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Abstract.  Determination of compressive strength of concrete at early testing age is vital in many civil engineering 
applications. The strength at 7 or 14 days allows engineers to have confidence in the target strength and make a 
decision in case of unsuspected situations. In this study, the possibility to estimate the early compressive strength of 
concrete by a machine learning algorithm, namely the support vector regression (SVR), was investigated. To this 
aim, a database containing 324 data points was gathered from the available literature and use to develop the ML 
model. For the assessment of the accuracy, common statistical measurements, such as the Pearson correlation 
coefficient (R) and root mean square error (RMSE) were used. The results showed that the SVR model could 
successfully model the early compressive strength of concrete with R=0.92386 and RMSE=5.5089 MPa. The 
sensitivity analysis on the factors exhibiting a positive or negative effect on the early strength of concrete was 
conducted. The cement content was shown to have the most influential effect on the early development of concrete 
compressive strength. 
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1. Introduction 
 

High-performance concrete or High-strength concrete was developed in the late 1970s is now 

referred to as HPC (Köksal et al. 2008). It is preferable to be defined as a low water/binder 

concrete which receives an adequate water curing. HPC mixtures are composed of mainly the 

same materials as conventional concrete mixtures, but the proportions are designed or engineered 

to provide the strength and durability needed for the structural and environmental requirements of 

the project (Kim et al. 2007). It is designed to be more durable and, if necessary, more robust than 

conventional concrete (Chan et al. 1999). Therefore, the use of HPC is becoming more and more 

common in construction projects.  

One of the most important mechanical properties of HPC is the early compressive strength 

(Öztaş et al. 2006). Accurate determination of this parameter affects significantly to safety and 

durability of the construction projects. Traditionally, this parameter is often determined in the 

laboratory by the destructive compression experiments on the samples at the required age (Gran et 

al., 1989). However, this kind of test takes much time for the preparation and maintenance of 

samples, and the accuracy of experimental results depends significantly on the quality of  
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Fig. 1 Histogram including the ranges and frequencies of all the components in the database: (a) 

cement (b) blast furnace slag (c) fly ash (d) water (e) superplasticizer (f) coarse aggregate (g) fine 

aggregate (h) testing age (i) early compressive strength 
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experiments and testers, and the cost of these tests is also high (Rashid et al. 2002). Therefore, 

many researchers tried to find alternative ways to estimate the early compressive strength of HPC. 

Out of these approaches, machine learning is known as an objective and advanced technique for 

the prediction of mechanical properties of construction materials, including HPC. Mousavi et al. 

(Mousavi et al. 2012) used gene expression programming to predict the compressive strength of 

HPC. Prasad et al. (Prasad et al. 2009) used Artificial Neural Networks (ANN) to predict 

compressive strength HPC with high volume fly ash. In another study, one of the popular machine 

learning techniques, namely support vector machine (SVM) was used to predict concrete 

compressive strength (Chou et al. 2011). In general, the performance of these mentioned models is 

good and better than traditional approaches (Baykasoğlu et al. 2009).  

In this study, the main aim is to apply the SVM model for the prediction of the early 

compressive strength of HPC. For this, data of a total of 324 experimental results were used to 

generate the training and testing datasets for the construction and validation of the model. Pearson 

correlation coefficient (R), Root mean square (RMSE) – common quantitative statistical indices 

were used to validate the predictive capability of the model. In addition, a sensitivity analysis was 

also carried out to evaluate the importance of input factors used in the modeling using Partial 

Dependence Plots.  
 

 

2. Database preparation  
 

The database in this study contained 324 experimental results from the works of Yeh (Yeh 

1998a, Yeh 1998b, Yeh 2006, Yeh 2003, Yeh 1999). The cement type in the database was ordinary 

Portland cement (OPC), and all the concretes were under normal curing conditions. For the sake of 

simplicity, the HPC compressive strength values were unified to the unique 150-mm cylinders 

results using common guidelines (IS 516 1959, GB 50205 2001). The early HPC compressive 

strength was obtained using eight variables: cement content (kg), blast furnace slag content (kg), 

fly ash content (kg), water content (kg), superplasticizer content (kg), coarse aggregate content 

(kg), fine aggregate content (kg) and the testing age (day). Fig. 1 presents the ranges and 

frequencies of all the components. 

The database was divided into two parts, subjected to the learning phase (the training dataset 

contained 70% of the data) and the validation phase (the testing dataset contained 30% of the 

remaining data). Each dataset was composed of 8 vectors representing eight input parameters, and 

the early compressive strength was the output. The chosen 70/30 ratio was selected following the 

suggestion in the work of Khorsheed et al. (Khorsheed and Al Thubaity 2013) or Leema et al. 

(Leema et al. 2016). It is easy to see the mixture components in this study covered a wide range of 

values, for instance, the cement content ranged from 100 to 560 kg, the slag content ranged from 0 

to 380 kg with most of the values were 0, the fly ash content ranged from 0 to 180 kg with a high 

concentration at 0, the water content ranged from 120 to 230, the superplasticizer ranged from 0 to 

33 kg, coarse aggregate ranged from 830 to 1150 kg, fine aggregate content varied from 580 to 

1000 kg, the testing age composed of 3,7 and 14 days with one value of 1 day, and the 

compressive strength varied from2 to 60 MPa. 
 

 

3. Support Vector Regression (SVR)  
 

SVR is known as one of the most effective and popular tools in real-value function estimation. 
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It has been applied to predict travel-time (Wu et al. 2004), real-time flood stage (Yu et al. 2006), 

financial time series (Lu et al. 2009), and tourism demand (Chen and Wang 2007). In construction 

material science, it has been applied to predict the compressive strength of concretes containing 

metakaolin (Safarzadegan Gilan et al. 2012), atmospheric corrosion of metallic materials (Fang et 

al. 2008), and the unconfined compressive strength and permeability of concrete (Sun et al. 2019). 

Basically, a symmetrical loss function is used to train SVR, and a flexible tube of minimal radius 

is formed symmetrically around the estimated function utilizing Vapnik’s -insensitive approach 

(Awad and Khanna 2015). An advantage of SVR is that its computational complexity does not 

depend on the input space dimensionality; thus, its predictive capability is excellent for prediction 

and regression (Smola and Schölkopf 2004). In this study, SVR was selected for investigation and 

prediction of the early compressive strength of concrete. To validate the performance of this 

model, Pearson correlation coefficient (R) is an important measurement in regression analysis, 

representing the correlation between the machine learning output and the targets. The values of R 

vary from -1 to 1, and higher absolute values of R close to 1 indicates better prediction accuracy. 

Root mean square (RMSE) is the second measurement used in this study, indicates the average 

squared difference between the machine learning output and targets. Differently, lower values of 

RMSE indicate better performance of the machine learning algorithm. The calculation of R and 

RMSE is as follow. 

 (1) 

 

(2) 

where  is the number of samples;  and  are the actual and predicted outputs, 

respectively; and  is the mean of the predicted output. 

 

 

4. Results and discussion  
 
4.1 Prediction performance  
 

In this section, the performance of SVR in predicting the early compressive strength of HPC is 

investigated. Obviously, the predicted outputs (discontinuous red lines) given by SVR were in 

strong correlation with the experiment results (continuous black lines), as shown in Fig. 2. The 

corresponding errors in each case are presented in Fig. 3. The mean error values were 0.40012 and 

1.9008 for the training, testing parts, respectively. The standard deviation error values were 4.4248 

and 5.1974 for the training, testing parts, respectively. The computed values of RMSE were 

4.4331 and 5.5089 for the training and testing parts, respectively. In both cases, the most 

frequented errors were in the range between -5 to 5 MPa, showing the high effectiveness of SVR 

in predicting the early compressive strength of HPC. 
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Fig. 2 Experimental and predicted values of early compressive strength of HPC with different 

datasets: (a) training part and (b) testing part 

 

  
Fig. 3 Error histograms between experimental and predicted results of early compressive strength 

of HPC with different datasets: (a) training part and (b) testing part 

 

 

The validation of SVR is presented in a regression analysis form in Fig. 4 for the training and 

testing models. The performance of SVR in predicting the early compressive strength values was 

satisfying with R=0.93364 and R=0.92386 for the training and testing datasets, respectively. It can 

be seen that, with respect to R values, the performance of the training part was slightly superior to 

the testing one. Besides, considering RMSE as the criterion, the training dataset was superior to 

the testing one. These results showed that a good fit of results was obtained by the developed 

SVR, as the errors from the testing part were somewhat higher than the training error. 

Overall, the SVR model is a good predictor for the problem as such an algorithm could 

successfully predict the early compressive strength of HPC with high accuracy and low error. 

 

4.2. Sensitivity analysis based on partial dependence plots  
 

The sensitivity analysis using Partial Dependence Plots (PDP) is performed in this section. Two 

groups of input variables were identified, the first one consisted of all the variables exhibiting a 

positive effect on the early compressive strength, whereas the second one was composed of inputs 

that exhibiting a negative effect on the early compressive strength of HPC.  

Considering the first group, the effect of each variable is highlighted in Fig. 5. It can be 

observed that the early compressive strength varied from 9.794 to 42.15 MPa with the variation of 

cement, 21.73 to 28.09 MPa with the variation of blast furnace slag, 23.43 to 25.13 MPa with the  
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Fig. 4 Correlation graphs of SVR in predicting the early compressive strength of HPC: (a) training 

part and (b) testing part 

 

  

  

 
Fig. 5 Input variables exhibited a positive effect to the early compressive strength of HPC: (a) 

cement (b) blast furnace slag (c) fly ash (d) superplasticizer and (e) testing age 
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Fig. 6 Input variables exhibited a negative effect to the early compressive strength of HPC: (a) 

water; (b) coarse aggregate; and (c) fine aggregate 

 

 

variation of fly ash, 21.92 to 26.06 MPa with the variation of superplasticizer content, 18.56 to 

33.73 MPa with the variation of testing age. Thus, cement content was the most influential factor 

to the early compressive strength of HPC, following by testing age, blast furnace slag, 

superplasticizer content, and fly ash. The cement content is well-known the most affecting factor 

to the compressive strength. Besides, the effect of BFS or FA on the early strength development of 

HPC was experimentally confirmed (Nath and Sarker 2014). 

Considering the second group, the effect of each variable is displayed in Fig. 6. It can be 

observed that the early compressive strength varied from 33.86 to 12.1 MPa with the variation of 

water content, from 26.92 to 17.17 MPa with the variation of coarse aggregate, from 28.28 to 

16.14 MPa with the variation of fine aggregate. The water content was the most influential factor 

in this group, following by fine aggregate and coarse aggregate. As it would be expected and 

confirmed by several studies in the literature (Naik and Ramme 1989), stated that concrete 

containing cement replacement with fly ash allowed a decrease in the amount of water used. 

 

 

5. Conclusions 
 

In this study, the feasibility of using support vector regression (SVR) to predict the early 

compressive strength of HPC was investigated. A database containing 324 data points was used 

for the development and validation of the proposed SVR model with the training dataset (70% of 

data) and the testing dataset (30% of the remaining data), respectively. The assessment of model 

accuracy was performed thanks to common statistical criteria such as the Pearson correlation 
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coefficient (R) and the root mean square error (RMSE). It was shown that the SVR model could 

successfully predict the early compressive strength of HPC with R=0.92386 and RMSE=5.5089 

MPa for the testing dataset. In addition, two groups of input factors were identified via PDP 

analysis to deduce the positive and negative effects on the early compressive strength of HPC. 

Cement content was found as the most important exhibiting a positive effect, whereas the water 

content was the most critical factor that exhibiting a negative effect on the early compressive 

strength of HPC. Overall, the results of this study could pave the way for engineers to quickly and 

accurately estimate the strength behavior of HPC. 
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