝑟

𝑟
+ 𝑐33

𝑈𝑟

𝑟
, 

𝜏𝑟𝜑 = 𝜏𝑟𝜃 = 𝜏𝜃𝜑 = 0. 

(1) 

(2) 

(3) 

(4) 

where the radial displacement 𝑈𝑟 = 𝑈𝑟(𝑟, 𝑡) is a function 

of   𝑟 and 𝑡  only, the circumferential displacement 𝑈𝜃 

moreover, the longitudinal displacement  𝑈𝜑 , which are 

independent of  𝜃 𝑎𝑛𝑑 𝜑.  
The dynamical equation in the 𝑟 direction is given by: 

𝜕𝜏𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜏𝑟𝑟 −

1

𝑟
𝜏𝜃𝜃 −

1

𝑟
𝜏𝜑𝜑 + 𝜌(Ω⃖  × Ω⃖  × �⃖�  )

𝑟

= 𝜌
𝜕2𝑈𝑟

𝜕𝑡2
, 

(5) 

where Ω⃖  = (0,0, Ω),  (Ω⃖  × Ω⃖  × �⃖�  )
𝑟
  is a component of 

the centripetal acceleration in the radial direction (�⃖�), due to 

the time-varying motion only, and 𝜌  is the density of the 

material of the sphere and  𝛺 is the rotation, and �⃖�  =
(𝑈𝑟(𝑟, 𝑡),0,0) is the displacement vector. 

Substituting from equations (1-4) into equations (5), we 

get: 

𝜕𝜏𝑟𝑟

𝜕𝑟
+

2

𝑟
𝜏𝑟𝑟 −

1

𝑟
𝜏𝜃𝜃 −

1

𝑟
𝜏𝜑𝜑 + 𝜌𝛺2𝑈𝑟 = 𝜌

𝜕2𝑈𝑟

𝜕𝑡2
, (6) 

We characterize the elastic constants 𝑐𝑖𝑗  moreover, the 

density ρof non-homogeneous material in the form 

𝑐𝑖𝑗 = 𝛼𝑖𝑗𝑟
2𝑚 , 𝜌 = 𝜌0𝑟2𝑚, 𝑃 = 𝑝∗𝑟2𝑚 ,   𝑖, 𝑗 = 1,2,3 ,     (7) 

where 𝛼𝑖𝑗  and 𝜌0  are the values of 𝑐𝑖𝑗  and 𝜌  in the 

homogeneous case, respectively, and m is the non-

homogeneous parameter.  

𝜏𝑟𝑟 = 𝑟(−1+2 𝑚) [(2 𝑝∗ + 𝛼12 + 𝛼13)𝑈𝑟  

+ 𝑟 (𝑝∗ + 𝛼11)
𝜕𝑈𝑟

𝜕𝑟
] 

𝜏𝜃𝜃 = 𝑟(−1+2 𝑚) [(2 𝑝∗ + 𝛼22 + 𝛼23)𝑈𝑟 + 𝑟 (𝑝∗ +

𝛼12) 
𝜕𝑈𝑟

𝜕𝑟
], 

𝜏𝜑𝜑 = 𝑟(−1+2 𝑚) [(2 𝑝∗ + 𝛼23 + 𝛼33) 𝑈𝑟  + 𝑟 (𝑝∗ +

𝛼13) 
𝜕𝑈𝑟

𝜕𝑟
] . 

(8) 

 

(9) 

 

(10) 

Substituting from equations (7-10) into equation (6), 

then we obtain: 

𝑟−1+𝑚 [[(−2 + 4𝑚)𝑝∗ + 𝛼12 + 2𝑚𝛼12 + 𝛼13

+ 2𝑚𝛼13 − 𝛼22 − 2𝛼23 − 𝛼33]𝑈𝑟

+ 𝑟(𝑟𝑢1𝜌0𝛺2 − 𝑟𝜌0

𝜕2𝑈𝑟

𝜕𝑡2

+ 2[(1 + 𝑚)(𝑝∗ + 𝛼11) + 𝐻0
2μ0]

∂𝑈𝑟

∂𝑟

+ 𝑟(𝑝∗ + 𝛼11)
𝜕2𝑈𝑟

𝜕𝑟2
)] = 0.    

(11) 

In the next part, we study the analytical solution for 

radial vibration of an elastic spherical body of non-

homogeneous orthotropic material subject to rotation 
 

 

3. Solution of the problem  
 

In this section, one obtains the analytical solution of the 

problem for a spherical region of inner radius 𝑎and outer 

radius 𝑏 with different boundary conditions, by taking the 

harmonic vibrations. We assume the solution of equation 

(11) as the following form: 

𝑈𝑟(𝑟, 𝑡) = 𝑢1(𝑟)𝑒−𝑖𝜔𝑡 ,    (12) 

where ω is the natural frequency of the vibrations, 𝑡 is the 

time. 

Substituting from equation (12) into equation (11), one 

gets: 

𝑒−𝑖𝑡𝜔𝑟−1+𝑚 [[(−2 + 4𝑚)𝑝∗ + 𝛼12 + 2𝑚𝛼12 + 𝛼13

+ 2𝑚𝛼13 − 𝛼22 − 2𝛼23 − 𝛼33

+ 𝑟2𝜌0(𝜔2 + 𝛺2)]u1(𝑟)

+ [2𝑟(1 + 𝑚)(𝑝∗ + 𝛼11)]
𝑑𝑢1

𝑑𝑟

+ 𝑟(𝑝∗ + 𝛼11)
𝑑2𝑢1

𝑑𝑟2
)] = 0, 

(13) 

where 𝑢1(𝑟)  is given in terms of m due to non-
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homogeneity of material. Then one has 

𝑟−1+𝑚 [𝛼1𝑟2𝜌0(𝜔2 + 𝛺2)𝑢1(𝑟)

+ 𝑟 (𝛼2

𝑑𝑢1

𝑑𝑟
+ 𝑟𝛼3

𝑑2𝑢1

𝑑𝑟2
)] = 0, 

(14) 

where 

𝛼1 = (−2 + 4 m)𝑝∗ + 𝛼12 + 2 m 𝛼12 

+𝛼13 + 2 m 𝛼13 − 𝛼22, 

𝛼2 = 2(1 +  m)(𝑝∗ + 𝛼11),  

 𝛼3 = (𝑝∗ + 𝛼11),   

(15) 

The equation (14) is called spherical Bessel's equation 

(Polyanin and Zaitsev 2003) and which its general solution 

is known in the form: 

u1 = 𝑟
1
2

−
𝛼2

2(𝑝∗+𝛼11) [𝐶1J1
2

+n
(
√𝛼1√𝜌0√𝜔2 + 𝛺2

√𝑝∗ + 𝛼11

 𝑟)

+ 𝐶2 Y1
2

+n
(
√𝛼1√𝜌0√𝜔2 + 𝛺2

√𝑝∗ + 𝛼11

 𝑟)]. 

(16) 

Substituting from an above equation (16) into equation 

(12), one obtains the components of the displacements:   

𝑈𝑟

= 𝑟
1
2

−
𝛼2

2(𝑝∗+𝛼11) [𝐶1J1
2

+n
(
√𝛼1√𝜌0√𝜔2 + 𝛺2

√𝑝∗ + 𝛼11

 𝑟)

+ 𝐶2 Y1
2

+n
(
√𝛼1√𝜌0√𝜔2 + 𝛺2

√𝑝∗ + 𝛼11

 𝑟)] 𝑒−𝑖𝑡𝜔, 

(17) 

From equation (13), one gets strain components in the 

form:   

𝑒𝑟𝑟 = √𝛼1𝑟
−1

2
−n

√𝜌0√𝜔2 + 𝛺2𝑟
1

2
−n

  

[𝐶1J
−

1
2

+n
(𝑘2 𝑟) + 𝐶2 Y

−
1
2

+n
(𝑘2 𝑟)] 𝑒−𝑖𝑡𝜔

√𝑝∗ + 𝛼11

, 

(18) 

𝑒𝜃𝜃 = 𝑟
−1
2

−n [𝐶1J1
2

+n
(𝑘2 𝑟) + 𝐶2 Y1

2
+n

(𝑘2 𝑟)] 𝑒−𝑖𝑡𝜔, (19) 

𝑒𝜑𝜑 = 𝑟
−1
2

−n [𝐶1J1
2

+n
(𝑘2 𝑟) + 𝐶2 Y1

2
+n

(𝑘2 𝑟)] 𝑒−𝑖𝑡𝜔. (20) 

Substituting from an above equation (17) into equation 

(8-10), one obtains the stresses:   

𝜏𝜃𝜃 =
1

√𝑝∗+𝛼11
𝑟−

1

2
+2𝑚−n [√𝛼1𝑟(𝑝∗ +

𝛼12)√𝜌0√𝜔2 + 𝛺2J
−

1

2
+n

(𝑘2 𝑟)𝐶1 + (2𝑝∗ + 𝛼22 +

𝛼23)√𝑝∗ + 𝛼11J1

2
+n

(𝑘2 𝑟)𝐶1 + 𝐶2√𝛼1𝑟(𝑝∗ +

𝛼12)√𝜌0√𝜔2 + 𝛺2Y
−

1

2
+n

(𝑘2 𝑟) + 𝐶2(2𝑝∗ + 𝛼22 +

𝛼23)√𝑝∗ + 𝛼11Y1

2
+n

(𝑘2 𝑟)] 𝑒−𝑖𝑡𝜔, 

(22) 

𝜏𝜑𝜑 =
1

√𝑝∗+𝛼11
𝑟−

1

2
+2𝑚−n [√𝛼1𝑟(𝑝∗ +

𝛼13)√𝜌0√𝜔2 + 𝛺2J
−

1

2
+n

(𝑘2 𝑟)𝐶1 + (2𝑝∗ + 𝛼23 +

𝛼33)√𝑝∗ + 𝛼11J1

2
+n

(𝑘2 𝑟)𝐶1 + 𝐶2√𝛼1𝑟(𝑝∗ +

𝛼13)√𝜌0√𝜔2 + 𝛺2Y
−

1

2
+n

(𝑘2 𝑟) + 𝐶2(2𝑝∗ + 𝛼23 +

𝛼33)√𝑝∗ + 𝛼11Y1

2
+n

(𝑘2 𝑟)] 𝑒−𝑖𝑡𝜔. 

(23) 

where 

𝑛 =
𝛼2

2(𝑝∗+𝛼11)
,              𝑘2 =

√𝛼1√𝜌0√𝜔2+𝛺2

√𝑝∗+𝛼11
 ,  (24) 

where  𝐶1 , 𝐶2  are arbitrary constants and 𝑗𝑛(𝑘2𝑟)  and  

𝑦𝑛(𝑘2𝑟) denote to spherical Bessel's function of the first 

and second kind of order 𝑛 , respectively,  which are 

defined in terms of  Bessel's function as follows: 

𝑗𝑛(𝑘2𝑟) = √
𝜋

2𝑘2𝑟
𝐽
𝑛+

1
2

(𝑘2𝑟), 𝑦𝑛(𝑘2𝑟)

= √
𝜋

2𝑘2𝑟
𝑌

𝑛+
1
2

(𝑘2𝑟)  ,   𝑘2   𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

It to find the necessary condition for this problem, we 

can determine the constants from the boundary conditions:  

𝑈𝑟(𝑟, 𝑡) = 0,                   𝑎𝑡                      𝑟 = 𝑎,    (25) 

𝜏𝑟𝑟(𝑟, 𝑡) + 𝜎𝑟𝑟(𝑟, 𝑡) = −𝑝𝑒−𝑖𝜔𝑡 ,           𝑎𝑡       𝑟 = 𝑏,  (26) 

where  𝑝 is a constant, then from equation (16), (17) and 

(20) we have: 

𝐶1

=

𝑝𝑏−𝑚√𝑝∗ + 𝛼11𝑌
𝑛+

1
2
(𝑘2𝑎)

𝐽
𝑛+

1
2
(𝑘2𝑎) (𝑌

𝑛−
1
2
(𝑘2𝑏) + (

𝑐1 − 𝑛 + 𝑚
𝑏

) 𝑌
𝑛+

1
2
(𝑘2𝑏)) − 𝑌

𝑛+
1
2
(𝑘2𝑏)𝑑9

, 

𝐶2

=

−𝑝𝑏−𝑚(𝑝∗ + 𝛼11)𝐽
𝑛−

1
2
(𝑘2𝑎)

𝐽
𝑛+

1
2
(𝑘2𝑎)(𝑌

𝑛−
1
2
(𝑘2𝑏) + (

𝑐1 − 𝑛 + 𝑚
𝑏

) 𝑌
𝑛+

1
2
(𝑘2𝑏)) − 𝑌

𝑛+
1
2
(𝑘2𝑏)𝑑10

. 

 

𝜏𝑟𝑟

=
1

√𝑝∗ + 𝛼11

𝑟−
1
2
+2𝑚−n [

√𝛼1𝑟(𝑝∗ + 𝛼11)√𝜌0√𝜔2 + 𝛺2J
−

1
2

+n
(𝑘2 𝑟)𝐶1 + (2𝑝∗ + 𝛼12 + 𝛼13)√𝑝∗ + 𝛼11J1

2
+n

(𝑘2 𝑟)𝐶1

+𝐶2√𝛼1𝑟(𝑝∗ + 𝛼11)√𝜌0√𝜔2 + 𝛺2Y
−

1
2

+n
(𝑘2 𝑟) + 𝐶2(2𝑝∗ + 𝛼12 + 𝛼13)√𝑝∗ + 𝛼11Y1

2
+n

(𝑘2 𝑟)
] 𝑒−𝑖𝑡𝜔, (21) 
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𝑑9 = (𝐽
𝑛−

1
2
(𝑘2𝑏) + (

𝑐1 − 𝑛 − 𝑚

𝑏
) 𝐽

𝑛+
1
2
(𝑘2𝑏)) 

𝑑10 = (𝐽
𝑛−

1
2
(𝑘2𝑏) + (

𝑐1 − 𝑛 − 𝑚

𝑏
) 𝐽

𝑛+
1
2
(𝑘2𝑏)) 

Substituting from those constants into the above 

displacements components and stresses then for a radial 

non-homogenous material, .one have the corresponding the 

radial displacement, radial stress  
 

 

4. Discussion and numerical results 
 

Several examples are presented to show the accuracy, 

and the numerical results have been obtained graphically to 

display the distribution of displacements, stresses through 

the radial direction of the inhomogeneous orthotropic 

hollow sphere. The elastic constants may be obtained from 

(Lekhnitskii 1981, Steven Chapra 2004) may be taken as an 

example: 𝛼11 = 0.134,        𝛼12 = 0.101 ,   𝛼13 = 0.099  ,
𝛼22 = 0.674, 𝛼23 = 0.151, 𝛼33 = 0.297. With the above 

values of the elastic constants and b = 3 cm,  a = 1 cm.   

Numerical calculations have carried out for the 

displacement and the stress components along the r-

direction at different values of the rotation in the cases for 

non-homogeneous material, orthotropic material.  

Figs.1-6 presents the variation of displacement, radial 

stress, and hoop stress along the radial direction of the non-

homogeneous hollow sphere with different values of the 

non-homogeneity exponent m.  It is seen easily from all 

Figures that the radial displacement satisfy the mechanical 

boundary conditions.  

Figs. 1 and 2 show the variation of radial displacement, 

with increasing r, in case of  non-homogeneity m = 0.5, at 

different values for rotation Ω =0.3, 0.8, 1.3, 1.8 as in Fig.1, 

and for different values of initial stress  𝑝∗ =
0.4, 0.8, 1.2, 1.6 as in Fig.2. The radial displacement 

satisfied the boundary conditions in all Figs.1-2 in the case 

an orthotropic nonhomogeneous hollow sphere.  

Figs.3-4 present the variation of radial stress 

versus the radius  𝑟, in case of  non-homogeneity m = 0.5 

at different values for rotation Ω =0.3, 0.8, 1.3, 1.8 as in 

Fig.3, and for  different values of initial stress 𝑝∗As in 

Fig.4. 
 

 
Fig. 1 Variation of the radial displacement U versus the 

radius𝑟at different values for rotation Ω, 𝑝∗ = 1.2,  m = 

0.5 

 
Fig. 2 Variation of the radial displacement U versus the 

radius 𝑟 at different values for initial stress 𝑝∗, Ω =0.8, m 

= 0.5 

  

 
Fig. 3 Variation of the radial stress𝜏𝑟𝑟versus the radius 𝑟at 

different values for rotation Ω,  𝑝∗ = 1.2,  m = 0.5 

 

 

Fig. 4 Variation of the radial stress𝜏𝑟𝑟versus the radius 𝑟 

at different values for initial stress 𝑝∗ , Ω =0.8, m = 0.5 

 

 

Figs.  5 -6 show the variat ion of  hoop stress 

versus the radius  𝑟, in case of non-homogeneity m = 0.5, 

at different values for rotation Ω =0.3, 0.8, 1.3, 1.8 as in 

Fig. 5 and different values of initial stress 𝑝∗ as in Fig.6. It 

is evident that the initial stress and rotation have a  
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Fig. 5 Variation of the hoop stress 𝜏𝜃𝜃 versus the 

radius 𝑟at different values for rotation Ω, 𝑝∗ = 1.2,  m = 

0.5 

 

 

Fig. 6 Variation of the hoop stress 𝜏𝜃𝜃versus the radius 

𝑟 at different values for initial stress 𝑝∗, Ω =0.8, m = 0.5 

 

 

significant influence more than the influence of the initial 

stress on displacement, stresses. Also, the influence of 

initial stress, rotation, and the non-homogeneity on radial 

displacement, stresses is very pronounced.  

These results are specific for the example considered, 

but other examples may have different trends because of the 

dependence of the results on the mechanical of the material. 

Also the influence of the non-homogeneity and orthotropic 

properties of the material is pronounced. These results are 

specific for the example considered; one more cases may 

have different trends because of the dependence of the 

results on the mechanical properties of the material as is 

displayed in Refs. (Lal et al. 2017, Panjehpour et al. 2018, 

Berghouti et al. 2019, Semmah et al. 2019, Ahmed et al. 

2019, Avcar 2019, Bourada et al. 2019, Fenjan et al. 

2019,Al-Maliki et al. 2019, Batou et al. 2019, Chaabane et 

al. 2019, Bedia et al. 2019, Barati 2019, Selmi 2019, Gupta 

and Anandkumar 2019, Salah et al. 2019, Zaoui et al. 2019, 

Nikkhoo et al. 2019, Kossakowski and Uzarska 2019, 

Hussain et al. 2019 and 2020ab, Taj et al. 2020, Timesli 

2020, Kim et al. 2020, Boussoula et al. 2020, Boukhlif et 

al. 2020, Shariati et al. 2020ab, Tounsi et al. 2020, Asghar 

et al. 2020,  Al-Maliki et al. 2020, Shokrieh and Kondori 

2020) that have more applications in scientific and technical 

disciplines and materials science. The results in this paper 

compared with previous results, in the absence of initial 

stress, rotation, and non-homogeneity, the results coincide 

with the results have been obtained. 

 

 

5. Conclusion 
 

In this work, the present technique applies to 

applications of the periodic wave and other homogeneous 

material. The numerical results have obtained and 

represented graphically. The results indicate that the effect 

of initial stress, rotation, and non-homogeneity on radial 

displacement, stresses are pronounced. The precise 

solutions for non-homogeneity elastic media to get the 

radial displacement, stresses in orthotropic hollow sphere 

subjected to initial stress, rotation have obtained. The 

distribution of displacement, stress are drawn and discussed 

in detail for various effects. 
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