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Abstract.    The aim of this paper is to study the propagation of torsional surface waves in 
non-homogeneous isotropic layer of finite thickness placed over a homogeneous viscoelastic half-space, 
when both density and rigidity of the non-homogeneous medium are assumed to vary exponentially with 
depth. The frequency equations are obtained by using simple method of separation of variables. Further, it is 
seen that when viscoelastic parameter and non-homogeneity parameter is neglected, the dispersion equation 
gives the dispersion equations of Love waves in homogeneous, elastic and isotropic layer placed over 
homogeneous viscoelastic medium. The problem has been solved numerically and the effects of various 
inhomogeneities of the medium on torsional waves have been illustrated graphically. 
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1. Introduction 
 

The theory of viscoelasticity is useful in the field of solid mechanics, engineering, seismology, 
exploration and geophysics. Love waves, rayleigh waves, stoneley waves and torsional waves are 
a well-known feature of the wave theory. The amplitude of the surface torsional waves decays 
exponentially with depth as they propagate in free surface of the earth. These waves are also 
known as horizontal polarized waves and gave a twist to the medium in which it travels. 
Much literature is available on torsional surface wave propagation in homogeneous elastic and 
viscoelastic media. Alfrey (1944) discussed non-homogeneous stress in viscoelastic media. Frank 
et al. (1959) presented their views on elastic wave propagation in homogeneous and 
Inhomogeneous Media. Achenbach and Reddy (1967) gave a note on the wave-propagation in 
linear viscoelastic media. Batra (1998) successfully applied this theory to wave-propagation in 
homogeneous elastic media. Pal (2000) presented a note on torsional body forces in a viscoelastic 
half space. Kumar (2010) studied wave motion in micro-polar transversely isotropic thermoelastic 
half space without energy dissipation. Dey et al. (1996, 2000, 2002, 2003) investigated the effect 
of torsional surface waves in non-homogeneous anisotropic medium, torsional surface waves in an 
elastic layer with void pores, torsional surface waves in an elastic layer with void pores over an 
elastic half space with void pores and effect of gravity and initial stress on torsional surface waves 
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in dry sandy medium. Kumar and Gupta (2010) presented wave motion in micropolar transversely 
isotropic thermoelastic half space without energy dissipation. Davini et al. (2008) investigated 
torsional problem in thin rectangular domains with the help of asymptotic approach. The work 
done by Gupta et al. (2011, 2012) on torsional waves cannot be ignored. Akbarov et al. (2011) 
discussed dispersion of torsional wave in a finitely pre-strained hollow sandwich circular cylinder. 

In this paper, we have studied the propagation of torsional surface wave in a non-homogeneous 
isotropic layer over a homogeneous viscoelastic half-space. The method of separation of variables 
is adopted to find dispersion relation. A numerical simulation procedure for predicting the 
behavior of torsional wave propagation in non-homogeneous viscoelastic media has been proposed 
in this study. The influence of viscoelastic parameter, non-homogeneity parameter, wave number, 
rigidity and time period on the phase velocity is shown graphically. The effects of 
non-homogeneities in terms of rigidity, density and internal friction can be employed to torsional 
surface waves for the future research of the present study. 
 
 
2. Governing equations 

     

The torsional surface waves are assumed to propagate in viscoelastic medium, if r and   
denotes radial and circumferential co-ordinates respectively, then the equations of motion for the 
torsional surface waves travelling along z-direction can be written as Biot (1965). 
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where, , , , . , ,rr r rz rr z zzs s s s s s s   are the respective stress components, , ,R ZT T T  are the 

respective body forces and , ,u v w  are the respective displacement components. 
The stress-strain relations are 

2rr rrs e                                (2.1) 

2s e                                 (2.2) 

2zz zzs e                                (2.3) 

2r rs e                                 (2.4) 

2rz rzs e                                (2.5) 
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2z zs e                                 (2.6) 

where,   and  are Lame’s constant. 
and 
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The strain-displacement relations are 
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The rotational components are 
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Ifu , v and w are the displacement then 

0,u  0,w  ( , , ).v v r z t                           (5)   

From Eqs. (1)-(2) and Eq. (5), we get 
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Fig. 1 Geometry of the problem 
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Where, v (r, z, t) is the displacement along   direction. 
For an elastic medium, the stresses are related to displacement by 
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3. Problem defination 

 
Consider a non-homogeneous layer M1 of finite thickness Z = H, over a viscoelastic 

homogeneous medium M2. The cylindrical co-ordinate system ( r , , z) is located at the interface 
separating the two layers at z = 0. The z-axis is acting downward.  For medium M1 the 
inhomogeneities are in rigidity and density. The rigidity and density are assumed to vary 

exponentially with depth and taken as 2
0

ze   and 2
0

ze   respectively.  is the 

non-homogeneous parameter for medium M1. Medium M2 is viscoelastic homogeneous, therefore 
we have assumed rigidity, density and internal friction as  ,  and ' respectively. ' is also 
known as viscoelastic parameter. The problem is represented geometrically in Fig. 1. 
 
 
4. Solution of the problem 

 
Let the inhomogeneities in rigidity and density in medium M1 are 

2
0

ze    and 2
0

ze                            (8) 
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Eq. (6) takes the form 
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We may assume the solution of Eq. (9) as 

 1( ) ( ) i tv z J kr e                           (10) 

where   is the solution of the solution of following Eq. 
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and 1( )J kr is the Bessel function of first kind and first order. 

Now, since the layer is homogeneous and isotropic, Eq. (11) reduces to 
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The solution of Eq. (11) may be given as 
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 and A and B are arbitrary constants. 

Hence, the displacement in the upper non-homogeneous layer is 

 ( ) ( )
0 1[ ]m z m z i tv Ae B e J kr e       .                 (14) 

 
 
4. Solution of the lower half space 

  
For lower half space which is homogeneous and we have assumed rigidity, density and internal 

friction as ,  and ' respectively. ' is also known as viscoelastic parameter. Let us assume 
that the torsional surface wave propagates in radial direction only, such that all other mechanical 
properties are independent of . For torsional surface wave, 0,u  0,w  ( , , ).v v r z t  
Therefore, the equation of motion for medium M2 will be viscoelastic voigt type as Biot (1965) 
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The solution of Eq. (15) for the torsional surface wave propagating along ‘ r ’ direction one 
may assume as 

1( ) ( ) i tv z J kr e                              (16) 

where   is the solution of following equation. 
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Therefore the final solution of Eq. (15) may be written as 

       1 2
1 3 1 3 1cos sin i t zv F z G z J kr e                      (19) 

 
 
4. Boundary conditions 

 
The above problem satisfies the following boundary conditions 
(1) For traction free surface z = –H,  
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0 0
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(2) For interface z = 0, continuity of stress component gives 
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(3) Continuity of the displacement component at z = 0 gives, 

 0 1v v                                 (20.3) 

(4)  1 1' 0
v v

t r r

 
 

       
   

 at z = 0 

                                                                                            
Now, using Eq. (14), Eq. (20.1) becomes 
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From Eq. (14), Eq. (19) and Eq. (20.1), we have 
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Similarly, we have from Eqs. (20.3) and (20.4) 
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Eliminating the arbitrary constants A, B, F and G, we have 
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On solving the above determinant, and equating the real part of above equation, we get 
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Eq. (24) is the dispersion relation for torsional waves in a non-homogeneous isotropic layer 
over a viscoelastic medium. 

 
4.1 Torsional wave propagation for the homogeneous case 
 
When 0,e   ' 0  , then the Eq. (24) reduces to 
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                 (25) 

Eq. (25) the dispersion equation for torsional surface waves in elastic, homogeneous and 
isotropic medium M2. Eq. (25) matches with the dispersion equation of Love waves in a 
homogeneous layer over an elastic homogeneous medium. 
 
 
5. Numerical analysis 

 

In order to see the effect of non-homogeneity parameter ( e ) and viscoelastic parameter ( ' ) 
on the obtained dispersion Eq. (24) for torsional surface waves propagating in non-homogeneous 
isotropic layer of finite thickness placed over a homogeneous viscoelastic half-space, we have 
used the Gubbin’s (1990) numerical data. The phase velocity depends on wave number, time 
period, internal friction and rigidity see Eq. (24). The phase velocity (dimensionless) is kept at 1.2 
for all the plotted graphs. The description of various graphs is explained below: 
 Fig. 2; is plotted between dimensionless phase velocity v/s dimensionless wave number

 for T=0.15 sec, 0 0.4   , 0.002e  , ' 10,50,100   . 

 Fig. 3; shows the variation of dimensionless phase velocity v/s dimensionless wave nu
mber for T=0.15 sec, 0 0.4   , 0.02e  , ' 10,50,100   . 

 Fig. 4; is drawn for dimensionless phase velocity v/s dimensionless wave number for 
T=0.15 sec, 0 0.4   , 0.1e  , ' 10,50,100   . 
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Fig. 2 Fig. 3 

Fig. 4 Fig. 5 

Fig. 6 Fig. 7 

Fig. 8 Fig. 9 
 
 
 Fig. 5; gives dimensionless phase velocity v/s dimensionless wave number for T=0.15 

sec, 0 0.4   , 1e  , ' 10,50,100   . 

 Fig. 6; is plotted between dimensionless phase velocity and dimensionless wave numbe
r for T=0.15 sec,  0 0.4   , 10e  , ' 10,50,100   . 

9



 
 
 
 
 
 

Rajneesh Kakar and Kishan Chand Gupta 

Fig. 10 Fig. 11

Fig. 12 Fig. 13

Fig. 14 Fig. 15

Fig. 16 Fig. 17
 
 
 Fig. 7; represents dimensionless phase velocity v/s dimensionless wave number for T=

0.15 sec,  0 0.4   , 100e  , ' 10,50,100   . 

 Fig. 8; shows dimensionless phase velocity v/s dimensionless wave number for T=0.1
5 sec, 0 0.4   , 0.01e  , ' 0.2,0.4,0.6,0.8   . 
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 Fig. 9; represents dimensionless phase velocity v/s dimensionless wave number for T=
0.15 sec,  0 0.4   , 1e  , ' 0.2,0.4,0.6,0.8   . 

 Fig. 10; shows dimensionless phase velocity v/s dimensionless wave number for T=0.
15 sec,  0 0.4   , 10e  , ' 0.2,0.4,0.6,0.8   . 

 Fig. 11; represents dimensionless phase velocity v/s dimensionless wave number for T
=0.15 sec,  0 0.4   , 0.100e  , ' 0.2,0.4,0.6,0.8   . 

 Fig. 12; shows dimensionless phase velocity v/s dimensionless wave number for T=0.
15 sec,  0 0.4   , 1000e  , ' 0.2,0.4,0.6,0.8   . 

 Fig. 13; shows dimensionless phase velocity v/s dimensionless wave number for T=0.
15 sec,  0 0.4   , 10000e  , ' 0.2,0.4,0.6,0.8   . 

 Fig. 14; shows dimensionless phase velocity v/s Time period, for 0 0.5   ,

0.5,kH  0.01,0.02,0.03e  , ' 70   . 

 Fig. 15; shows dimensionless phase velocity v/s Time period, for 0 0.5   ,

0.5,kH  0.1,0.2,0.3e  , ' 70   . 

 Fig. 16; shows dimensionless phase velocity v/s Time period, for 0 0.5   ,

0.5,kH  10,11,12e  , ' 70   . 

 Fig. 17; shows dimensionless phase velocity v/s Time period, for 0 0.5   ,

0.5,kH  100,110,120e  , ' 70   . 
 
 

Fig. 18 Fig. 19 

Fig. 20 Fig. 21 
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Fig. 22 Fig. 23 
 

Fig. 24 
 
 
 Fig. 18; shows dimensionless phase velocity v/s Time period, for 0 0.5   ,

0.5,kH  1000,1100.1200e  , ' 70   . 

 Fig. 19; shows dimensionless phase velocity v/s Time period, for 0 0.6   ,

0.5,kH  0.1e  , ' 0.5   . 

 Fig. 20; represents dimensionless phase velocity v/s Time period, for 0 1.4   ,

0.5,kH  0.1e  , ' 0.5   . 

 Fig. 21; shows dimensionless phase velocity v/s Time period, for 0 0.6   ,

0.5,kH  100e  , ' 0.5   . 

 Fig. 22; represents dimensionless phase velocity v/s Time period, for 0 1.4   ,

0.5,kH  100e  , ' 0.5   . 

 Fig. 21; shows dimensionless phase velocity v/s Time period, for 0 0.6   ,

0.5,kH  1000e  , ' 0.5   . 

Fig. 22; represents dimensionless phase velocity v/s Time period, for 0 1.4   , 0.5,kH 
1000e  , ' 0.5   . 

 
 

6. Conclusions 
 

• It has been noticed that the phase velocity of torsional surface waves decreases as the rigidity 
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ratio increases which means non-homogeneity parameter has significant role on phase velocity.  
• Also, from various curves, it is observed that the phase velocity of torsional surface waves 

decreases as the wave number increases. 
• The dispersion equation of torsional surface waves in a non-homogeneous isotropic layer 

over viscoelastic half-space depends on the non-homogeneity, phase velocity, wave number, 
rigidity and internal friction of the media. 

• When effect of non-homogeneities and internal friction is neglected from the dispersion 
relation of the torsional waves in non-homogeneous media kept over homogeneous media,  
dispersion equation of Love waves in a homogeneous layer over an elastic homogeneous medium 
is obtained i.e. the results obtained matches with the classical results. 
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