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Abstract.    A five parameter viscoelastic model is developed to study harmonic waves propagating in the 
non-homogeneous viscoelastic filaments of varying density. The constitutive relation for five parameter 
model is first developed and then it is applied for harmonic waves in the specimen. In this study, it is 
assumed that density, rigidity and viscosity of the specimen i.e., rod are space dependent. The specimen is 
non-homogeneous, initially unstressed and at rest. The method of non-linear partial differential equation has 
been used for finding the dispersion equation of harmonic waves in the rods. A simple method is presented 
for reflections at the free end of the finite non-homogeneous viscoelastic rods. The harmonic wave 
propagation in viscoelastic rod is also presented numerically with MATLAB. 
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1. Introduction 
 

The theory of viscoelasticity is useful in the field of solid mechanics, engineering, seismology, 
exploration and geophysics. In harmonic waves, the particles vibrated perpendicular to the 
direction of propagation of the wave. Many literatures are available on wave propagation in 
homogeneous media. But in recent years sufficient interest has arisen towards non-homogeneous 
bodies.  
   Many researchers Alfrey (1944), Barberan (1966), Achenbach (1967), Bhattacharya (1978) and 
Acharya (2008) formulated and developed the theory of elasticity. Bert (1969), Biot (1940), Batra 
(1998) successfully applied this theory to wave-propagation in homogeneous elastic media. On the 
basis of the theory of elasticity, the propagation of harmonic waves in isotropic or anisotropic 
materials has been evaluated numerically by White (1981), Mirsky (1965) and Tsai (1991). 
Murayama (1981) and Schiffman et al. (1964) have proposed higher order five parameter and 
seven parameter viscoelastic models for soil behavior. Lei et al. (2008) discussed the response of a 
rocksalt crystal to electromagnetic wave modeled by a multiscale field theory. Kumar (2010) 
analyzed wave motion in micro-polar transversely isotropic thermoelastic half space without 
energy dissipation. Gurdarshan (1980), Kakar et al. (2012) analyzed five parameter models under 
dynamic loading and Kaur et al. (2012, 2013) purposed four parameter non-homogeneous 
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Fig. 1 Five parameter viscoelastic model 

 
 
viscoelastic models for longitudinal wave propagation and three parameter non-linear viscoelastic 
model. Ponnusamy (2012) has given a view on wave propagation in a generalized thermo elastic 
plate embedded in elastic medium. Recently, Kakar and Kaur (2013) have studied the response of 
non-homogeneous five parameter viscoelastic model for cylindrical shear waves. 

We have considered the harmonic wave propagation in non-homogeneous media, when density
' ' rigidity ' 'G and viscosity ' '  of the material are space dependent such that the harmonic 
wave velocity is also space dependent. Here it is assumed that density, rigidity and viscosity of the 
rods obey the law )cos1( ),cos1( ),cos1( 302010 xxGGx   respectively. The wave 
equation is first approximated by using WKB theory, and then the problem is solved with Eikonal 
equation. The displacements are taken so small such that the linear constitutive laws hold under 
isothermal conditions. The paper ends with numerical analysis by taking material parameters. 
 
 
2. Five parameter viscoelastic model 
 

We have considered a five parameter model consists of two springs 1 1 2 2( ), ( )S G S G where 1G

and 2G  are the modulli of elasticity associated to them and three dash-pots 

     2 2 2' 2' 3 3, ,D D D   where 2 , 2' and 3  are the Newtonian viscosity coefficients 

associates to these elements. The module of elasticity and viscosity coefficients are assumed to be 
space dependent i.e., functions of ' 'x  in inhomogeneous case taken into consideration. 
Unidirectional problem is formed by taking the material in the form of filament of non-
homogeneous viscoelastic material by taking one end at x = 0. The co-ordinate x is measured 
positive in the direction of the axis of the filament. Time is specified by t, and ,   and u
respectively specify the only non-zero components of stress, shearing strain and particle 
displacement. The model has be divided into three Sections, I, II and III. In Fig. 1, the Section I, 

Section II and Section III has one spring 1 1( )S G , two dash-pots    2 2 2' 2',D D   one spring

2 2( )S G and one dash-pot  3 3D  respectively. 

Under the supper- supposition principle strains are added in the case of series connections and 
stresses are added when they are in parallel. Now if 1a , 2a , 3a  be the three shearing strains 
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elongations in respective sections connected in series, then total elongation is 321 aaaa  . The 
total stress in the network remains the same. In each section but in the case of section II which is 
sub-divided into two sections is added i.e., 1 2    , where 1  and 2  are the stresses in the 

sub-sections. Relation for stress and strain for  2' 2'D  for Section II (represented by single dash-

pot) is  

1 2' 2a                                     (1) 

Since the sub-section II is represented by a Maxwell- element, then the relation is expressed as 
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For Section I, for the spring 1 1( )S G , the stress-strain relation is given by 

1 1aG                                   (4) 

For Section III; for the dash-pot  3 3D  , the stress –strain relation is given by 

3 3a  
                                  

(5)
 

The Stress-strain relation for the model representing the viscoelastic body for total stress ( )  

and strain  a  can be obtained from Eqs. (3)-(5) as 
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Now we take 
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Where, ( )i iS G elastic modulus of spring and )( jjD  = viscosity of dash-pot, 
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Using, Eqs. (6) and (7), we get 
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Put R1 = 12' 13  , R2 = 22 22'   , R3 = 12' 22.   , R4 = 13 R2 in Eq. (8), we get 

       aDRGDGaDRDGRRDRRD )( 21
2

12
2

14321
2            (10) 

The Eq. (10) can be written in terms of differential operator form as 

   
2 2

1 0
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 Where, the order m and n of sums on right hand side and left hand side in the Eq. (11) depends 
upon the structure of the mechanical model representing the viscoelastic body. n  and m  are 

the combinations of the material constants and ,2112 ,21112  ,1  , RRRGG  

dt

d
DRR   ,430 . 

Eq. (11) is the required differential operator form of constitutive relation for the model for 
viscoelastic material 
 
 
3. Formulation of the problem 

 
We have considered the propagation of waves along the five parameter viscoelastic model and 

accordingly it as the uniaxial complex modulus * ( )G i  that involved the mechanical property. 
Let the filament is very long and its one end is subjected to a steady state harmonic oscillation 
condition, then harmonic waves are propagated along the filament with a reduction in the direction 
of propagation. 

The equation of motion is 

2 2
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where, ( , )u x   is Fourier transformed displacement. 

The uniaxial complex modulus * ( )G i is 
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where, c is phase velocity of the harmonic waves. 
 Let reduction is 
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where,   is reduction 
The solution of Eq. (12) is of the form 
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It can also be written as 
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Thus the solution (17) represent s the propagation of a harmonic wave moving in the positive 
x  direction with phase velocity c and reduction   and the complex constant P is to be 
determined from boundary conditions. This method has widely used to determine high frequency 

properties, not only with regard of *( )G i  but for stress states as well. 
Considering the propagation of transient disturbance along the filament and using the Fourier 

integral of synthesize the velocity from the solution given in Eq. (17). The resulting velocity is 
given by 
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here, ( )F  is a complex function of frequency to be determined from specified end conditions 
 
Therefore we can rewrite the expression for phase velocity c and reduction ζ in Eqs. (14) and 

(15) as
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To give proper dispersion and attenuation of a pulse as it passes from one point of measurement 
to the other particularly, let 
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From Eq. (21), Eq. (22) and the Fourier transform inversion formula, we have 

   1
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Using Eq. (23) in Eq. (18), and evaluating the result at 2x x , using Eq. (22), we get 
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It is to be assumed that the duration of the disturbing pulse is very short that can be represented 
by a Fourier series rather than the Fourier integral and it would be expected an appropriate 
procedure for the cases in which very short duration pulses are started by a dispersion effects have 
broadened the pulse too much. Therefore, a basic time interval is taken which includes the main 
part of the plus, and in this interval pulse is represented by a Fourier series. 

Let np   , where p  is the preselected basic frequency. 
Eq. (18) can be written as 
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Using the formula for sine and cosine of the difference of two angles, the Fourier series 
solution corresponding to the Fourier integral Solution given by Eq. (18) is of form 
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Where nA  and nB  are unknown constants. 

For the sake of convenience, let 
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' x
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The velocity v  should be taken to be near an average value of propagation of the pulse so that 
the plus will maintained within the basic interval of the Fourier series representation. In the 
Fourier integral representation, the velocity is measured at two locations, 1x  and 2x  , as given by 

Eqs. (21) and (22). To evaluate Eq. (28) at 1x x  , using Eq. (21), and in the usual way the 

coefficients are given by 
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The coefficients nA  and nB  are obtained from Eqs. (30) and (31) as 
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Thus Eqs. (28)-(31) specify the response with nA  and nB  given by Eqs. (32)-(35). 

At 2x x  , using Eq. (22) to synthesize the plus into Fourier series 
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Now, evaluate the solution of Eq. (28) at 2x x  and equate the result to Eq. (36). Using Eqs 

(30)-(35), (37) and (38), the term by term equivalence of these two forms gives the two general 
relations 
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Where n  =1, 2,…….                                                          (40) 

Considering with  '1v t  and  '2v t , the particle velocities at two different locations on the 

filament are known from experimental measurements, Eqs. (39) and (40) include two equations in 
two unknowns, nc  and n , for each value of n . Then using Eqs. (14) and (15), we get 
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Where n np  , 3nG  and 4nG  are values of 3G  and 4G  right to the n th frequency 

component. The real and imaginary parts of the complex modulus, *( )G i  may be then found 
directly from Eq. (28) as 
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The described procedure for determining *( )G i  in the high frequency range has not been 
explicitly used. The simplest assumptions are to be made taking particular forms for phase velocity 
and reduction. The simplest assumption is 

c   Constant                               (45) 

and  

tan   
*

'

G

G
= Constant                           (46) 

The reduction can be found from Eq. (20). For this, the frequency range of relevance is narrow 

enough, then *( )G i  is effectively constant in this region and therefore c  and tan  can then 
be found from a slight modification of the described procedure. 

 
3.1 Wave propagation for the non-homogeneous cases 
 
The stress strain relation for five parameter viscoelastic model is given by the Eq. (6). 
The equation of motion and strain-displacement relations are given by 
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where, ? )x   is the variable density of the material 

Differentiating Eq. (47) w.r.t. x , we get 
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Differentiating Eq. (48) w.r.t. t , we get 
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Again differentiating w.r.t. t , 
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Using Eq. (64) and Eq. (66), Eq. (8) gives 
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4. Solution of the problem 
 

Let the solution ( , )x t  of Eq. (52) may be represented by the series (Friedlander (1947)) 

  0          ,)()(),( 0
0






AxhtFxAtx
n

nn                       (53) 

where, 

1' ?n nF F    (where, n = 1, 2, 3………….) with , 1n t nF F   and , , 1n x x nF h F       (54) 

and for 0n  assume that 0?nA  and the derivatives of  may be obtained by term-wise 

differentiation of  Eq. (53), the prime in  Eq. (54) denotes differentiation with respect to the 

argument concerned, and by using  Eq. (54) and Eq. (11) we relate all '
nF s to 0F  by successive 

integrations. 
The Solution of equation Eq. (52) in the form of Eq. (53) can be obtained by taking a phase 

function ( )h x , ( )h x satisfies the Eikonal equation of geometrical optics [20] 
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where c = c(x) is the variable wave speed for viscoelastic harmonic waves in a medium whose 

modulus of elasticity 1G . Using, Eq. (10), Eq. (11) and the successive derivatives of  ,x t   

w.r.t. ‘t’ and ‘x’ in equation Eq. (52), we get the amplitude function satisfy the equation 
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Since the wave is travelling along x-axis, therefore, integrating Eq. (55), we get 
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Since Eq. (56) is a first order linear differential equation in  nA x . Therefore the general 

solution of Eq. (56) can be obtained as 
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The plus ' '  sign is associated with wave traveling in the positive direction of x and the 
minus ' '  sign is associated with the waves travelling in the negative direction of x. 

Let an impulse of magnitude 0?
 suddenly applied at the end 0x   of the rod and thereafter 

steadily maintained, that is 

  00, ( )t H t                               (58) 

From Eq. (53) and Eq. (58), we have 
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Thus we choose (Moodie (1973) 
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 0 0?h   and 0 ( )F H t  

For the waves travelling in the positive direction of x, solution of Eq. (52) is generated by 
boundary stress Eq. (58) as 
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Where, 
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where,  nA x  are given recursively by Eq. (57) (with upper signs) in combination with Eq. 

(60). 
The first–term approximation leads to Eq. (57) is 

41



 
 
 
 
 
 

Rajneesh Kakar, Kanwaljeet Kaur and Kishan Chand Gupta 



































 
xx

sc

ds
tHdssm

l

xl
tx

00

2

1

0 )(
)(exp

)0(

)(
),(                       (62) 

The Eq. (62) represents a transient stress wave which starts from the end ‘x=0’ with amplitude

0' '  and moves in the positive direction of ‘x’ with velocity c(x). Hence, it is modulated by the 

factor 
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Further terms in the approximate solution may be obtained recursively from Eq. (57). The 
solution of Eq. (59) applies until the wave moving in the positive direction of ‘x’ strikes either an 
interface (in the case of a composite rod) or at end (in the case of a finite rod). 
 
 
5. Application of the problem 

 
For the sake of concreteness and for studying the qualitative effect of non-homogeneity on the 

harmonic wave propagation in non-homogeneous five parameter viscoelastic rods, it is assumed 
that density ' ' , rigidity ' 'G

 and viscosity ' '  of the specimen i.e., rod are space dependent 
and obey the laws 

)cos1( ),cos1(( ),cos1( 302010 xxGGx                  (64) 

 
5.1 Wave propagation for the semi-homogeneous case 
 

In this case, we take 1 2 3젨    , then from Eq. (63), we get 

)cos1( ),cos1( ),cos1( 000 xxGGx                   (65) 

Therefore, from Eikonal equation of geometric optics 
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(66) 

 Since, the exponential variation of modulus of rigidity G  and density   is similar, therefore 
sound speed is constant i.e., non-homogeneous has no effect on speed and phase of the wave is 

given 
0

)(
c

x
xh  . So it becomes the case of semi non-homogeneous medium (a medium when 

characteristics are space dependent while the speed is independent of space variable). 
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The amplitude function  nA x  satisfies the equation 
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As the amplitude function is given by Eq. (57), for this case 
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The value of first term approximation, the stress function is given by 
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The harmonic stress wave which starts from the end 0x   with amplitude 0  and moves 

with constant velocity 01
0

0

G
c


 in the positive direction of x is modulated by the factor 
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Further terms in the approximation solution may be obtained from Eq. (70). 
 
5.2 Wave propagation for the non-homogeneous case 
 

   If 1 2 3젨      i.e., density   rigidityviscosity, then from Eq. (64), we get 
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)cos1( ),cos1( ),cos1( 302010 xxGGx                (73) 

From Eikonal equation of geometric optics 
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The amplitude function  nA x
 

satisfies the equation 
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And Amplitude function ( )nA x is given by Eq. (57). 

For this case, 
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The value of first term approximation, the stress function is given by 
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Eq. (78) gives a harmonic stress wave which starts from the end 0x   with amplitude 0  

and moves with positive direction of x  with velocity 
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and modulated by the factor as 
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6. Numerical analysis 

 
To see qualitative effect of non-homogeneity on the harmonic wave propagation in non-

homogeneous five parameter viscoelastic rod, a graph is plotted between 0   and x for Eq. 

(71) (semi-homogeneous case), by taking  = (4, 3, 0, -3, -4). The material properties are as 
shown in Table 2. Figs. 2-5 represent this case. For non- homogeneous case, graph is plotted 
between 0   v/s x  by taking Eq. (78). Figs. 6-9 are plotted for non-homogeneous case. It is 

quite obvious, from these curves the dispersion is not uniform for harmonic waves propagating in 
non-homogeneous viscoelastic rods. 
 
 
Table 1 Material properties 

 0  01G  02G  '
02G   03  02'  

Material 20 1.8 1.6 1.4  1.5 1.3 
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Fig. 2 Variation of stress ratio v/s distance for semi-homogeneous case by taking  = 4, 3, 0,-1 and -2 

 

 
Fig. 3 Variation of stress ratio v/s distance for semi-homogeneous case by taking  = 4, 3, 0,-1 and -2

 

 
Fig. 4 Variation of stress ratio v/s distance for semi-homogeneous case by taking  = 4, 3, 0,-1 and -2
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Fig. 5 Variation of stress ratio v/s distance for semi-homogeneous case by taking  = 4, 3, 0,-1 and -2

 

 
Fig. 6 Variation of stress ratio v/s distance for non-homogeneous case by taking  = 4, 3, 0,-1 and -2

 

 
Fig. 7 Variation of stress ratio v/s distance for non-homogeneous case by taking  = 4, 3, 0,-1 and -2
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Fig. 8 Variation of stress ratio v/s distance for non-homogeneous case by taking  = 4, 3, 0,-1 and -2

 

 
Fig. 9 Variation of stress ratio v/s distance for non-homogeneous case by taking  = 4, 3, 0,-1 and -2 

 
 
7. Conclusions 

 
A numerical simulation procedure for predicting the behavior of harmonic wave propagation in 

non-homogeneous viscoelastic has been proposed in this study. 
 When the density, rigidity and viscosity all are equal for the first material specimen, the 

sound speed is constant i.e., non-homogeneous has no effect on speed and phase of the 

wave is given 
0

)(
c

x
xh  . So it becomes the case of semi non-homogeneous medium (a 

medium when characteristics are space dependent while the speed is independent of space 

variable). The harmonic speed will be equal to 0
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 When the density, rigidity and viscosity are not equal for the second material specimen, 

the speed of sound is given as 
)cos1(

)cos1(

10

201
0 x

xG
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