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Abstract.  Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of 

their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional 

and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic 

response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 

international benchmark program. The benchmark program provides material properties, detailed drawings 

of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear 

constitutive models of concrete and rebar were formed and local tests were conducted to verify the 

constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 

2013 RC structure was performed by comparing numerical and experimental results in modal and linear 

time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility 

analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground 

motions. 
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1. Introduction 
 

Protection of critical civil infrastructure such as nuclear energy facilities and power stations 

from earthquakes has become a critical issue after recent disastrous events such as Christchurch 

and Fukushima earthquakes in 2011. To assess the damage of such structures due to earthquake, 

highly reliable analysis methods for evaluating seismic behavior and vulnerability of structures are 

needed (Bisch and Coin 1994, 1998, Kwak and Kim 2000, 2003, Lee et al. 2007). In particular, 

reinforced concrete (RC) structures require advanced analysis techniques for better estimation 
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of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling 
of torsional and flexural behaviors (Juster-Lermitte et al. 2009, Crijanovschi et al. 2012). This 
study focuses on validating a numerical approach for evaluating the seismic response of a three-
dimensional unsymmetrical RC structure through the participation in the SMART 2013 
international benchmark program. 

The benchmark program provides material properties, detailed drawings of the RC structure, 
and input ground motions for the seismic response evaluation (Richard and Chaudat 2014, Richard 
et al. 2014). In this study, nonlinear constitutive models of concrete and rebar were formed and 
local tests were conducted to verify the constitutive models in finite element analysis. Elastic 
calibration of the finite element model of the SMART 2013 RC structure was performed by 
comparing numerical and experimental results in modal and linear time history analyses. Using the 
calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to 
estimate the behavior and vulnerability of the RC structure with various ground motions. 
 
 
2. Modeling of the SMART 2013 mock-up structure 
 

2.1 Material models for concrete and rebar 
 

For the nonlinear seismic analysis of RC structures, it is important to establish constitutive 
models of concrete and rebar to capture realistic stress-strain behaviors during earthquake. There 
have been a lot of developments so far to make constitutive models capable of predicting the 
inelastic stress-strain behavior of concrete (Wang and Hsu 2001, Kwon and Spacone 2002, 
Shekarbeigi and Sharafi 2015). Table 1 summarizes representative mechanical properties of 
concrete and reinforcing steel provided by the SMART 2013 benchmark program (Richard and 
Chaudat 2014). With this information, we constructed a multilinear isotropic hardening model for  
 
 
Table 1 Material properties for concrete and steel reinforcement 

Material properties Concrete Rebar 

Young’s modulus (MPa) 32,000 210,000 

Poisson ratio 0.2 0.3 

Compressive strength (MPa) 30 500 

Tensile strength (MPa) 2.4 500 

Density (kg/m3) 2,300 7,800 

 
Table 2 Stress-strain data for multilinear isotropic hardening model of concrete 

Stress (MPa) Strain (mm/mm) 

0.00 0.00000 

9.00 0.00028 

19.23 0.00108 

25.95 0.00148 

29.18 0.00187 

30.00 0.00300 
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concrete based on a constitutive model discussed by Kachlakev and Miller (2001), as shown in 
Table 2. For steel reinforcement, we used an elastic-perfectly plastic model. Both constitutive 
models were incorporated in the finite element modeling of the SMART 2013 structure. ANSYS, a 
commercial finite element analysis package, was used for the modeling and analysis. The concrete 
material model is composed of five linear segments with the modulus decreasing successively 
from 32,000 MPa to nearly zero with respect to strain. The compressive strength of concrete is 30 
MPa and its tensile strength is 2.4MPa. The yield stress of steel reinforcement is 500 MPa in both 
tension and compression at the strain of 0.00237. 
 

2.2 Local tests 
 

Local mechanical tests on a representative volume element (RVE) were performed to check if 
the constitutive models work properly in the finite element analysis. The steel and concrete RVEs 
are cubic elements with the side length of 1 m (Richard and Ragueneau 2012, 2013). The local test 
is composed of a series of uniaxial monotonic and cyclic tension compression tests on concrete 
and steel RVEs, as described in Table 3.  

Figs. 1(a) and 1(b) show the stress-strain responses of concrete RVE under monotonic tension 
and compression loadings, respectively. The concrete RVE failed at the tensile stress of 2.4 MPa, 
while sustaining the maximum compressive stress of 30 MPa, as dictated by the constitutive model 
of concrete. Fig. 1(c) represents the stress-strain response of steel obtained from uniaxial cyclic 
tension and compression tests on the steel RVE. The hysteresis behavior captures the 
characteristics of the biaxial material model of steel effectively. Fig. 1(d) shows the hysteresis 
response of reinforced concrete RVE under uniaxial cyclic tension and compression loading with 
the displacement ranging from -4 mm to 1.5 mm. From the above local tests, it was demonstrated 
that the nonlinear material models of concrete and steel worked effectively in finite element 
analysis. 

 
2.3 Finite element models for structural components 

 
The SMART 2013 RC structure was built as a typical nuclear facility building with 1/4 scale of 

prototype structure, as shown in Fig. 2(a). The structural model consists of 7 parts (foundation, 
wall, slab, beam, column, rebar and shaking table). Rebar was modeled with the BEAM188  
 
 
Table 3 Description of local tests 

Test No. Material Aim Loading Conditions 

c.1 Concrete 
Identify axial tension 

response of the concrete 
RVE 

Uniaxial monotonic tension loading with the 
displacement ranging from 0 to 1 mm 

c.2 Concrete 
Identify axial compression 
response of the concrete 

RVE 

Uniaxial monotonic compression loading with the 
displacement ranging from 0 to -10 mm 

s.1 Steel 
Identify axial cyclic 

response of the steel RVE
Uniaxial cyclic tension/compression loading with the 

displacement ranging from -10 mm to 10 mm 

rc.1 
Reinforced 

concrete 
Identify axial cyclic 

response of the RC RVE 
Uniaxial cyclic tension/compression loading with the 

displacement ranging from -4 mm to 1.5 mm 
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Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building 

history analyses were performed to evaluate the seismic behavior of the SMART 2013 structure 
for high-intensity ground motions. Finally, seismic fragility analyses were conducted for the 
damage assessment of the structure by the maximum likelihood method. The fragility analysis 
results showed that the probability of exceeding extended damage state would be over 90% for the 
ground motion with the PGA level of 1.5 or higher.  
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