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The influence of different support movements 
and heights of piers on the dynamic behavior of bridges. 

Part I: Earthquake acting transversely to the deck
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Abstract. This paper presents a simple model for studying the dynamic response of multi-span bridges
resting on piers with different heights and subjected to earthquake forces acting transversely to the bridge,
but varying spatially along its length. The analysis is carried out using the modal superposition technique,
while the solution of the resulting integral-differential equations is obtained via the Laplace
transformation. It has been found that the piers’ height and the quality of the foundation soil can affect
significantly the dynamic behavior of such bridges. Typical examples showing the effectiveness of the
method are presented with useful results listed.
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1. Introduction

Spatial variability of strong earthquake motions over small distances is a problem frequently

encountered in engineering. This variation though, in the temporal and frequency characteristics of

the ground motion, produces in long structures forces, which are absent in structures subjected to

uniform excitation.

The most important factors causing this spatial variability include the following: (a) non-

homogeneity of the ground material, (b) the nature of the seismic excitation propagating waves,

which lead to different arrival times at the supports, (c) drop of the wave amplitude in small

distances due to geometric and material energy dissipation possibly caused by existing faults, and

(d) variable ground conditions leading to different surface motions along the structure. 

With reference to bridges, the effect of non-uniform seismic excitation on the structural response

has been studied extensively for more than four decades. One must refer to the works of Bogdanoff

et al. (1965), who first studied the problem for long structures, Harichandran and Wang (1990), who

studied the response of a two-span beam under spatially varying seismic excitation, Zerva (1990),

who studied the response of multi-span beams, Abrahamson et al. (1991), who presented empirical

functions for the spatial coherency, Betti et al. (1993), who studied the soil-structure interaction on
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long-span cable-stayed bridges, Monti et al. (1996), who studied the response of bridges under non-

synchronous supports excitations, Price and Eberhard (1998), who studied the effect of spatially

varying ground motions on short bridges, and Nikolaou et al. (2001), who studied the same problem

by kinematical methods. 

Eurocode 8-Part 2 (EC8-2 2002) provides detailed instructions for the piers’ non-synchronous

movements and the spatial variability of earthquakes motions. For piers with different heights, it

suggests consideration of the influence of the height on the dynamic behavior of the bridge deck. In

particular, EC8-2 refers to this problem in §2.4 and suggests to design such bridges with a

continuous deck, if using short pylons is not possible, for their better dynamical behavior than the

ones with hinged joints (§2.4.4). Moreover, EC8-2 suggests the use of a very unfavorable

distribution of the transverse seismic action (§2.4.6). No further comments or instructions are

provided in EC8. 

In this work, a simple analytical model is developed for studying the response of a long bridge on

either tall or short piers subjected to a spatially varying ground motion. Neglecting the shear

deformation, the proposed model can be analyzed as a bridge-deck continuous beam (with known

eigenshapes Vn and eigenfrequencies ωn) and the pylon as a cantilever beam (with also known

eigenshapes Vn and eigenfrequencies ωn). 

Employing the “influence functions” g (x) for the bridge-deck and g (x) for each pier (which

express the deformed configuration of a beam with unit displacement at each support), and using

the modal analysis technique, along with the compatibility condition at the supports, one can finally

arrive at the integral-differential equations in terms of the time functions for the joint motions. The

above equations are solved through the Laplace transformation and the relations obtained are

evaluated numerically by the Mathematica symbolic manipulator. Typical examples showing the

effectiveness of the method are presented with useful results tabulated. 

The proposed method utilizes the characteristic of the transverse eigenshapes nullification at the

supports and thus, it cannot be applied for the case of motion acting in a direction parallel to the

deck. This case is solved in a completely different manner, which is the subject of a companion

publication. 

Finally, it should be noted that in the present work an analytical model for studying the dynamical

behavior of bridges on tall and unequal piers is proposed, which has no relation to the wave

propagation in soil. Therefore, the examples studied will be used as a vehicle to illustrate the effects

considered.

2. Basic assumptions 

The bridge shown in Fig. 1 is resting on a number of piers fixed (or pinned) on the ground. In

this study, and without loss of generality, we consider piers fixed at their bases, but with joints at

the bottom side of the deck free to rotate (see Figs. 1 and 2). We also assume that each pier is

subjected to different base motion, and hence, the base displacement of the ith pier is denoted with

fi (t). The axial and shear deformations for both the bridge-deck and the piers are neglected.

We assume that the top of the ith pier is moving according to the time function  that is to be

determined. All data concerning the piers will be over lined within the text. The above system can

be analyzed as a bridge-deck continuous beam (Fig. 2a), for which the shape functions s and the

ϕi t( )

Vn
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eigenfrequencies  are known, and as single-pylon beams (Fig. 2b) with also known shape

functions  and eigenfrequencies . 

ωn

Vin ω in

Fig. 1 A typical bridge on piers with different movements

Fig. 2 Model of the bridge-deck and pylon beam system
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The “influence functions”  for the bridge-deck and  for each pier are also known since

we consider a unit displacement at the supports i. The time functions  at the supports are known,

while the time functions  at the joints are to be determined.

3. Analytical model

The total displacement of the bridge-deck beam along the y-axis is given by

(1)

where  is the “elastic deformation”,  is the “static or geometric deformation” due to the

supports displacements,  are the time functions,  are the influence functions corresponding

to the left and right support, respectively, and  are the influence functions corresponding to the

intermediate supports. The equation of motion of the beam is: . Introducing

υ from Eq. (1) into this equation, we obtain

(2)

We search for a solution of the form

(3)

where  are the shape functions of the bridge-deck system (continuous beam) and  is the

time function to be determined. Introducing  from Eq. (3) into Eq. (2), we obtain

(4)

Since the shape functions  satisfy the equation of free motion: , Eq.

(4) will take the following form

(5a)

where

(5b)

and the functions  have been expressed in terms of the eigenshapes . Multiplying

Eq. (5a) by Vn, integrating from 0 to L (length of the entire bridge), and taking into account the

orthogonality condition, one can obtain
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(6)

where v is the wave’s propagation velocity of the soil, H(x-a) is the Heaviside’s unit step function,

 is the length of the length of the ρth span, and  is the nth eigenfrequency. Eq. (6), with initial

conditions , has the following solution given by the Duhamel’s second integral

(7a)

where

(7b)

The total displacement of the jth fixed-joined pier along the  axis is

(8)

where  is the elastic deformation,  is the static one due to the displacement  of the

foundation and  is the displacement at top of the pier.

The equation of motion for the jth pier is: . Introducing  from Eq. (8)

into this expression, we obtain

(9)

We are searching for a solution in the form

(10)

where  are the shape functions of the jth pier and  are the corresponding time functions.

Thus, Eq. (8) becomes

(11)

The two displacements at the j-node must be equal and hence, the following equation is valid:

, or because of Eqs. (1), (3) and (11), this equation of compatibility can be

written as

(12)

At the joint j, where x = xj, the following equations are valid
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(13)

Thus, Eq. (12) becomes: , or 

(14)

where Pn(t) is the time function to be determined.

Introducing  from Eq. (10) into Eq. (9), and following a similar process like the one for the

solution of Eq. (4), we arrive at the following relations
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where
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Eq. (15), with initial conditions: , has the following solution, as given by

Duhamel’s integral
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which is valid for j = 1 to κ-1. From the above (κ-1) Eq. (17) and using Laplace’s transformation

we can determine the (κ-1) unknowns , as described below. First, we set

(18)

with the initial conditions: . By Laplace’s transformation and Borel’s theorem

(Wylie 1975), one can derive from Eq. (17) the following
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which can also be written in the following form
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Solution of the above linear system gives the unknowns  under the form
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4. Numerical results and discussion

In this section, we shall apply the above relations to three typical cases. The first one refers to a

single-span bridge with non-synchronous support movements. The second one refers to a two-span

bridge whose middle support lies on piers of the cantilever type with heights h1, while all supports

are assumed to move in the same way. In this second case, we shall study the influence of the pier’s

height on the dynamic behavior of the bridge. Finally, in the third case, a three-span bridge will be

studied with non-synchronous support movements. 

Some assumptions are adopted for the support movements. The movements of supports 0 and j of

the bridge are assumed to vary according to the following expressions

and (23)

where  is the cyclic frequency of the harmonic seismic waves. For the cases studied, a = 0.05, is

the maximum amplitude of the ground motion at the first pier, fj is the movement at the jst pier, and 

(24)

is a coefficient showing the decrease of ground movement as the distance from the epicenter

increases, b = 0.2 is a constant expressing the damping of the earthquake, the cyclic frequency of

the seismic waves  taking values from 1 to 15 for the cases studied, and ρj is the phase angle

due to the distance Lj between the two supports 0 and j, given by the relation (Zerva 1999)

(25)

where v is the wave propagation velocity of the ground. The value v depends on the ground and is

taken as 5.5 km/sec for granite soil and 1.5 km/sec for mud soil. 

Since the purpose of this paper is to study the effects of different movements and heights of piers

on the dynamic behavior of bridges, but not on the contents of these movements, the above simple

expressions given by Zerva (1990, 1999), instead of the more complicated ones of EC 8, will be

adopted. Two values will be considered for ωe: ωe = 3 sec−1, which corresponds to an earthquake of

distant source, and ωe = 15 sec−1, which corresponds to an earthquake of near source.

4.1. The single-span bridge

We consider a single-span bridge, made of isotropic and homogeneous material with modulus of

elasticity E = 2.1*108 KN/m2, length L = 60 m, mass per unit length m = 1000 kg/m, and transverse

moment of inertia Iz = 10 m4. The data listed in Table 1 are adopted.

Figs. 3 and 4 show the influence of different ground properties on the seismic excitations of the

first and second supports. The first three transverse eigenfrequencies of the bridge can be computed

as: ω1 = 39.729, ω2 = 158.916, and ω3 = 357.560 sec−1. For the influence functions given in the 
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Appendix, we find from Eq. (5b)

For , one can obtain from Eq. (7) the time function Tn(t) as

Aon
2

nπ
------  =   A  ln

2 nπcos

nπ
------------------=,

ϕj t( ) 0=

Table 1 Values of the phase angle ρ and the coefficient k for various soil types

Cyclic 
frequency

v = 5500 m/sec
(granite soil)

v = 2500 m/sec
(mid-quality soil)

v = 1500 m/sec
(mud soil)

ρ k ρ k ρ k

ωe = 3 0.033 0.9992 0.072 0.9961 0.12 0.9892

ωe = 15 0.164 0.9798 0.36 0.9024 0.60 0.7257

Fig. 3 Seismic excitations of the first support (continuous line) and second support for ω = 3 sec−1, ρ = 0.033,
k = 0.9992 (- - -) (granite), ρ = 0.072, k = 0.9961 (- - -) (middle), ρ = 0.12, k = 0.9892 (….) (mud)

Fig. 4 Seismic excitations of the first support (continuous line) and second support for ω = 15 sec−1, ρ =
0.164, k = 0.9798 (- - -) (granite), ρ = 0.36, k = 0.9024 (- - -) (middle), ρ = 0.60, k = 0.7257 (….) (mud)
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(26)

and the displacement  as 

(27)

We will study now the variation of the displacement υ at the mid-span of the bridge for each one

of the above soil properties with the aid of Figs. 5 to 10.
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Fig. 5 Displacement of the mid-span of the bridge for ωe = 3 sec−1 and granite soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)

Fig. 6 Displacement of the mid-span of the bridge for ωe = 3 sec−1 and middle soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)
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Fig. 7 Displacement of the mid-span of the bridge for ωe = 3 sec−1 and mud soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)

Fig. 8 Displacement of the mid-span of the bridge for ωe = 15 sec−1 and granite soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)

Fig. 9 Displacement of the mid-span of the bridge for ωe = 15 sec−1 and middle soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)
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From the above figures, one observes that the maximum amplitude occurs during the first cycles

of oscillation of the bridge. Even for supports spanned at short distances, like the one of the present

example (L = 60 m), one must take into account the variation in the earthquake’s intensity,

especially for non-cohesive soils under the action of high frequency motions. The differences in the

deck’s deformations may range from 0% to 3% for a granite soil, and from 3.5% to 28% for a mud

one, where the lower limits correspond to low frequency motions and the higher limits correspond

to high frequency motions.

4.2 Effect of the piers’ height (two-span bridge)

We consider next a two-span bridge with a deck that has the same properties as those of the

example in Section 4.1, and spans of lengths L1 = 60 m, and L2 = 70 m, with its middle support

lying on the top of a pylon of height h1. In addition, we assume that the movements of the ground

along the whole length of the bridge are governed by the same equation of ground motion:

 sin ωet, where a, b, ωe were given in Section 4.1.

The eigenfrequencies of the two-span beam can be computed as: ω1 = 32.761, ω2 = 55.210, and

ω3 = 127.869 sec−1, and those of the cantilever as: , with λ1 = 1.875/h1, λ2 = 1.5 π/h1,

λ3 = 2.5 π/h1 where, mpylon = 1000 kg/m and for Ipylon = 0.20 m4, 0.80 m4, and 2.00 m4. Using the

influence functions and shape functions and applying the procedure described in Section 3, one can

solve the integral differential system to obtain the time functions ϕj (t), and along with the aid of

Eq. (1), study the influence of the pier height h1 on the bridge displacement w (x, t). Figs. 11, 12,

and 13 show the oscillation of the middle support (as indicated by the functions ϕ1 (t)) for the pier

heights h = 10, 30, 50, and 70 m, along with the values of Ipylon given above.

Figs. 14, 15, and 16 show the displacement of the deck, at the instant t, when the functions ϕ1

take their maximum value. 

f0 f1 f2 a e
bt–⋅= = =

ωn

λn

4
EIpylon

mpylon

---------------------=

Fig. 10 Displacement of the mid-span of the bridge for ωe = 15 sec−1 and mud soil (continuous line =
synchronous support motion, dashed line = non-synchronous support motion)



The influence of different support movements and heights of piers on the dynamic behavior of bridges 443

Fig. 11 Time function ϕ1 for Ipylon = 0.2 m4, and for pier heights h1 = 10 m( ____ ), h1 = 30 m( …. ), h1 = 50 m
( _ _ _ ), h1 = 70 m ( __ __ )

Fig. 13 Time function ϕ1 for Ipylon = 2 m4, and for pier heights h1 = 10 m( ____ ), h1 = 30 m( …. ), h1 = 50 m
( _ _ _ ), h1 = 70 m ( __ __ )

Fig. 12 Time function ϕ1 for Ipylon = 0.8 m4, and for pier heights h1 = 10 m( ____ ), h1 = 30 m( …. ),
h1 = 50 m ( _ _ _ ), h1 = 70 m ( __ __ )
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Fig. 14 Displacement of the bridge for Ipylon = 0.2 m4, and for pier heights h1 = 10 m, at t = 0.518 ( ____ ),
h1 = 30 m, at t = 0.458 ( …. ), h1 = 50 m, at t = 0.613 ( _ _ _ ), and h1 = 70 m, at t = 0.527 ( __ __ )

Fig. 15 Displacement of the bridge for Ipylon = 0.8 m4, and for pier heights h1 = 10 m, at t = 0.484 ( ____ ),
h1 = 30 m, at t = 0.495 ( …. ), h1 = 50 m, at t = 0.430 ( _ _ _ ), and h1 = 70 m, at t = 0.590 ( __ __ )

Fig. 16 Displacement of the bridge for Ipylon=2 m4, and for pier heights h1 = 10 m, at t = 0.511 ( ____ ),
h1 = 30 m, at t = 0.561 ( …. ), h1 = 50 m, at t = 0.520 ( _ _ _ ), and h1 = 70 m, at t = 0.591 ( __ __ )
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4.3 Effect of the piers’ height (three-span bridge)

In this section, we will study, mainly, the effect of the piers’ height on the dynamic behavior of

the bridge. We will examine, also, the influence of differential movements of the piers, based on

mid-quality soil, for an earthquake of distant source. For the present purposes, we consider a three-

span bridge with a deck that has the same properties as those of the example given in Section §4.1,

and spans of lengths L1 = 60 m, L2 =70 m, and L3 = 60 m, and middle supports lying on the top of

piers with heights h1, and h2. 

4.3.1 Differential movement of the soil

To study the effect of the piers’ height, we assume that the movement of the ground along the

length of the bridge is governed by the equation: , on mid-quality soil, where a,

b, , and k, ρ, have been given in Section 4.1. The eigenfrequencies of the three-span beam can

be computed as: ω1 = 34.810, ω2 = 49.724, and ω3 = 63.651 sec−1, and those of the cantilever as:

, where λ1 = 1.875/h1, λ2 = 1.5 π/h1, λ3 = 2.5 π/h1, along with mpylon = 1000 kg/m and

Ipylon = 0.20 m4, and 2.00 m4.

Using the influence functions and shape functions and applying the procedure of Section 3, one

can solve the integral differential system to obtain the time functions ϕj (t), along with the aid of

Eq. (1), and study the influence of the height h1 on the displacement w (x, t) of the bridge deck.

Figs. 17, 18, and 19 show the oscillations of the middle supports (as indicated by the functions

ϕ1 (t) and ϕ2 (t)) for piers with the same height and Ipylon = 0.2 m4. 

Figs. 20, 21, and 22 show the oscillations of the middle supports (as indicated by the functions

ϕ1 (t) and ϕ2 (t)) for piers with the same height and Ipylon = 2 m4. 

f a e
bt–

ωetsin⋅=

ωe

ωn

λn

4
EIpylon

mpylon

---------------------=

Fig. 17 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 20 m, and Ipylon = 0.2 m4
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Fig. 18 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 40 m, and Ipylon = 0.2 m4

Fig. 19 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 60 m, and Ipylon = 0.2 m4

Fig. 20 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 20 m, and Ipylon = 2



The influence of different support movements and heights of piers on the dynamic behavior of bridges 447

4.3.2 Effect of the piers’ height

The effect of the piers’ height for fo = f1 = f2 = f3 can be appreciated from Figs. 23 and 24 for

Ipylon = 0.2 and 2 m4, respectively, for rather short piers. As can be seen, such an effect is quite

significant, even for two piers with a small difference in height. 

The effect of the piers’ height for fo = f1 = f2 = f3 can be observed from Figs. 25 and 26 for

Ipylon = 0.2 and 2 m4, respectively, for taller piers. It appears to be greater than that for short piers,

even for the case of two piers with a small difference in height. 

Fig. 27 shows the influence of differential movements of the piers caused by the foundation on

mid-quality soil. Each curve in this figure has been drawn for the instant when the maximum

response occurs.

Fig. 28 shows the displacement of the bridge at different instants for fo = f1 = f2 = f3, but with equal

piers’ height. In contrast, Fig. 29 shows the displacement of the bridge at different instants, but for

piers located at mid-quality soil. Finally, Fig. 30 shows the displacement of the bridge at different

instants for fo = f1 = f2 = f3, and piers with different heights.

Fig. 21 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 40 m, and Ipylon = 2

Fig. 22 Time functions ϕ1 ( ___ ) and ϕ2 ( ….. ) for H1 = H2 = 60 m, and Ipylon = 2
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Fig. 23 Displacement of the bridge for Ipylon = 0.2 m4, fo = f1 = f2 = f3, and for pier heights h1 = 20 m, and
h2 = 20 m ( ____ ), h2 = 22 m ( …. ), h2 = 24 m ( _ _ _ ), h2 = 26 m ( __ __ )

Fig. 24 Displacement of the bridge for Ipylon = 2 m4, fo = f1 = f2 = f3, and for pier heights h1 = 20 m, and
h2 = 20 m ( ____ ), h2 = 22 m ( …. ), h2 = 24 m ( _ _ _ ), h2 = 26 m ( __ __ )

Fig. 25 Displacement of the bridge for Ipylon = 0.2 m4, fo = f1 = f2 = f3, and for pier heights h1 = 40 m, and
h2 = 40 m ( ____ ), h2 = 42 m ( …. ), h2 = 44 m ( _ _ _ ), h2 = 46 m ( __ __ )
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Fig. 26 Displacement of the bridge for Ipylon = 2 m4, fo = f1 = f2 = f3, and for pier heights h1 = 40 m, and
h2 = 40 m ( ____ ), h2 = 42 m ( …. ), h2 = 44 m ( _ _ _ ), h2 = 46 m ( __ __ )

Fig. 28 Displacement of the bridge for Ipylon = 0.2 m4, fo = f1 = f2 = f3, h1 = h2 = 40 m, at t = 0.38 sec, ( ____ ),
t = 0.47 sec ( …. ), t = 0.79 sec ( _ _ _ ), and t = 1.15 sec ( __ __ )

Fig. 27 Displacement of the bridge for Ipylon = 0.2 m4, based on mid-soil, and for pier heights: h1 = h2 = 20 m,
at t = 0.55sec, ( ____ ), h1 = h2 = 40 m, at t = 0.32 sec ( …. ), and h1 = h2 = 60 m, at t = 0.65 sec ( _ _ _ )
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5. Conclusions 

In this work, a simple mathematical model is proposed of multi-span steel bridges resting on

pylons with different heights, based on which the dynamic response of the bridges is studied. From

the analyses and numerical examples presented herein, the following conclusions can be drawn:

a. For the cases studied in Section 4, the maximum displacement amplitude occurs during the first

cycles of oscillation of the bridge (for h/L < 0.20), while this same maximum may appear during the

second or the third cycle (for h/L > 0.20)

b. Different ground qualities will result in different movements at the supports, thereby affecting

the displacement of the bridge. This effect, for the model studied, ranges from 0% to 3% for a

granite soil, and from 3.5% to 28% for a mud soil, where the smaller limits correspond to low

frequency motions and the higher limits correspond to high frequency motions.

c. We understand that pure mud soil may not be realistic in practice. Thus, such a significant

Fig. 29 Displacement of the bridge for Ipylon = 0.2 m4, based on mid-soil, h1 = h2= 40 m, at t = 0.32 sec, (____ ),
t = 0.40 sec ( …. ), t = 0.63 sec ( _ _ _ ), and t = 0.81 sec ( __ __ )

Fig. 30 Displacement of the bridge for Ipylon = 0.2 m4, fo = f1 = f2 = f3, h1 = 40 m, h2 = 45 m, at t = 0.26 sec,
( ____ ), t = 0.60 sec ( …. ), t = 0.88 sec ( _ _ _ ), and t = 1.10 sec ( __ __ )
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reduction of the motion, as exhibited in the figures of Section 4 associated with mud soil, may not

be realistic for piers with such small distances from 60 to 190 m, as those of the examples studied.

It is also clear though, that one must take into account a possible notable reduction of the ground

motion for soils with poor qualities. 

d. The properties of the piers (i.e. height and rigidity) affect strongly the oscillations of the bridge.

e. An increase in the height of the piers, for the models studied, can cause a 50% increase in the

displacement of the bridge for Ipylon = 0.2, while for Ipylon = 2.0 the increase in displacement drops to

4%.

f. The numerical examples have indicated that depending on the design of the piers, one can

achieve a satisfactory decrease of the maximum displacements and thus, a better dynamic behavior

of the bridge.

g. From Figs. 23 to 30, one observes that the transversal dynamic distress and the distribution of

bending moments (caused by earthquakes) should be studied with great caution, since there may

occur situations that are significantly different from those under static loadings as implied by a

design.
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Appendix

Influence functions (Michaltsos 2005)

One-span beam

 Subside of the support number 0: 

 Subside of the support number 1: 

Fixed-joined beam

 Subside of the fixed end: 

 Subside of the free end: 

Two-span beam

Subside of the support number 0

 Subside of the support number 1

Subside of the support number 2

 

Three-span beam 

 Subside of the support number 0

g x( ) 1 x l⁄–=

g x( ) x l⁄=

g x( ) 1=

g x( ) 3x
2

2l
2

--------
x

2

2l
3

-------–=

g1 x1( )
l1 x1–( )

l1

------------------- 1

2l1 l1 l2+( )
--------------------------

x1

3

l1

---- l1x1+–⎝ ⎠
⎛ ⎞–=

g2 x2( ) 1

2l1 l1 l2+( )
--------------------------

x2

3

l2

---- 3x2

2
– 2l2x2+⎝ ⎠

⎛ ⎞–=

g1 x1( )
x1

l1

---- 1

2l1l2

-----------
x1

3

l1

---- l1x1+–⎝ ⎠
⎛ ⎞+=

g2 x2( )
l2 x2–

l2

-------------- 1

2l1l2

-----------
x2

3

l2

---- 3x2

2
– 2l2x2+⎝ ⎠

⎛ ⎞+=

g1 x1( ) 1

2l2 l1 l2+( )
--------------------------

x1

3

l1

----– l1x1+⎝ ⎠
⎛ ⎞–=

g2 x2( )
x2

l2

----
1

2l2 l1 l2+( )
--------------------------

x2

3

l2

---- 3x2

2
– 2l2x2+⎝ ⎠

⎛ ⎞–=

g1 x1( )
l1 x1–

l1

-------------- 2κo l1 l2+( )
x1

3

l1

---- l1x1+–⎝ ⎠
⎛ ⎞–=

g2 x2( ) 2κo l1 l2+( )
x2

3

l2

---- 3x2

2
– 2l2x2+⎝ ⎠

⎛ ⎞– κo– l2

x2

3

l2

---- l2– x2⎝ ⎠
⎛ ⎞=

g3 x3( ) κol2

x3

3

l3

---- 3x3

2
– 2l3x3+⎝ ⎠

⎛ ⎞=



The influence of different support movements and heights of piers on the dynamic behavior of bridges 453

where: 

Subside of the support number 1

where: 

Subside of the support number 2

whrer: 

Subside of the support number 3
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whrer: 

Borel’s theorem (or the theorem of convolution) 

If  and , then the following relation is valid
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