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Abstract.  A fundamental trend of processor architecture evolving towards exaflops is fast increasing 
floating point performance (so-called “free” flops) accompanied by much slowly increasing memory and 
network bandwidth. In order to fully enjoy the “free” flops, a numerical algorithm of PDEs should request 
more flops per byte or increase arithmetic intensity. A meshfree/GFEM approximation can be the class of 
the algorithm. It is shown in a GFEM without extra dof that the kind of approximation takes advantages of 
the high performance of manycore GPUs by a high accuracy of approximation; the “expensive” method is 
found to be reversely hardware-efficient on the emerging architecture of manycore. 
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1. Introduction 
 

The work is motivated by the challenge in fully utilizing high floating point performance on the 
emerging manycore architecture. A fundamental trend of computer architecture evolving towards 
exaflops (1018 floating point operations (flops) per second) is the fast increasing compute power 
(the so-called “free” flops) accompanied by much slowly increasing memory and network 
bandwidth. Numerical simulation is seeing an unbalanced increase in the floating point 
performance (which increases fast) and the memory bandwidth (which increases much slowly). In 
other words, numerical simulation is likely to be subject to a memory constraint instead of a 
floating point performance constraint. As a result, a numerical method of PDEs should be designed 
to request more flops per unit memory access so that the “free flops” are not “wasted’ (DOE 
Exascale Initiative Roadmap 2009, DOE Office of ASCAC 2010, Tian and Sun 2013, Tian 2012). 

A meshfree method is able to increase arithmetic intensity for the same number of dofs by 
increasing the influence radius or by increasing the accuracy of approximation and therefore it 
may bear a potential in utilizing the redundant floating point capability of the emerging manycore 
processor. This idea is tried out on a GFEM without extra dof in this paper. 

In the next section, we introduce the “performance gap” of the today’s supercomputers, which 
is a huge performance difference between real Scientific and Engineering (S&E) applications and 
the LINPACK benchmark. In Section 3, by remarking on the trend of hardware change, we point 
out that the performance gap might be further widen if numerical algorithms do not change 
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accordingly to catch up with the change of the computer architecture. Following the trend of the 
hardware change, we believe that a “good” numerical algorithm would be differently defined and 
this is the main content of Section 4. In Section 5, as an example demonstrating how to design a 
hardware-efficient numerical algorithm, we introduce a GFEM without extra dof and a numerical 
example is provided to demonstrate the method’s capability of delivering a different order of 
accuracy and convergence for the same number of dofs—a unique feature common to many 
meshfree methods. In Section 6 we test the floating point efficiency of the new GFEM on an 
nVidia GPU, followed by the conclusions of the paper. 
 
 
2. “Performance gap” of today’s computers 
 

In the HPC community, domain application experts commonly acknowledge that even a finite 
element code delivers a nearly linear speedup, the percent of the peak performance of a computer 
that the code can really utilize is rather small. For an implicit method, the percent is rarely beyond 
20%. As an example, we estimate in Table 1 the theoretical upper bound of the performance of a 
matrix vector (MV) multiplication—the core of the most of iterative methods—in double precision 
on AMD Opteron 6274 (Interlagos) CPU, Tesla k20x GPU and the fastest supercomputer Titan 
(which is the #1 fast supercomputer in the time of the paper publication). From Table 1 it is seen 
that the efficiency on the hardware is not beyond 10%, which says that only less than 10% of the 
floating point peak performance can be practically utilized, leaving 90+% underutilized in the MV 
computation! 

On the other hand, the efficiency obtained for the linear algebraic package (LINPACK) 
benchmark test (Top500 website) is more than 80% in general. For the K-computer, the LINPACK 
test even delivers 93% efficiency. The MV kernel represents the core characteristics of a majority 
of S&E applications. Clearly, there exists a huge gap between the real S&E application 
performance and the “nominal” bench mark performance (Fig. 1) (Tian and Sun 2013, Tian 2012). 

 
 

 
Fig. 1 Performance gap 
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Table 1 Theoretical upper bound of efficiency of matrix-vector (MV) multiplication (Arithmetic to memory  
ratio (AMR): 2:1) in double precision 

Hardware AMD Opteron 6274 GPU(Tesla k20x) Titan 
Performance(Gflop/s) 141 1311 1452 

Memory bandwidth(GB/s) 52 180 232 
Upper bound of efficiency 10% 3.4% 4% 

 
 

The reason behind the performance gap is not complicated. A large portion of the S&E 
applications is to solve a system of linear equations. The corresponding numerical algorithm is 
mostly an iterative method. The iterative method is finally reduced to sparse matrix vector 
multiplication (spMV). The theoretical upper bound of the “arithmetic to memory ratio” (AMR) 
(measured in flop/word) of spMV is only 2:1, which is typically a memory intensive algorithm 
(computing is memory bandwidth bound). However, the LINPACK benchmark test uses a direct 
method to solve the system of linear equations. Its core algorithm is matrix multiplication 
(DGEMM) and the AMR is n:1, where n is the size of the sub-matrix, which features computing 
intensive. The AMRs of the algorithms of the real S&E application and the LINPACK test are 
fundamentally different. It is the fundamental difference in algorithm that determines the huge gap 
of a computer’s performance in the real S&E application and in the LINPACK benchmark test. 
 
 

3. Tomorrow’s hardware change  
 

Fig. 2 shows the performance of two nVidia GPUs, Tesla C2050 and Tesla C1060 (nVidia 
website). The specifications of the two GPUs are list in Table 2. The left-handed side figure is the 
results of the matrix multiplication test using the DGEMM (Double precision General Matrix 
Multiply) subroutine of the cuBLAS3.1 library, which is also the core algorithm of the LINPACK 
benchmark test. The right-handed side is tested using 13 real S&E applications (which are mostly 
finite element/difference methods). The core algorithm of the S&E applications is the SParse 
Matrix-Vector multiply operation, spMV. The tests are originally for a purpose of highlighting 
good performance of the manycore GPUs over the multicore CPU. With the same data, made 
possible is a comparison between the GPUs representing the emerging hardware architecture. 

The floating point peak performance of C2050 is 515 Gflop/s in double precision, while that of 
C1060 is 78 Gflop/s. The former is 6.6 times fast. If asking “which hardware is better”, a quick 
answer very likely goes the former quickly because the experience of the PC times tells us that 
“the faster the better”. 

Now let us focus on the performance difference of the two GPUs (the green and yellow lines in 
each figure). From Fig. 2, it is seen that the performance of C2050 and C1060 for DGEMM (the 
left figure) are significantly different, whereas the performance of the two GPUs are quite close for 
spMV (the right figure). C2050 is about 2 times fast compared with C1060 for DGEMM whereas 
only 40% faster than C1060 for spMV. The performance of the same hardware is significantly 
different for the different algorithms. The difference should lie in the following fact: DGEMM is 
computing intensive, whose performance is determined by the floating point performance of the 
hardware, whereas spMV is memory intensive, whose performance is determined by the memory 
bandwidth of the hardware. The memory bandwidth of C2050 (144 GB/s) is 46% wider than 
C1060 (102 GB/s). This poses a hardware upper limit on the performance gain of spMV on C2050. 
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Fig. 2 Performance tests of Tesla C2050 and Tesla C1060 GPUs (source: nVidia website) 

 
Table 2 nVidia Tesla C-series GPUs: C2050 and C1060 

GPU Power Memory Performance Memory bandwidth 

C1060 188W 4GB 78Gflop/s 102GB/s 
C2050 247W 3GB 515Gflop/s 144GB/s 

 
 
Therefore, the performance improvement of C2050 over C1060 for spMV does not exceed 46%. 
This explains the 40% performance improvement for the real S&E applications, although C2050 is 
6.6 times fast compared with C1060. Taking into considerations of power consumption and price, 
C1060 is not too bad. In terms of floating point efficiency or power efficiency (the percent of the 
floating point peak performance can be effectively used), C1060 is 14% (11/78) efficient whereas 
C2050 only 3% (16/515). C1060, the product out of date, is reversely more efficient than the 
newer product C2050. 

Obviously, the memory intensive S&E applications does not simply benefit from the pure 
increase in the floating point peak performance. It is the balance between the floating point 
performance and the memory bandwidth that predetermines the performance gain of the real S&E 
applications. The key algorithm of the most S&E applications is largely memory intensive. If no 
change is made to the key numerical algorithm, the fast increasing floating point capability is 
increasingly redundant and the waste of it would be unavoidable. Simply to increase the number of 
cores is not necessarily a good news to the most of S&E applications and reversely it tends to 
widen the existing performance gap. A revisit to the key numerical algorithm is critical to catch up 
with the hardware change. 
 
 
4. “Good” algorithms on emerging architectures 
 

In the PC times or the single core times, we usually assume that flops are expensive. As such 
the “best” practice that we have been following is to trade frequent memory accesses for 
reduced/saved flops and the philosophy of code and algorithm optimization then also is mainly 
aiming at reducing the number of flops. However, following the current trend of hardware change, 
the tomorrow’s S&E applications would unavoidably face a higher “performance to memory 
bandwidth ratio”. GPUs are one of typical examples. Due to the rapid increase in compute power 
and the relatively slowly increase in the capability of data movement, flops are becoming the next 
round of “free lunch”, whereas the data movement becomes the new bottleneck. Hence, from the 
viewpoint of hardware efficiency and energy effectiveness, the more flops per unit memory access, 
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the merrier. This is in perfect contrast with the programming habit and the thinking way of 
algorithm development in the past. 

In short, the tomorrow’s “good” algorithm might be differently defined. 
The algorithm that was deemed to be expensive in the PC or the single core times might be 

reversely a good candidate on the emerging computer architecture. For the future’s exascale 
system, the S&E application should adopt the algorithm that can maximize the number of flops per 
unit memory access to take advantage of the “free flops”. To domain experts, this implies that they 
may have to re-visit the core numerical algorithm of their applications and to re-think its 
effectiveness on the emerging computer architecture. 

 
4.1 A new prospective on meshfree methods 
 
For a given mesh, a meshfree approximation offers high accuracy for a large influence radius. 

Roughly speaking, the mesh or the number of dofs is related to memory requirement, whereas the 
influence radius is related to the number of flops. Therefore, when the influence radius increases, 
the AMR should also increase—for n points in the influence circle, each point is repeatedly used n 
times. This is to say that the arithmetic intensity in the meshfree approximation is tunable through 
changing the influence radius; this is a unique feature of the meshfree method over the standard 
FEM. In the standard FEM, the accuracy of approximation can only be improved by increasing 
nodes or dofs. By taking into considerations the facts and observations in Sections 2 and 4, we 
believe that the meshfree approximation may better fit the emerging manycore computer 
architecture. 

Exactly, in the PC or the single core times, we value sparsity: the sparser the matrix, the more 
efficient; a high order method usually is deemed inefficient as it leads to a denser matrix problem. 
However, a moderately dense matrix means more arithmetic operations and potentially more 
computing intensive. Meanwhile, the dense matrix often is a sign of high accuracy of a numerical 
approximation. Therefore, the moderately dense matrix may become a combination of the 
hardware efficiency and the high numerical accuracy. This is a “win-win” strategy. As such, on the 
emerging manycore architecture we may value a numerical method which leads to the moderately 
dense matrix. This signals a philosophy shift in selecting, optimizing and developing a “good” 
numerical algorithm. As illustrated in Fig. 3 the meshfree and GFEM approximations, which are 
considered to be expensive, may deserve a re-visit from a prospective of hardware-efficiency. 
 
 
5. The GFEM without extra dof: an example 
 

The fantastic possibilities of the Partition of Unity (PU) approximation were first elaborated in 
the Partition of Unity Method (PUM) and the Partition of Unity Finite Element Method (PUFEM) 
by Melenk and Babuška (1996, 1997) (and earlier in Babuška et al. (1994)). The similar idea to the 
PUM was also introduced in the hp-cloud method by Duarte and Oden (1996, 1998). The finite 
element PU is extensively investigated in the PUFEM (Melenk and Babuška 1996), the 
generalized finite element method (GFEM) by Strouboulis et al. (2000a, 2000b, 2001, 2004, 2006a, 
2006b, 2008) and the GFEM by Duarte et al. (2000, 2001). 

The core of the GFEM is a PU approximation (in 1D) 

  P
( )

ih
i i i k i ki I i I k

u x N u N a
 

                          
(1) 
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where   1ii
N x   form the PU, Pi

k  is the user-defined local function on patch Pi  which is 

composed of elements surrounding node i and (1) (2),  ,  ...i ia a  are the extra dofs of node i.  

The number of dofs per node in the existing GFEM also varies with the order of local 
approximation and hence AMR cannot be improved. An extra-dof-free and linearly independent 
enrichment, which may lead to an improved AMR, is proposed in Tian (2013) and is briefed below. 

 
5.1 A GFEM without extra dof 
 
Let P r

i  be a patch composed of elements surrounding node i, where r denotes the size of the 
patch. The patch size is either the size of nodal support combining m≥1 layer(s) of elements 
surrounding node i on a regular mesh or simply the radius of an influence circle at node i on an 
arbitrary mesh. Node i is referred as “patch star” and index i is solely kept for the patch star and j  

 
 

Fig. 3 “Good” algorithms on emerging architecture 

 

Fig. 4 Mesh for convergence tests 
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 j i  is used to denote any a non-patch star node on the patch. Node set  Pr
k k ix x   is a 

collection of all the nodes on P r
i . 

Now let us construct an approximation of  , Pr
i iu x x , among the nodal values of 

 Pr
k k ix x   local to P r

i  as 

    P

1

i r
i

n

i k k
k

u x L x u


  , , P r
k ix x                           (2) 

where  Pr
i

kL x  is the local function defined with regard to k-th node in the node set (which usually 
also forms a partition of unity,  P

1
1

r
i i

n

k ik
L x


 ), in  is the number of nodes on the patch and ku  

is the conventional nodal unknown. 
Use the approximation  iu x  as a local approximation at node i and directly substitute it for 

the nodal unknown iu  in the standard FEM approximation 

    
1

N
h

i i
i

u x N x u



 

                             (3) 

where iN  is the standard FE shape function, a new approximation then is obtained as 

   P

1 1

i r
i

nN
h

i k k
i k

u x N L u
 

  
      
 

 

                          (4) 

where N is still the number of nodes on the mesh of the standard FEM (Eq. (3)) and ku  is still the 
nodal unknown of the standard FEM. Different from the standard FEM, one individual node 
appears repeatedly in ni patch-wise local approximations in Eq. (4). 

In approximation (4), corresponding to the ni nodes on patch i, each node, ui, has ni local 
functions, which are respectively 

 

1 2
PPP P P

1 2 ,

patch star node non patch star nodes

,  ,  ,  ,  , ,  
rrr r r
nji i

ii i i i i i i j j i i i n i iN L u N L u N L u N L u N L u 
 

                 (5) 

where the superscript k in the standard FE shape function kN , k = 1, 2, …i, …, ni, is a local 
number (which is in contrast to the global numbering implied in Eqs. (3) and (4)), which is defined 
at the nodes of patch i and Pr

k
iL  is the local function constructed using the nodes (which are 

partially from patch i) from patch k with regard to node i (which is shared by patches k and i). 
Noted is that Pr

k
iL  and Pr

i
kL  is not equivalent. 

By keeping in mind Eq. (5) and re-grouping the terms in Eq. (4) by ui, we obtain 

   P

1 1 1

i r
k

nN N
h

k i i i i
i k i

u x N L u N u
  

 
  

 
                               (6) 

where in , the number of nodes on patch P r
i  in (2) now really means the number of patches 

containing node i, but the two numbers are the same and iN  denotes the new shape function, 
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which is a summation of in terms. This completes the basic idea of the work, which as seen above 
is quite straightforward. 

Comparing Eq. (4) with Eq. (1), it is immediate that the form Eq. (4) is also a PU 
approximation. However, the new PU approximation has two unique features: (1) it does not 
include any extra dof (and accordingly it should be linearly independent); (2) the PU 
approximation interpolates as long as the patch-wise local approximation interpolates at patch star 
i, regardless of that it interpolates or not at the non-patch star nodes.  

A large patch size r facilitates a high degree of Pr
iL  and hence a high order of the global 

approximation. This resembles the core feature of the existing GFEM. The new PU approximation 
does not include any extra dof and the total number of dofs to be solved is invariable with the local 
function Pr

iL . Both an interpolation and a selectively interpolating approximation can be used to 
construct the local approximation (Tian 2013). When an approximation (for example the moving 
least squares approximation (Lancaster and Salkauskas 1981) is used to construct the local 
approximation, selectively interpolating means the approximation should be enforced to pass the 
patch star, which is easy. Finally, the new GFEM always interpolates, no matter the local 
approximation is approximative or interpolative (Tian 2013). 

 
5.2 Lagrange interpolation polynomial local approximation 
 
On a structured mesh, the local approximation can be constructed by Lagrange interpolating 

polynomials. For patch size r ch  (h is the mesh size), the local function  Pr
i

kL x  can be 
expressed as Lagrange interpolating polynomials in x direction 

 
 
 

P

1,

irx
i

n
j

k
j j k k j

L x
 

  





 , ix x

h





  
                   (7) 

where rx is the patch size in x. In high dimensions the tensor product of the above one-dimensional 
Lagrange interpolating polynomial can be used. The order of Prx

i
kL  is solely determined by and 

increases with in . 
The RBF and the Selectively Interpolating MLS can be used to construct a local approximation 

for an unstructured mesh of any dimension. Further detail of the new GFEM can be found in Tian 
(2013). In the study, main attention is paid to its floating point performance on the emerging 
architecture. The numerical performance of the new GFEM does resemble the existing GFEM; 
tests are provided to demonstrate its capability of offering a different order of accuracy and 
convergence for the same number of dofs. 

 
5.3 Numerical performance of the new GFEM 

 
The following benchmark problem is considered in 2D 

 
    

 0     

in

on

   
 

u f

u
 (8) 

on a regular domain  2
0,1  . The exact solution is taken to be 

204



 
 
 
 
 
 

Meshfree/GFEM in hardware-efficiency prospective 

 (1 )(1 )sin( )sin( )x yu u xy x y x y   
 
                     (9) 

Errors are measured by the L2 and energy norms defined respectively below 

      
1

2 2dhu u x u x


   ,      
1

2 2dhe u x u x


     (10) 

The mesh is taken to be a Cartesian mesh that is refined uniformly for convergence tests (Fig. 
4). The patch size is defined by a square nodal patch. In the following, the tensor product Lagrange 
interpolation polynomial local approximation is tested in Fig. 5. c+2 point element-wise Gaussian 
quadrature is used. 

The new GFEM offers improved accuracy and elevated convergence for an enlarged patch size; 
the convergence rates in both L2 and energy norms increase one order in general when the patch 
size increases 1h (refer to the rate number in the convergence plots). The convergence property 
resembles the existing GFEM. The most unique feature of the new GFEM is capable of offering 
different order of accuracy and convergence for the same mesh and the same number of dofs. 
Normally this is a feature offered by a finite difference method, not readily shared by a FEM. In 
contrast, in the existing GFEM accuracy and convergence can only be improved through 
increasing nodes or dofs or the both. 
 
 

Fig. 5 Convergence test results. The tests show that the new GFEM is able to offer an elevated accuracy 
and convergence on the same mesh and the same number of dofs 
 

Table 3 Test platform specification 

GPU nVidia GeForce GTX 285 
CPU Intel Xeon L5420 
OS CentOS release 5.4 

CUDA CUDA 4.0 
CUSP CUSP 0.2.0 
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(a) FEM (25.6%)  (b) r=h (53.7%)   (c) r=2h (75.2%)  (d) r=3h (90.0%) 

 
(e) FEM (25.6%) (f) p=1 (12.8%) (g) p=2 (12.5%)  (h) p=3 (12.1%) 

Fig. 6 Stiffness matrices on an 10-element mesh in 1D. (a)-(d) for the new GFEM, (e)-(h) for the 
existing GFEM, the number in bracket is the nonzeros percent, reflecting the sparsity of matrix. The 
existing GFEM shows nearly constant sparsity regardless of p while the new GFEM reduces the sparsity 
of matrix by increasing r 

 
 

 
Traditionally, we are not prone to consider the method efficient because it leads to a large 

nonzero bandwidth. This is particularly true in the PC or the single core times. However, on the 
emerging architecture, in particular manycore processors, the tunable sparsity might be a different 
thing. Tests follow. 
 
 
6. Floating point performance on emerging architecture 
 

The GFEM with extra dof has been extensively studied in the contexts of numerical accuracy, 
convergence and stability in Tian (2013). Its hardware efficiency is investigated in the paper. 

The following floating point performance test is focused on solving the system of linear 
equations associated with the new GFEM. Element assembly, as it is related to the definition of the 
local approximation, is excluded. 

The global stiffness matrices of the new GFEM and the existing GFEM are drawn for 
comparison for an 10-element mesh in 1D for different patch sizes in Fig. 6. The sparsity of matrix 
is defined by the approximate ratio of nonzeros; the larger the ratio, the denser the matrix. 

The differences in the global stiffness matrices between the two methods are that: 
• as the order of local approximation increases, the global matrix does not vary in size in the 

new GFEM whereas it expands in the existing GFEM. 
• as the order of local approximation increases, the matrix sparsity is reduced in the new GFEM 

whereas it rarely changes in the existing GFEM. 
• The sparsity of the global matrix in the new GFEM is variable or tunable by varying patch 

size, a common feature of many meshfree methods. 
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The first test is to perform spMV. spMV is the kernel algorithm of an iterative equation solving 
method. Considering the banded shaped stiffness matrix shown in Fig. 6(a), we test the efficiency 
of spMV at a different nonzero bandwidth d on an nVidia GPU. Table 3 lists the software and 
hardware used in the tests. Here a large d corresponds to an approximation of a high order of 
accuracy and convergence. The five commonly used sparse matrix formats are considered (see Fig. 
7). By varying the nonzero bandwidth of the matrix, we repeat spMV for the same matrix and 
vector and measure its performance in Gflop/s. The results are plotted in Fig. 7. 

It is observed that as d increases, i.e., the stiffness matrix becoming denser or the order of 
approximation increasing, the performance of spMV increases regardless of the sparse matrix 
format. Since the large d also means an approximation of high order of accuracy and convergence, 
the tests show that on the manycore architecture the performance is gained by using the high order 
of approximation. This means the high order of approximation, i.e., the moderately large d, is more 
hardware-efficient than the lower order, i.e., the small d.  

While the above test is simple, it is very instructive: a numerical method with tunable sparsity 
may offer a chance in shifting itself from “memory intensive” to moderately “computing 
intensive”. Next, we give a full test on this point with the new GFEM. 

The 2D problem of Eq. (8) is solved by the new GFEM. The calculation is carried out on both 
the CPU (using a single core) and the GPU to test the method’s hardware-efficiency. The 
performance is measured in Gflop/s. Comparison is confined to the expense of solving the system 
of linear equations; the element stiffness assembly is out of consideration. The conjugate gradient 
method is used to solve the system of linear equations. The open source library CUSP 
(http://code.google.com/p/cusp-library/) is used for the conjugating gradient method on the GPU. 
The sparse matrix is stored in the Compressed Sparse Row (CSR) format (as the CSR format is 
generally used in practice).Test results are shown in Fig. 8. 

First, we reduce the new GFEM to the standard FEM by letting r=0h and compare the sustained 
performance (Gflop/s) on the manycores of the GPU and the single core of the CPU. The 
performance data for the FEM on the CPU and the GPU are circled in the figure. It is observed 

 
 

Fig. 7 Efficiency of spMV versus nonzero bandwidth of matrix, d, in double precision 
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Fig. 8 Floating point performance of the new GFEM on manycores 
 
 
that the performance of the FEM has no obvious difference on the single core of the CPU and the 
manycores of the GPU, although the GPU processor offers much higher floating point 
performance (peak performance: 78GFlops) than the single core CPU (peak performance: 
10GFlops). This clearly shows that the high floating point performance of the GPU is 
underutilized if simply continuing to use the low order FEM on the manycore architecture. 

Second, we increase the patch size and measure the performance achieved on the CPU and the 
GPU. On the GPU, when increasing the patch size r, i.e., reducing the sparsity of the global 
stiffness matrix or increasing the order of the method, the performance increases significantly. This 
means the method well utilizes the high floating point performance of the manycores. This implies 
that the new GFEM, although traditionally thought to be expensive from the classical viewpoint 
(in the PC or the single core times), might be reservedly hardware efficient on the manycore 
architecture.  

On the other hand, it is observed that on the CPU increasing the patch size does not result in 
better and even worsen the performance. This exactly explains the reason why the methods leading 
to a dense matrix, or the high order methods, have been traditionally deemed to be not computing 
efficient in the PC or the single core times. 

These tests, to a certain extent, reflect the philosophy shift in what is a “good” numerical 
algorithm in the near future—in the PC or the single core times, memory is taken for granted and 
flops are expensive, whereas in the manycore times, memory becomes the new bound while flops 
become free. By tuning the sparsity of the stiffness matrix, the new GFEM can release the 
compute power of the manycores while at the same time offering the high order of accuracy and 
convergence. 

What observed in the above should also apply to meshfree methods because we are only 
focused on solving the system of linear equations. For both the new GFEM and the meshfree 
method, their global stiffness matrices share one common feature that the stiffness matrix becomes 
dense for a high accuracy of analysis while the size of the system of linear equations does not 
change (like that shown in Fig. 6 (a)-(d)). Since the above tests are only focused on solving the 
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system of linear equations, it is quite reasonable to believe that the meshfree method also has the 
same hardware-efficiency on the manycore GPU in terms of solving the system of linear equations. 

Noted is that element assembly for the meshfree/GFEM approximation is also expensive. 
However, as the element assembly is easy to parallelize and it is also method-dependent, the part 
of work leaves out of consideration in the paper. Relevant discussions on this aspect can be found 
in references (Cecka et al. 2011, Karatarakis et al. 2013). 
 
 
9. Conclusions 

 
Traditionally we are not prone to consider a method efficient when it leads to a moderately 

dense stiffness matrix. This is particularly true in the PC or the single core times. However, in this 
paper we tried out a new way of thinking in the context of the GFEM without extra dof. By 
increasing the nonzero bandwidth of the global matrix (the moderately dense matrix), the new 
GFEM increases accuracy and convergence (flops requirements) while keeping the same the 
number of dofs (memory requirements) to take advantages of the high floating point performance 
of the emerging manycore architecture. The result reported herein is preliminary. But it does reveal 
that the new GFEM well utilizes the high floating point performance of the manycore GPU by the 
high order of accuracy and convergence; the “expensive” method is found to be reversely 
hardware-efficient on the emerging manycore architecture, leading to both high accuracy and high 
hardware efficiency, which is a win-win strategy. This finding sends a new message to the class of 
“expensive” methods. 

Due to the fact that the memory intensive S&E applications cannot simply benefit from the 
increasing number of cores, the “performance gap” has a tendency to become wider on the 
emerging manycore architecture. In the community of computer science, a motion being pushed 
forward is to co-design numerical algorithms with the emerging architecture (DOE Exascale 
Initiative Roadmap 2009, DOE Office of ASCAC 2010). The “co-design”, currently a hot topic in 
exascale computing, should be, in author’s opinion, to shorten the “performance gap” to improve 
energy effectiveness (Tian and Sun 2013, Tian 2012). By the piece of work, the author wishes, like 
what illustrated in Fig. 3, to open a possibility of the “co-design”.  
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