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The influence of different support movements 
and heights of piers on the dynamic behavior of bridges. 

Part II: earthquake acting along the bridge axis
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Abstract. In this paper, a simple approach is presented for studying the dynamic response of multi-span
steel bridges supported by pylons of different heights, subjected to earthquake motions acting along the
axis of the bridge with spatial variations. The analysis is carried out using the modal analysis technique,
while the solution of the integral-differential equations derived is obtained using the successive
approximations technique. It was found that the height of piers and the quality of the foundation soil can
affect significantly the dynamical behavior of the bridges studied. Illustrative examples are presented to
highlight the points of concern and useful conclusions are gathered.
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1. Introduction

Strong earthquake motion is a phenomenon occasionally encountered in seismic-prone regions.

For structures that are really long, the spatial variability of strong earthquake motion over small

distance may have to be considered. This variation in the temporal and frequency characteristics of

ground motions may produce forces in long-span structures that are absent in structures with

uniform excitations.

Factors for spatial variation of ground motions include: the absence of homogeneity of the ground

material, the nature of the propagating waves of the seismic excitation leading to different arrival

times at the supports, the decay of wave amplitudes within small distances due to a possibly

existing fault or due to geometric and material energy dissipation, and variable ground conditions

leading to different surface motions along the structure. As far as bridges are concerned, the effect

of non-uniform seismic excitations on the response of the structure has been studied extensively for

more than two decades. Research along these lines includes the works of Bogdanoff et al. (1965),

Harichandran and Wang (1990), Zerva (1990), Abrahamson et al. (1991), Betti et al. (1993), Monti
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et al. (1996), Price and Eberhard (1998), and Nikolaou et al. (2001). As suggested by Part 2 of

Eurocode 8 for bridges (2002), the influence of the pylon’s height on the bridge-deck dynamic

behavior should be taken into account without any further comments or instructions.

In a companion paper, the effect of earthquakes acting transversely to the axis of bridges resting

on piers of different heights and support conditions has been thoroughly studied using a simple

analytical model. In this paper, concerning the wave propagation and soil structure interaction

effects, a simple model is developed for analyzing the response of long bridges resting on tall or

short pylons and subjected to spatially varying ground motions. The structural system considered,

where shear deformation is neglected, can be analyzed as a bridge-deck continuous beam (with

known eigenshapes Un, Xn and eigenfrequencies ), supported by pylons represented by cantilever

beams (with also known eigenshapes  and eigenfrequencies ). 

Using the “influence functions”  of the bridge-deck (that express the deformation of a beam

due to unit displacement of its supports), along with the modal analysis technique, and the

compatibility conditions at the supports, we can derive the integral-differential equations of the

system as functions of time and joints motions. The aforementioned equations are solved by the

successive approximations method. The resulting expressions are calculated numerically using the

Mathematica symbolic manipulator. Illustrative examples are given to show the effectiveness and

reliability of the method, and useful conclusions are drawn. 

2. Basic assumptions

The following assumptions are adopted in the present analysis:

a. The bridge, shown in Fig. 1, is resting on a number of pylons that are either fixed or hinged to

the ground. We assume that each pylon has a different displacement at its base and that for the

ith pylon such a displacement is denoted as .

b. The axial and shear deformations of the pylons are neglected.

ωn

Xn ωn

g x( )

fi t( )

Fig. 1 A typical bridge on high pylons moving differently
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c. We assume that the top of the ith pylon moves according to the time function , which has

to be determined. 

d. The system considered can be analyzed by combining the bridge-deck continuous beam shown

in Fig. 2a, with known eigenshapes Un, Xn and eigenfrequencies , and the single pylon

beam-column systems shown in Fig. 2(b), with also known eigenshapes  and

eigenfrequencies .

e. The time functions  representing the displacement of the pylon bases are known, while the

functions  representing the movement of the pylon tops will be determined.

f. The axial motion of the continuous beam-deck system is not affected by the bending and

torsional motions (uncoupled system).

All geometrical and material properties of the pylons will be outlined within the text. The

“influence functions”  of the bridge with unit displacement at support i are known, and so are

 for span i and  for span i + 1.

3. Analytical model

3.1 Governing equations of motion 

Neglecting the effect of damping, the equations of motion of the beam for axial and bending

vibration are as follows

ϕi t( )

ωn

Xn

ωn

fi
ϕi

gi x( )
gi x( ) x li⁄= gi 1+ x( ) li 1+ x–( ) li 1+⁄=

Fig. 2 Model of the system considered (a) entire bridge-deck beam, (b) pylon beam-column 
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 (1) 

where P(x,t) is the axial force caused by the axial motion of the beam, EA is the axial stiffness, EJy
is the bending stiffness and m is the mass per unit length of the beam.

3.2 The axial motion of the beam

For the (j − 1) − j span of the beam, the total elongation or shortening will be ,

and the corresponding axial force Pj at node j is

 (2)

where  is the length of the span j. At the top of pylon j, the shear force Vj developed is

 (3)

where  is the bending stiffness and hj the height of the pylon j, respectively. Equilibrium of the

forces acting at the jth node (Fig. 3) gives

 (4a)

By using Eqs. (2) and (3), the preceding relation (4a) becomes

 (4b)

or finally, to the following linear system (for j = 1 to κ)

(4c)

where the coefficients αj and βj are given by

  (4d)

Hence, the displacements  ( j = 1 to κ) at the pylon tops can be determined by solving the

following set of linear equations (4c), which in matrix form can be written as follows

 

(5)

Let us consider now the beam that represents the bridge-deck system as shown in Fig. 2(a). The

total axial displacement of the beam is

EAu″ x t,( ) mu·· x t,( )– 0=

EJyw″″ x t,( ) P x t,( )w″ x t,( ) mw·· x t,( )+ + 0=
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,

or

 (6)

where  is the displacement of the beam as a solid,  is the elastic deformation,  are the

influence functions for unit axial displacement of the j th support, and  the functions

representing the movement of the pylon tops, given by the solution of the linear equations of Eq. (5).

The equation of axial motion of the deck beam is the first of Eqs (1). By substituting u(x, t) from

Eq. (6) into this equation, we obtain

(7)

We are searching for a solution with the form

 (8)

where  are the shape functions of the beam in axial vibrations and  are functions of t,

which are to be determined. Substituting Eq. (8) into Eq. (7) yields

 (9a)

Since  satisfies the equation of free motion , Eq. (9a) will take the

following form 

 (9b)

Accordingly

 (10a)

u x t,( ) ust x t,( ) uo x t,( )+=

u x t,( ) gj x( )ϕj t( ) go x( )fo t( ) gκ x( )fκ t( ) uo x t,( )+ + +
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Fig. 3 Equilibrium at node j
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where

 (10b)

The solution of Eq. (10a) is given by the Duhamel’s integral and is

 (11)

3.3 The flexural motion of the beam

The axial force P developed on the beam is

 (12a) 

The reactions of the supports, acting on the deck with eccentricity ez, will produce moments M at

positions x = xj as follows

(12b)

  

Substituting Eqs. (12a) and (12b) into the second of Eq. (1), we obtain the following equation of

motion for the beam

(13a)

where δ is the Dirac function and

 (13b)

Since the bending moment M depends mainly on the eccentricity of the support’s reaction, one can

neglect the first term on the right-hand side of Eq. (13a). The time function obtained by solution of
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the preceding equation using the above procedure can be regarded as the first approximation for a

more accurate study of the bending motion (Krasnov et al. 1971). 

Thus, the first step is to solve for the following equation

 

(14)

We are searching for a solution of the form

 (15)

where  are the shape functions of the beam and  are the unknown time functions to be

determined. Substituting Eq. (15) into Eq. (14), multiplying by Xm, integrating the outcome from 0

to L, and using the orthogonality conditions (Lovitt 1924), we can arrive at the following equation

for the mth time function

or 

(16)

The solution of the above equation is given by Duhamel’s integral as follows

(17)
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 (18)

Here, we are searching for a solution of the form

 (19)

where  is the second step (new) time function to be determined.

Following a procedure similar to the above for determination of , we can arrive at the

following differential equation

(20)

The solution of Eq. (20) is given by Duhamel’s integral as follows

(21)

4. Numerical results and discussion

In this section, we shall apply the above results to the following three typical cases. The first case

refers to a single-span bridge with supports moving non-synchronously. The second case refers to a

two-span bridge whose middle support lies on a cantilever-type pier with height h1, while all the

supports are moving synchronously. In this second case, we shall study the influence of the pier’s

height on the dynamic behavior of the bridge. Finally, in the third case, a three-span bridge on piers

of different heights will be studied. 

We prefix some basic principles regarding the supports’ movement. We assume that the supports 0
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where, for the cases studied, a = 0.05 is the maximum amplitude of the ground movement at the

first pier, fj is the movement at the jth pier, and 

(23)

is a coefficient indicating the decrease in ground movement as the distance from the epicenter

increases, b = 0.2 is a constant expressing the damping of the earthquake,  is the cycle frequency

of the harmonic seismic waves taking, in our case, values from 1 to 15, and  is the phase angle

due to the distance Lj between the two supports 0 and j, given by the relation (Zerva 1999)

 (24)

where v is the wave propagation velocity. The values of v depend on the ground and are 5.5 km/sec

for granite soil and 1.5 km/sec for mud soil. 

The aim of this paper is to study the effect of the piers’ different heights and movements on the

bridge’s dynamic behavior, but not on the proposal of expressions for the support movements. As

such, the above simplest expressions proposed by Zerva (1990, 1999) for the supports will be used,

instead of the complicated ones given in EC 8. In the present study, we will consider two values for

: namely = 3 sec−1, which corresponds to a distant source earthquake, and = 15 sec−1,

which corresponds to a near source earthquake.

4.1 The single-span bridge

We consider a single-span bridge made from isotropic and homogeneous material with modulus of

elasticity E = 2.1*108 KN/m2, length L = 60 m, mass per unit length m = 600 kg/m, moment of

inertia Iy = 0.60 m4, and cross-sectional area A = 0.75 m2. For this bridge, the data listed in Table 1

are valid.

From Figs. 4 and 5, one can observe the influence of various ground qualities on the seismic

excitation and its variation relative to the supports distance. 

For the axial motion, we can obtain the eigenfrequencies as ωa1 = 134.132, ωa2 = 402.397,

ωa3 = 670.661 sec−1 and from Eqs. (6), (8), and (11), we obtain the axial deformations u (x, t). From

Fig. 6, one can observe the deformations u (L, t) of the right end of the bridge for the case of mid-

soil (continuous line) and for the case of mud (dashed line). As can be seen, the difference in the

amplitude is generally negligible (~0.5%).

For the flexural motion, the eigenfrequencies can be found as: ωb1 = 12.563, ωb2 = 50.254, and

ωb3 = 113.071 sec−1. From Eqs. (15) and (21), we can determine the flexural deformations w (x, t).

From Fig. 7, one can observe the deformations w (L/2, t) at the midpoint of the bridge for the case

of mid-soil (continuous line) and for the case of mud (dashed line). Evidently, the influence of the

kj ρjcos 5  cos
2
ρj 1–⋅+–=

ωe

ρj

ρj ωe Lj v⁄⋅=

ωe ωe ωe

Table 1 Properties of soils

v = 5500 m/sec (granite) v = 2500 m/sec (mid-soil) v = 1500 m/sec (mud)

ρ k ρ k ρ k

ωe = 3 0.033 0.9992 0.072 0.9961 0.12 0.9892

ωe = 15 0.164 0.9798 0.36 0.9024 0.60 0.7257
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Fig. 4 The seismic excitation of the first support (continuous line), and of the second one for ω = 3 sec−1,
ρ = 0.033, k = 0.9992 (- - -) (granite), ρ = 0.072, k = 0.9961 (- - -) (middle), ρ = 0.12, k = 0.9892 (….)
(mud)

Fig. 5 The seismic excitation of the first support (continuous line), and of the second one for ω = 15 sec−1,
ρ = 0.164, k = 0.9798 (- - -) (granite), ρ = 0.36, k = 0.9024 (- - -) (middle), ρ = 0.60, k = 0.7257 (….)
(mud)

Fig. 6 The axial movement of the right support of the bridge for: mid-soil ( ___ ), and mud ( _ _ _ )
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ground quality on the amplitude increase is significant, amounting to ~65%. From this example, it is

concluded that non-cohesive soils can produce greater relative axial displacements between the two

supports and therefore the reactions and corresponding deformations produced are greater than those

for cohesive soils. 

Now, we can estimate the effect of the two functions  and , of which the summation

constitutes the time function  in Eq. (21). The plots in Fig. 8 provide a clear picture for the

contribution of each of the two functions. We see that function  contributes only 0.003% of the

total value of function , and thus it can be neglected.

4.2 The influence of the piers’ height (two-span bridge)

We next consider a two-span bridge with a deck having the same properties as those of the bridge

in the example of Section 4.1. The span lengths are selected as L1 = 60 m, and L2 = 70 m, and the

middle support of the bridge is located on the top of a pylon with height h1. In addition, we assume

that the ground motion (for mid-soil quality) at the left support of the bridge is governed by the

relation: , where a, b,  have been given in Section 4.1. Thus, for support 1,

we have k1 = 0.996, ρ1 = 0.072, and for support 2 we have k2 = 0.983, ρ2 = 0.150. 

In order to study the axial motion, we first find: ωa1 = 61.907, ωa2 = 185.722, ωa3 = 309.536 sec−1.

The plots in Fig. 9 show the horizontal movement of the right support of the bridge for supports

Φ1 Φ2

Φm

Φ1

Φm

fo a e
bt–

ωetsin⋅= ωe

Fig. 7 The flexural movement of the middle point of the bridge for: mid-soil ( ___ ), and mud ( _ _ _ )

Fig. 8 Contribution of the time functions Φ1 and Φ2
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with synchronous motion (dashed line) and for supports with non-synchronous motion located on

ground with mid-soil quality (continuous line). The maximum difference between the two responses

amounts to 4.8%.

The plots in Fig. 10 show the horizontal movement of the right support of the bridge on the

Fig. 9 The movement of the right support for the case of mid-soil ( ___ ) and uniform support motion ( _ _ _ )

Fig. 10 The movement of the right support for the case of mid-soil for h1 = 2 m ( ___ ) and h1 = 20 m ( _ _ _ )

Fig. 11 The deformation of the mid-point of the first span for a mid-soil and mud for pier height h1 = 10
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ground of mid-soil quality for h1 = 2 m and 20 m. The effect of the pier’s height is negligible,

amounting to 0.05%. 

For the study of the flexural motion we find: ωb1 = 10.347, ωb2 = 17.459, ωb3 = 40.436 sec−1. In

Fig. 11, one observe that the deformations w1 (L1/2, t) at the midpoint of the first span of the bridge

for the case of mid-soil (continuous line) and for the case of mud (dashed line). The difference of

the two responses amounts to ~70%, which is generally large.

From Fig. 12, one can observe the influence of the piers’ height on the mid-point of the first span

of the bridge for the case of a pier with height h1 = 2 m and that for a pier with height h1 = 20 m.

As can be seen, the difference amounts to ~6.50%.

4.3 The influence of the piers’ height (three-span bridge)

We consider now a three-span bridge with a deck having the same properties as those of the

example in Section 4.1. The span lengths selected are L1 = 60 m, L2 = 70 m, and L3 = 60 m, and the

interim supports are assumed to be located on the top of piers with heights h1 and h2. In addition,

we assume that the motion of the ground (of mid-soil quality or of mud) at the left support of the

bridge is governed by the equation: , where a, b,  are given as in Section

4.1. Thus for support 1 we have k1 = 0.996, ρ1 = 0.072, for support 2, we have k2 = 0.983, ρ2 =

0.150, and for support 3, we have k3 = 0.960, ρ3 = 0.228. As for the axial motion, the

eigenfrequencies found are: ωa1 = 42.358, ωa2 = 127.073, ωa3 = 211.788 sec−1.

In Fig. 13, the time-history oscillations were plotted of the four supports of the bridge deck

supported by piers on mid-soil.

The plots in Fig. 14 show the horizontal movement of the right support of the bridge for supports

with synchronous motion (dashed line) and for supports with non-synchronous motion located on

ground of mid-soil quality (continuous line). The maximum difference observed amounts to 3.5%.

Similar results exist for the middle supports of the bridge with the maximum differences amounting

to 2 to 3%. 

As for the flexural motion, the eigenfrequencies found are: ωb1 = 11.010, ωb2 = 15.724, ωb3 =

20.128 sec−1. The plots in Fig. 15 show the deformations of the bridge at the instants t = 1.5, t = 2.0,

t = 2.5, and t = 3.0 sec. We observe that the middle span deforms significantly less than the other

two spans.

fo a e
bt–

ωetsin⋅= ωe

Fig. 12 The deformation of the mid-point of the first span for a mid-soil for h1 = 2 m ( ___ ), and h1 = 20 m 
( _ _ _ )
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The three diagrams in Fig. 16 show the oscillations of the middle of the first, second and third

span of a bridge on piers of height h1 = h2 = 2 m, for the grounds of mid-soil and of mud.

Finally, the plots in Fig. 17 show the influence of the piers’ height on the flexural motion for

different cases of equal (a, b, c, d), and unequal heights (e, f). The influence of the pier’s height

Fig. 13 The deformation of the deck supports of a bridge on mid-soil for h1 = h2 = 2 m uo ( __ __ ), u1 ( ___ ),
u2 ( _ _ _ ), and u3 ( . . . . )

Fig. 14 The movement of the right support for the case of mid-soil ( ___ ) and uniform support motion ( _ _ _ )

Fig. 15 The deformed bridge deck at t = 1.50 ( ___ ), t = 2.00 ( __ __ ), t = 2.50 ( _ _ _ ), and t = 3.00 ( …… )
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(short piers produce greater reactions and moments) is generally clear. Even if only one pier is

shorter, its influence on the bridge response is significant (see Figs. 17(e) and 17(f)).

Fig. 16 The flexural oscillations of the mid-point of the first, second, and third span for mid-soil ( __ ) and
mud ( …. )

Fig. 17 The influence of the piers’ height on the flexural motion for different cases of equal and unequal
heights
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5. Conclusions 

A simple mathematical model is proposed for studying the dynamic response of a multi-span

bridge on piers of different heights under earthquake forces acting in parallel to the bridge axis.

From the analyses performed in this study, the following conclusions can be drawn:

a. The properties of the piers (i.e., height and rigidity) strongly affect the oscillations of the

bridge.

b. Different ground qualities may produce different movements on the supports, thereby affecting

the deformation of the bridge. Such an effect, for the model studied, amounts to about 4%.

c. The increase to the piers’ height, for the models studied, causes an increase to the amplitude of

deformations in the order of 40% for Jpylon = 0.2, while for piers with different heights, this

amplitude increase drops to 10%.

From the examples studied, it is obvious that following an optimum design for the pylons, one

can achieve a satisfactory decrease in the deformations of the bridge and therefore a better overall

dynamic behavior of the bridge.
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